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The medial geniculate body (MGB) plays a central role in auditory processing with both efferent and afferent
tracts to primary auditory cortex. People who have lost one eye early in life have enhanced sound localization,
lack visual over auditory dominance and integrate auditory and visual information optimally, similar to controls,
despite taking longer to localize unimodal visual stimuli. Compared to controls, people with one eye have de-
creased lateral geniculate nuclei (LGN) volume as expected given the 50% deafferentation of the visual system.
However, LGN volume is larger than predicted contralateral to the remaining eye, indicating altered structural
development likely through recruitment of deafferented LGN cells.
Purpose: the current study investigated whether structural MGB changes are also present in this group given the
changes they exhibit in auditory processing.
Methods: MGB volumes were measured in adults who had undergone early unilateral eye enucleation and were
compared to binocularly intact controls.
Results: unlike controls, people with one eye had a significant asymmetry with a larger left compared to right
MGB, independent of eye of enucleation. MGB volume correlated positively with LGN volume in people with
one eye.
Conclusions: volume asymmetry in the MGB in people with one eye may represent increased interactions be-
tween the left MGB and primary auditory cortex. This interaction could contribute to increased auditory and
other left hemisphere-dominant processing, including language, as compensation for the loss of one half of visual
inputs early in life. The positive correlation between MGB and LGN volume is not due to space constraints but
rather indicates increased plasticity in both auditory and visual sensory systems following early eye enucleation.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Every day, aswe interactwith theworld,we take in important infor-
mation from the environment through our sensory systems. Sensory in-
formation, with the exception of olfaction, is first processed
subcortically by the thalamus, which then projects information to the
cortex for further processing (Bartlett, 2013). There is evidence that
when one sense is compromised, as in the case of complete blindness,
brain regions associated with the lost sense (i.e., visual cortex) can be
reorganized for use by the other senses (e.g., Röder et al., 2002). We
have recently shown that structural reorganization at the subcortical
York University, 4700 Keele St.,
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level in the lateral geniculate nucleus (LGN) of the thalamus occurs in
cases of sensory deprivation (Kelly et al., 2014).

The medial geniculate body (MGB) of the thalamus plays a central
role in auditory processing (Devlin, 2006; Bartlett, 2013). It relays audi-
tory information for higher order processing in primary auditory cortex,
however, substantial reciprocal connections from the primary auditory
cortex back to the MGB also exist (Bartlett, 2013; Lee et al., 2004; Lee,
2013). This combination of ascending/descending sensory connections
allows for the complex perception of sounds (Bartlett, 2013). In
humans, functional magnetic resonance imaging (fMRI) has shown ac-
tivation in the MGB during sound localization and sound recognition
(Maeder et al., 2001), aswell as speech and emotional voice discrimina-
tion (von Kriegstein et al., 2008; Ethofer et al., 2012). Cortical feedback
can alter MGB responses and provide dynamic gain enhancement or
suppression through direct excitatory (corticothalamic feedback) or in-
direct inhibitory (corticothalamic influence on the thalamic reticular
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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nucleus (TRN)) signals (Zhang et al., 1997; Bartlett, 2013). This gain
control may contribute to enhancing auditory attention and context
memory, important for predicting words in a spoken sentence
(Bartlett, 2013).

Extensive investigation of the mammalian MGB, typically in the cat,
has revealed three major subdivisions: ventral (vMGB), medial
(mMGB) and dorsal (dMGB) (Devlin, 2006). The ventral division is sen-
sitive to pure tone stimulation of the contralateral ear, whereas both the
medial and dorsal divisions are more sensitive to complex and multi-
sensory stimuli (see De Ribaupierre, 1997; Rouiller, 1997 for review).
In addition, non-auditory stimuli also activate theMGB. The ratMGB re-
sponds to light flashes or rewards indicating that it plays a role in inte-
grating multisensory stimuli to provide an enhanced contextual
response (Komura et al., 2001, 2005; Bartlett, 2013). Congenitally deaf
mice show reorganization at the level of the thalamus through the acti-
vation of the MGB (Hunt et al., 2005). Together, these findings indicate
that it is possible for primary sensory afferents, such as retinal projec-
tions, to rewire and claim unused subcortical structures, resulting in an-
atomical re-modelling (Hunt et al., 2005; Karlen, 2006). Reorganization
of the MGB following sensory loss, however, has not been studied ex-
tensively in humans.

