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Abstract

A generalized model of receptor function is proposed that relies on the essential

assumptions of the minimal two-state receptor theory (i.e., ligand binding fol-

lowed by receptor activation), but uses a different parametrization and allows

nonlinear response (transduction) for possible signal amplification. For the

most general case, three parameters are used: Kd, the classic equilibrium dissoci-

ation constant to characterize binding affinity; e, an intrinsic efficacy to charac-

terize the ability of the bound ligand to activate the receptor (ranging from 0

for an antagonist to 1 for a full agonist); and c, a gain (amplification) parame-

ter to characterize the nonlinearity of postactivation signal transduction (rang-

ing from 1 for no amplification to infinity). The obtained equation,

E=Emax
¼ ec L½ �

ecþ1�eð Þ L½ �þKd
, resembles that of the operational (Black and Leff) or min-

imal two-state (del Castillo-Katz) models, E=Emax
¼ s L½ �

sþ1ð Þ L½ �þKd
, with ec playing a

role somewhat similar to that of the s efficacy parameter of those models, but

has several advantages. Its parameters are more intuitive as they are conceptu-

ally clearly related to the different steps of binding, activation, and signal trans-

duction (amplification), and they are also better suited for optimization by

nonlinear regression. It allows fitting of complex data where receptor binding

and response are measured separately and the fractional occupancy and

response are mismatched. Unlike the previous models, it is a true generalized

model as simplified forms can be reproduced with special cases of its parame-

ters. Such simplified forms can be used on their own to characterize partial

agonism, competing partial and full agonists, or signal amplification.

Introduction

Receptor theory

The receptor concept lies at the core of our current

mechanism of drug action theories (Maehle et al. 2002;

Katzung and Trevor 2014; Rang et al. 2015). It was her-

alded toward the end of the nineteenth century by the

work of Langley (1878-1879, 1909) and Ehrlich (1885,

1909, 1913) (corpora non agunt nisi fixata). These basic

ideas, as expanded and formulated through the twentieth

century by Hill (1909, 1910), Clark (1926, 1933), Gaddum

(1926, 1937), Schild (1947, 1949), Wyman and Allen

(1951), Monod et al. (1965), Ari€ens (1954), Stephenson

(1956), Del Castillo and Katz (1957), Furchgott (1966),

Black and Leff (1983), Black et al. (1985), and others,

form the basis of what is known as ‘receptor theory’; see

detailed reviews in Jenkinson (2003), Colquhoun (2006),

Kenakin (2006, 2008), Ehlert (2015a). They can now also

be incorporated in sophisticated pharmacokinetic-phar-

macodynamic (PK-PD) models for in vivo data ((Danhof

et al. 2007) and references therein).

To quantitatively characterize receptor occupancy/acti-

vation and to establish a clear functional connection

between ligand concentration and the effect produced,

pharmacology as a science needs to be based on a recep-

tor theory formulated within a rigorous quantitative

framework. The simplest models are based on a straight-

forward single-state model that assumes that (1) all

ligand-occupied receptors are active and (2) the effect
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produced is proportional with the number (concentra-

tion) of occupied receptors. The corresponding equations

that use binding affinity (Kd) as their parameter (e.g.,

Clark, Hill, and Gaddum equations) are commonly used

as they can provide adequate fitting for a large portion

of pharmacological data. On the other hand, most com-

monly accepted general receptor activation models that

are the foundation of our current receptor theory and

quantitative pharmacology (Katzung and Trevor 2014;

Rang et al. 2015) are two-state models in which ligand-

occupied and active receptor states do not fully overlap.

These more complex receptor activation models, which

in addition to binding affinity also employ an efficacy

parameter, are needed to be able to describe well-recog-

nized phenomena that cannot be explained within the

framework of simpler, affinity-only models. Such phenom-

ena include, for example, partial agonism, the existence of

receptor reserve (i.e., maximum activation at only partial

occupancy), constitutive activity, receptor desensitization,

and others (Jenkinson 2003; Colquhoun 2006; Kenakin

2006, 2008).