Monocular enucleation, the surgical removal of one eye early in life,
is a unique form of visual deprivation that provides a useful model for
studying and quantifying the underlying neural consequences of the
loss of binocularity during development. Monocular enucleation differs
from other more common forms of monocular deprivation, such as
strabismus and amblyopia, by providing a clean model of total mon-
ocular deprivation. This is unlike strabismus and amblyopia which
result in unreliable, unbalanced competing visual signals from the
deprived eye. Monocular enucleation results in only one stream of
normal visual input from the remaining eye to the visual system.
Monocular enucleation also provides an excellent model for investi-
gating the interaction between vision and other senses, since vision
has not been completely eliminated (see Kelly et al., 2013; Steeves
et al., 2008 for reviews).

It has been well documented that the visual system changes in re-
sponse to the loss of one eye. People who have had one eye removed
early in life when the visual system is not yet mature demonstrate al-
tered processing in their remaining senses. For example, they show in-
tact (Cattaneo, 2014) or enhanced visual spatial form ability (Nicholas
et al., 1996; Reed et al., 1997; Steeves et al., 2004), but reduced visual
motion processing (see Steeves et al., 2008; Kelly et al., 2013 for re-
views). Some evidence of cross-modal adaptation in response to the
compromised enucleated visual system has also been demonstrated.
Peoplewho lost an eye early in life show enhanced auditory localization
in the horizontal azimuth compared to binocular controls (Hoover et al.,
2012). Further, they do not show the typical pattern of visual over audi-
tory dominance (i.e., Colavita visual dominance effect; Colavita, 1974)
that binocular controls exhibit, but rather show equivalent auditory
and visual processing (Moro and Steeves, 2012). Lastly, although people
with one eye do not integrate audiovisual stimuli any differently from
controls during audiovisual spatial localization, they are slower to re-
spond when localizing visual stimuli (Moro et al., 2014).

There have been few studies investigating the morphology of
sensory systems of people who have lost an eye early in life (Kelly
et al., 2014; Kelly et al., 2015). Subcortically, people with one eye
have an overall decrease in LGN (the visual relay station of the thal-
amus) volume compared to binocular viewing controls (Kelly et al.,
2014). This is not surprising given the 50% deafferentation of signal
to the visual system with eye enucleation. What is surprising, how-
ever, is that the LGN contralateral to the remaining eye is less re-
duced in volume likely from recruitment of some of the
deafferented LGN cells (Kelly et al., 2014). This finding provides evi-
dence that the visual system, even at the level of the subcortex, is
vulnerable to reorganization after losing one eye early in life during
the period of normal maturation (Kelly et al., 2014).
Functional neuroimaging can be used to successfully localize the
MGB in humans, however, this methodology is limited by sensory stim-
uli and in its sensitivity (Devlin, 2006). Devlin et al. (2006) have been
able to structurally image theMGB to resolve the functional localization
concerns. Their method is now considered the gold standard for ana-
tomical localization of the MGB and other thalamic structures. Given
the existing auditory and audiovisual behavioural differences and the
morphological changes in the LGN in people with one eye, we investi-
gated whether structural changes in the MGB also exist in this group.

2. Methods

2.1. Participants

2.1.1. People with one eye (monocular enucleation, ME)
Ten adult participants who had undergone monocular enucleation

(ME) at The Hospital for Sick Children participated in this study
(mean age = 26 years, SD = 10; 5 female). All ME participants had
been unilaterally eye enucleated (5 right eye removed) due to retino-
blastoma, a rare childhood cancer of the retina. Age at enucleation
ranged from 4 to 60 months (mean age at enucleation = 21 months,
SD = 16).

2.1.2. Binocular viewing control participants (BV)
Fifteen binocularly intact controls with a mean age of 30 years

(SD = 11; 6 female; 11 right eye dominant) were tested and reported
no history of abnormal visual experience.

All participants (ME, BV) reported normal hearing, normal or
corrected-to-normal acuity as assessed by an EDTRS eye chart (Preci-
sion Vision™, La Salle, IL) andwore optical correction if needed. All par-
ticipants gave informed consent prior to inclusion in the study, which
adhered to the tenets of the Declaration of Helsinki and was approved
by the York University Office of Research Ethics.

2.2. Data acquisition, processing and measurements

All scanswere acquired on a SiemensMAGNETOMTrio 3 TMRI scan-
ner with a 32-channel head coil in the Sherman Health Sciences Re-
search Centre at York University. Proton density (PD) weighted
images were processed using tools from the freely available FMRIB3s
Software Library (FSL; version 4.1.8) (http://www.fmrib.ox.ac.uk/fsl.)
All data acquisition and processing were conducted according to
methods used in Kelly et al. (2014) for assessing LGN volume. Thalamic
nuclei have been successfully identified using PD weighted images pre-
viously (Devlin et al., 2006; Kelly et al., 2014). See Kelly et al. (2014) for
more detailed data acquisition and processing procedures.

High-resolution T1 weighted images were acquired with the follow-
ing parameters: rapid gradient echo, 1 mm3 isotropic voxels, TR =
1900 ms, TE = 2.52 ms, 256x256 matrix, and flip angle = 9°. Either
30 or 40 PD weighted images per participant were acquired coronally
with the following parameters: turbo spin echo, 800 x 800 µm in-
plane resolution, slice thickness = 2 or 1 mm, TR = 3000 ms, TE = 22
or 26 ms, 256x256 matrix, and flip angle = 120°. Total scan time per
participant was approximately 1.5 h. The smaller number (30) of PD
weighted images for some participants was due to time constraints.

Using FSL toolbox applications, all PD weighted images for each par-
ticipantwere interpolated to twice the resolution and half the voxel size
using FLIRT (Jenkinson and Smith, 2001; Jenkinson et al., 2002) to in-
crease the signal-to-noise ratio. These images were then concatenat-
ed using fslmerge and motion-corrected using MCFLIRT (Jenkinson
et al., 2002). From the series of interpolated PD weighted images, a
mean high resolution PD image was created per participant using
fslmaths.

Following image acquisition and processing, three independent
raters manually traced the left and right MGB region of interest (ROI)

http://www.fmrib.ox.ac.uk/fsl
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masks three times each for each participant using themean PDweight-
ed image. For each rater, ROIsweremerged and amedianmaskwas cre-
ated using fslmerge and fslmaths, respectively.Medianmasks fromeach
of the three raters were merged together and a final median mask
across raters was created.MGB volumes (left and right) were calculated
for each participant from this final medianmask using fslstats. All intra-
rater inter-class correlations (ICC) were above 0.85 and all inter-rater
ICCs were above 0.85. ICCs above 0.70 indicate that measurements
were consistent both within and between raters (Cohen, 2001). These
methods are the gold standard andmost appropriate for evaluating tha-
lamic structures in clinical settings (e.g., Bridge et al., 2009; Devlin,
2006; Schmitz et al., 2003). An averaged, interpolated PD weighted
image with an outline of the final median ROI left and right MGB
mask is shown in Fig. 1.
Fig. 2. A. MGB volume (mm3) in the ipsilateral and contralateral hemisphere to the dom-
3. Results