Cases where constitutive activity does not have to be

addressed can be described within the framework of the

operational (Black and Leff) or the minimal two-state (del

Castillo-Katz) model. The corresponding equations, which

are mathematically equivalent, use two parameters charac-

terizing affinity (Kd for receptor binding) and efficacy

(s for receptor activation), respectively. They are, however,
not widely used as their parameters are not well-suited for

fitting by nonlinear regression (e.g., for full agonists,

s needs to have large values, which are difficult to define

accurately), the parameters are not very intuitive (for full

or close to full agonists, Kd can have unrealistic values),

and the general equation cannot be reduced back to the

simpler forms as special cases. Here, a generalized model of

receptor function is proposed that relies on the essential

assumptions of the minimal two-state receptor theory (i.e.,

ligand binding is followed by receptor activation), but uses

a different parametrization and allows nonlinear response

(transduction) for possible signal amplification. The

obtained equation uses more intuitive parameters that are

better suited for optimization by nonlinear regression while

also being conceptually clearly related to the different steps

of binding, activation, and signal transduction (amplifica-

tion). Furthermore, it results in a true generalized model

that, contrary to the previous models, can be reduced back

to the simpler forms with special cases of its parameters. A

schematic summary of all models discussed here that

includes the basic assumptions for ligand binding and

receptor activation together with the resulting equations

connecting the fractional effect (E/Emax) to the ligand con-

centration [L] is shown in Figure 1. To highlight the con-

cepts that led to the formulation of the present model and

to place it in the context of other models, a summary

description of one- and two-state receptor models together

with corresponding equations is included first in the next

Background section, followed by a derivation and interpre-

tation of the present model. Because it is well documented

that heavy use of equations in the main text is likely to

hamper readability and reduce the impact and penetrations

of papers in biology-related fields (Fawcett and Higginson

2012), a set of additional-related equations and discussion

are included as Appendix 1.

Background: quantitative receptor
theory and existing receptor models

Receptor binding

Receptors bind a ligand and transduce this into a func-

tional response. To be able to exert any effect at a given

receptor, ligands have to be able to first bind there in a

sufficiently potent and specific manner. The strength of

the (binding) interaction between a ligand and its

receptor is typically characterized via the corresponding

equilibrium binding constant, Kd, which is the only

parameter used in the simplest quantitative receptor

models and a main parameter in all other, more complex

models. Typically, a receptor has to show structural

specificity in binding its ligand(s) (e.g., stereospecific

binding), and the binding should be saturable and lim-

ited. Most ligands of pharmacological interest bind in a

reversible fashion; irreversible (e.g., covalent) bindings

are of interest in a few cases, but will not be considered

here.

Receptor occupancy (binding affinity):
binding constant and the law of mass action

In its simplest form, binding of a ligand L and receptor R

to form a ligand-receptor complex LR represents a case of

a reversible bimolecular association (eq. 1). The classical

mass-action law should hold for the corresponding con-

centrations, just as for any bimolecular chemical reaction

(Silbey et al. 2005).

occupiedvacant

Kd
L    +     R LR (1)

Here, L, R, and LR denote the ligand, receptor, and

their bound complex, respectively, and Kd is the equilib-

rium dissociation constant of the binding. Corresponding

concentrations for each species will be denoted by square

brackets, e.g., [L], [R], and [LR]. The equilibrium repre-

sented by eq. 1 is, in fact, a dynamic equilibrium with
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both a forward (L + R?LR) and a backward reaction

(L + R LR), each with its corresponding rate constant

k1 and k–1, respectively. According to the law of mass

action, one can assume that the rate of the forward reac-

tion (association) is proportional with both [L] and [R],

k1[L][R], and the rate of the backward reaction (dissocia-

tion) is proportional with [LR], k–1 [LR]. The rate of the

reaction (Silbey et al. 2005) is v = –d[L]/dt = d[LR]/

dt = k1[L][R]–k–1[LR], which at equilibrium (steady

state) becomes zero. Consequently, k1[L][R] = k–1 [LR],

and the corresponding equilibrium dissociation constant

(Kd) can be expressed as a function of the equilibrium

concentrations of the species involved:

Kd ¼ k�1
k1
¼ ½L� � ½R�½LR� (2)

It is standard convention to use the equilibrium disso-

ciation constant (Kd) instead of its reciprocal, the associa-

tion constant (Ka), as it is more intuitive and convenient

mainly because it is measured in units of concentration

(usually molarity, mol/L). Sometimes, this same quantity

(i.e., binding constant measured in concentration units) is

denoted as Ka or KA, but Kd will be used here as it is the

constant characterizing the dissociation reaction. The

lower Kd, the higher the binding affinity (i.e., more LR

complex is formed for the same ligand concentration). For

therapeutic xenobiotics, adequate potency is needed to be

able to compete with the naturally present ligand(s), to

have adequate specificity for the intended target, and

to avoid the need for high doses that could be difficult to

administer. Hence, activities in the nanomolar (nmol/L)

range, or at least in the low micromolar (lmol/L) range,

are needed for a compound to be considered as having the

potential to become a therapeutically useful drug. Indeed,

most existing drugs are quite potent and have affinities in

the nanomolar (nmol/L) range: the median value for all

marketed small-molecule drugs is around 20 nmol/L

(Overington et al. 2006).

While it is typically not discussed in works related to

quantitative receptor theory, it is important to remember

[ ]
( )[ ] d

E KL
LE

+−+
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εεγ
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1max/

OccupiedVacant

Inactive Active

εL    +     R LR LR* EffectKd

ƒ(LR*)

γ
Amplified

OccupiedVacant

Inactive Active
Kd

L    +     R LR* Effect

[ ]
[ ] d

E KL
LE
+

=
max/

[ ]
( )[ ] d

E KL
LE

++
=

1max/ τ
τ

OccupiedVacant

Inactive Active

τL    +     R LR LR* EffectKd

Clark equation 
Single-state model with linear response

Operational (Black and Leff) model 
Single-state model with nonlinear response

[ ]
( )[ ] d

E KL
LE

++
=

1max/ τ
τ

Minimal two-state (del Castillo-Katz) model
Two-state model with linear response

OccupiedVacant

Inactive Active
Kd

L    +     R LR* Effect
ƒ(LR*)

τ Present model 
Two-state model with nonlinear response

ε  = 1 (Full agonist)
γ  = 1 (No amplification)

τ  = ??

Figure 1. Comparison of the receptor models discussed here. For each model, a schematic illustration of the basic assumption for ligand binding

and receptor activation is shown together with the resulting equation describing the fractional effect (E/Emax) as a function of the ligand

concentration [L].

ª 2017 The Author. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd,
British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

2017 | Vol. 5 | Iss. 3 | e00311
Page 3

Peter Buchwald Three-Parameter Two-State Receptor Model



that the binding constant K is not just some arbitrary

parameter, but a real physicochemical descriptor of the

corresponding equilibrium related to the Gibbs-free

energy change (DG) of the reaction via the well-known

thermodynamic equation:

Keq ¼ e�
DGo
RT (3)

Here, T is the absolute temperature and R is the universal

gas constant, R = kBNA = 8.314 J/K�mol. Hence, at normal

physiological conditions (body temperature, T = 310 K), a

drug binding with, for example, 1 nmol/L affinity

(Kd = 10–9 mol/L) requires a free energy of DG0 = –RT
lnKd = 53.4 kJ/mol (12.8 kcal/mol) to dissociate from

the receptor. For comparison, the average molecular

kinetic energy at this temperature is 3/2RT = 3.7 kJ/mol,

while the energy of an ion–ion interaction between two

permanent charges is in the 20–40 kJ/mol range, and

that of a dipole–dipole interaction is in the 3–15 kJ/mol

range. The relation between K and energy (eq. 3) also

means that a 10-fold change in binding affinity (Kd)

requires a change of 5.94 kJ/mol in the binding-free

energy (DDG0).

A main interest is to express occupancy as a function

of the ligand concentration [L] present while eliminating

the receptor concentrations, which are typically unknown.

Since the number (concentration) of total receptors in

the system is given (i.e., [Rtot]), this can be done for the

fractional occupancy (fraction of receptors occupied),

focup = [LR]/[Rtot] by summing up the different forms of

the receptor in the system (here, free and occupied) and

using the definition of Kd (eq. 2) to link them to the

number (concentration) of ligands present:

½Rtot� ¼ ½R� þ ½LR� ¼ ½R� þ ½L�½R�
Kd

(4)

This way, the fractional occupancy can be directly con-

nected to the ligand concentration [L]:

focup ¼ ½LR�½Rtot� ¼
½LR�

½R� þ ½LR� ¼
½L�½R�
Kd

½R� 1þ ½L�Kd

� � ¼ ½L�
½L� þ Kd

(5)