3.1. Ipsilateral vs contralateral MGB volume

A 2 × 2 repeatedmeasures analysis of variance (ANOVA) comparing
group (ME vs BV) and MGB side (ipsilateral vs contralateral to remain-
ing or dominant eye) revealed no significant interaction, F(1,23) =
0.825, p=0.373 and ŋp2=0.035. Therewas nomain effect of participant
group, F(1,23) = 0.059, p = 0.810 and ŋp2 = 0.003, or MGB side,
F(1,23) = 0.013, p = 0.909 and ŋp2 = 0.001. People with one eye did
not differ in MGB volume compared to controls. Fig. 2a plots MGB vol-
ume ipsilateral and contralateral to the dominant or remaining eye of
the BV and ME groups respectively.
inant or remaining eye of BV (black) andME(grey) groups, respectively. B.MGBvolume in
the left and the right hemisphere of the BV and ME groups.
3.2. Left vs right MGB volume

A2×2 repeatedmeasures ANOVA comparing participant group (ME
vs BV) and MGB side (left vs right) revealed a trend toward an interac-
tion, F(1,23) = 4.159, p=0.053 and ŋp2 = 0.153. There was nomain ef-
fect of participant group, F(1,23)=0.059, p=0.810 and ŋp2=0.003, but
there was a significant main effect of MGB side, F(1,23) = 10.879, p =
0.003 and ŋp2 = 0.321. Bonferroni corrected post-hoc comparisons re-
vealed that people with one eye had a significantly larger left compared
to right MGB volume (p = 0.002), regardless of which eye was re-
moved. This asymmetry was not present in the BV group (p = 0.330).
Fig. 2b plots the left and the rightMGB volume of the BV andME groups.
Fig. 1. A: An averaged, interpolated PDweighted image of a typical control participant in-
dicating the final median ROI of left and right MGB mask outlined in white.
3.3. Comparing LGN and MGB volumes

We investigated the relationship between the existing LGN volumes
(Kelly et al., 2014) and our current MGB volumes. For our control partic-
ipants non-parametric Spearman correlations comparing left MGB to left
LGN, r(15) =−0.25, p=0.36 and right MGB to right LGN, r(15) = 0.13,
p=0.64were not significant. For ourME group, there is a strong positive
Spearman3s correlation comparing left MGB to left LGN, r(10) = 0.73,
p = 0.02, while there is no significant correlation when comparing the
right MGB to right LGN volumes, r(10) =−0.03, p=0.95. Furthermore,
there were no significant correlations when comparing the contralateral
(to the dominant or remaining eye of participants) LGN to the contralat-
eral MGB in both controls: r(15) = −0.11, p = 0.71 and ME group:
r(10) = 0.28, p = 0.43, or when comparing ipsilateral LGN to ipsilateral
MGB in both controls: r(15) = −0.02, p = 0.96 and ME group:
r(10) = −0.16, p = 0.66. Fig. 3A plots the LGN and MGB correlations
for the control participants. B: plots the LGN and MGB correlations for
the ME group.
4. Discussion

The current study used structural MRI to anatomically localize and
measure theMGB volume in people with one eye and binocularly intact
controls. Overall, people with one eye displayed an asymmetry in MGB
volume with a larger left than right MGB, regardless of which eye was
enucleated. Binocularly intact controls did not display an asymmetry.

Although traditionally viewed as an audiocentric structure, rat stud-
ies have shown that subnuclei of theMGB also receive somevisual input
(Linke et al., 2000; Komura et al., 2001, 2005). In humans, participants
presented with low intensity visual stimuli paired with an auditory
tone show increased behavioural sensitivity and functional activation
in the MGB, indicating crossmodal influences on the MGB (Noesselt
et al., 2010). These crossmodal influences on the MGB might be driven



Fig. 3. MGB volume (mm3) correlated with LGN volume (mm3) (taken from Kelly et al., 2014) for control participants (Column A) and for the ME group (Column B).

516 S.S. Moro et al. / NeuroImage: Clinical 9 (2015) 513–518
through corticothalamic feedback mechanisms, which in turn may in-
fluence multisensory interactions (Noesselt et al., 2010). In addition,
people with one eye have superior sound localization abilities (Hoover
et al., 2012) supporting the documented coding of sound localization
in the MGB (Samson et al., 2000). Given that our patient population is
missinghalf of the retinal inputs to the visual system, theMGB asymme-
try observed in peoplewith one eyemay reflect neural reorganization at
the subcortical level duringpostnatalmaturation. This is consistentwith



517S.S. Moro et al. / NeuroImage: Clinical 9 (2015) 513–518
the cortical changes that have been found in this patient group de-
scribed below.