This is the well-known Hill-Langmuir equation, a

straightforward result from the law of mass action for bind-

ing at a limited number of sites. In pharmacology, it was

first introduced by Hill (1909) while investigating Langley’s

suggestion of “receptive substance”, and it is analogous

with the Langmuir absorption isotherm derived for the

binding of molecules to a surface (Langmuir 1918). Strictly

speaking, [L] in the above equation denotes the concentra-

tion of free ligand, but it is usually assumed that the ligand

(drug) is present in sufficient excess so that the amount

bound is negligible compared to the total amount present,

[LR] << [Ltot]. Hence, one can consider the free ligand

(drug) concentration as being the same as the total ligand

concentration, [L] � [Ltot]. Because, in general, the con-

centration of total receptors available [Rtot] is much less

than [Ltot], [Rtot] << [Ltot], the total fraction of ligands

that can be bound is indeed relatively small, [LR] << [Ltot],

making [Ltot] = [L] + [LR] � [L] a reasonable approxi-

mation. From eq. 5 it is also obvious that Kd is the ligand

concentration that results in half of the receptors being

occupied: focup = 0.5 at [L] = Kd.

Single-state receptor models based on
affinity alone

Single-state model with linear response: the Clark
equation

To estimate the effect caused by receptor activation follow-

ing ligand binding (occupancy), the simplest approximation

is to assume that all ligand-occupied receptors are active

(denoted by a star R � R*) producing an effect as symbol-

ized by the corresponding arrow in the equation below.

occupiedvacant

inac�ve ac�ve
Kd

L    +     R LR* Effect
(6)

As a further simplification, one can also assume that

the biological effect E produced is proportional with the

number (concentration) of occupied receptors,

[LR] � [LR*]. In other words, E is a simple linear func-

tion of [LR*]:

E ¼ f
��
LR�

�� ¼ a
�
LR�

�
;
�
LR�

� � �
LR

�
(7)

As the number of total receptors in the system of inter-

est is always limited (Rtot), the effect is saturable and

reaches a maximum when all receptors are occupied,

Emax = a[Rtot]. With these assumptions, the fractional

effect, E/Emax, produced, which will be denoted as E/Emax

and represents our main interest here, is the same as the

fraction of receptors occupied, focup:

E=Emax
¼ E

Emax
¼ a½LR�

a½Rtot� ¼
½LR�
½Rtot� ¼ focup (8)

Hence, it can be connected to the ligand concentration

[L] via eq. 5 obtained earlier:

E=Emax
¼ focup ¼ ½L�

½L� þ Kd
(9)

This is the well-known Clark equation (Clark 1926,

1933), which is functionally identical with the Hill–Lang-
muir equation (eq. 5) since, with the present assump-

tions, the fractional effect produced equals the fractional

2017 | Vol. 5 | Iss. 3 | e00311
Page 4

ª 2017 The Author. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd,

British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

Three-Parameter Two-State Receptor Model Peter Buchwald



occupancy. This simple equation can be used for the

empirical fitting of most commonly encountered receptor

responses, and it is widely used in pharmacology. It is

also a direct analog of the Michaelis–Menten equa-

tion used in enzyme kinetics (Michaelis and Menten

1913) with Emax replacing vmax and Kd replacing KMM,

the Michaelis–Menten constant. Graphically, the response

corresponding to such an equation is a (portion of a)

rectangular hyperbola. Most often, however, binding or

response data is represented not on a linear scale, that is,

as a function of the ligand concentration, E = φ([L]), but
on a semi-log scale, i.e., as a function of log concentra-

tion, E = φ(log[L]), resulting in the well-known sig-

moid response function, which has an inflection point at

[L] = Kd (e.g., green line in Fig. 2). With the Clark equa-

tion (eq. 9), Kd represents the ligand concentration that

produces half of the maximal effect, E = Emax/2 at

[L] = Kd.