Recently, Kelly et al. (2015) found that people with one eye exhibit-
ed significantly larger cortical surface area in auditory supramarginal
and superior temporal regions, specifically in the left hemisphere com-
pared to binocularly intact controls. These regions are implicated in
short-termmemoryof auditory information (Paulesu et al., 1993) and au-
diovisualmultisensory integration (Beauchamp et al., 2004), respectively,
indicating reorganization in cortical areas outside of primary visual re-
gions following early monocular enucleation (Kelly et al., 2015). The cor-
tical surface area, LGN and the presentfindings complement auditory and
audiovisual behavioural data in this monocular enucleation group show-
ing equal processing of paired auditory and visual signals (Moro and
Steeves, 2012), better sound localization (Hoover et al., 2012) andoptimal
audiovisual integration (Moro et al., 2014) compared to controls. It is pos-
sible that the increase in cortical surface area in the left hemisphere audi-
tory andmultisensory regions withmonocular enucleation is reflected in
strengthened corticothalamic feedback to the leftMGBandhas lead to the
presently observed MGB volume asymmetry.

The relationship between the previously published LGN and the
present MGB volumes in both controls and people with one eye were
correlated. If the larger MGB volume were limited by space constraints
then the MGB asymmetry should be related to a decrease in size of
the LGN and one would predict a negative correlation. We found no re-
lationship in any comparison except for a strong positive correlation be-
tween the left MGB and left LGN in people with one eye. This signifies
that a larger left MGB is related to a larger left LGN in people with one
eye and rules out the space constraints prediction. A larger left MGB
cannot be solely explained as a harvesting of unused subcortical real es-
tate since a larger left MGB is associatedwith a larger left LGN. Instead, a
strong positive correlation indicates overall increased plasticity across
sensory systems that is not restricted by subcortical space confines but
rather is related to corticothalamic feedback from left hemisphere corti-
cal areas that have larger surface area (Kelly et al., 2015) thereby dem-
onstrating multi-level reorganization of sensory systems.

Multisensory events, such as audiovisual speech processing, have
been reported to involve thalamic modulation (Baier et al., 2006;
Cappe et al., 2009; Musacchia et al., 2007) and the MGB responds pref-
erentially to more complex speech-like structure (Jiang et al., 2013).
People with dyslexia show a reversed hemispheric asymmetry to our
current findings (i.e., smaller left versus right MGB) (Galaburda,
1994). The left hemisphere of cortex plays a central role in language
processing due to its analysis of fast temporal auditory transitions
(Galaburda, 1994). Phonological abnormalities in people with dyslexia
may be reflected in adverse left hemisphere cortical reorganization con-
tributing to the reverse MGB asymmetry found in dyslexia (Galaburda,
1994). People with one eye have mild face recognition deficits com-
pared to binocular and monocular viewing controls (Kelly et al.,
2012). It is possible that as a consequence of their mild face-
processing deficit, the brain of people with one eye has reorganized to
emphasize speech and language for identifying individuals, which
could lead to specific structural changes to language areas in the left
hemisphere of the brain. Future studies investigating behavioural mea-
sures of speech and language processing in this groupwould be an ideal
extension of these anatomical data.

5. Summary

The MGB volume asymmetry in people with one eye may represent
increased interactions between the left MGB and primary auditory cor-
tex. This interaction could contribute to increased auditory and other as-
pects of left hemisphere-dominant processing, including language. We
observed overall multisensory plasticitywith a relationship showing in-
creasing plasticity in the visual LGN and the auditory MGB, reflecting
subcortical reorganization as compensation for the loss of one half of vi-
sual inputs to the brain early in life.
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