Hill and Gaddum equations

In some cases, a more general form, the Hill equation, is

used that incorporates an additional parameter the Hill

slope, n, to account for deviations from the simple Clark

equation caused by more or less abrupt responses, typi-

cally attributed to positive (n > 1) or negative (n < 1)

cooperativity among binding sites:

E=Emax
¼ ½L�n
½L�n þ Kn

d

(10)

This function was introduced by Hill (1910, 1913),

mostly as an attempt to fit the data and not necessarily as

something having a rigorous physical basis (“My object

was rather to see whether an equation of this type can

satisfy all the observations, than to base any direct physi-

cal meaning on n and K” (Colquhoun 2006)). It provides

a versatile mathematical function and is often used in

pharmacological (Goutelle et al. 2008) or other applica-

tions (e.g., Buchwald 2011). The Clark equation (eq. 9),

as well as the analogous Michaelis-Menten equation, rep-

resent a special case (n = 1) of the Hill equation. On a

semi-log scale, eq. 10 still results in sigmoid-like

responses, just the transition can be more (n > 1) or less

abrupt (n < 1) than with the regular Clark equation corre-

sponding to n = 1. For the regular case (Clark eq.,

n = 1), transition from almost no effect (~10%) to almost

full effect (~90%) requires an approximately two orders

of magnitude change in the ligand concentration (i.e.,

from 0.1Kd to 10Kd; Fig. 2). The case of competitive

antagonism and the corresponding Gaddum equa-

tion within the formalism of a single-state affinity-only

receptor model is discussed in Appendix 1.

Receptor models incorporating ligand
efficacy

Receptor models based on binding affinity alone represent

the simplest approximation. While these forms (i.e.,

Clark, Hill, and Gaddum equations) are still useful and

are sufficient for the empirical fitting of a large portion of
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Figure 2. Classic semi-logarithmic plot illustrating the concentration-dependent response obtained with the simple Clark equation (eq. 9; green

double line) for a ligand with a Kd of 1 lmol/L (10–6 mol/L) versus the same response obtained with the operational (Black-Leff) or minimal two-

state (del Castillo-Katz) model (eq. 14) for the same Kd and different s values (blue, purple, and red lines). Note that Kobs only corresponds to Kd

if s <<< 1, that is, when there is no response.
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pharmacological data, they cannot account for several

well-documented phenomena. One of them is the exis-

tence of partial agonists – compounds that can occupy all

receptors, yet cannot achieve full activation. Well-known

examples include, for example, prenalterol (vs. adrenaline

as full agonist at b-adrenoceptors), pilocarpine (vs. acetyl-

choline at muscarinic receptors), and impromidine (vs.

histamine at H2 receptors). It is important to note that

there are clear cases where the partial agonist added at

sufficiently high concentration to a system with the full

agonist already present can displace the full agonist from

the receptors and still achieve only partial activity – prov-

ing that this is not due to partial occupancy, but partial

activation. For example, the case of impromidine and his-

tamine (English et al. 1986) is a frequently used example

(Fig. A1), and there are many others in more recent liter-

ature (Hoyer and Boddeke 1993; Tadori et al. 2008; Song

et al. 2014). At the other end of the spectrum, there is

the existence of ‘receptor reserve’ – cases where almost

maximal response can be achieved by occupying only a

(small) fraction of all receptors. Well-known extreme

cases include, for example, the response of the human

calcitonin receptor type 2 to calcitonin (where 20% occu-

pancy already produces close to 100% response) (Chen

et al. 1997) and guinea pig ileal response to histamine

(where 2% occupancy already produces close to 100%

response) (Kenakin and Cook 1976; Adham et al. 1993;

Kenakin 2006). Most commonly, these are due to strong

signal amplification via second messengers or other sys-

tems. Hence, occupied and active receptors do not fully

correspond in all cases, and more complex models are

needed. Two different models are widely used, but they

result in mathematically equivalent equations.

Minimal two-state model with linear response:
del Castillo-Katz model

For a more general receptor theory, in addition to the

parameter characterizing occupancy resulting from bind-

ing (affinity), some measure is needed to characterize the

ability of the ligand to induce a response at the receptor.

The simplest useful model is the minimal two-state theory

(Jenkinson 2003), sometimes also called del Castillo–Katz
model (as the corresponding concept was first introduced

by them in 1957 (Del Castillo and Katz 1957)). It corre-

sponds to a more general case in which the ‘occupied’

and ‘active’ receptor states no longer fully correspond [cf.

eq. (6)]:

occupiedvacant

inac�ve ac�ve

τL    +     R LR LR* EffectKd (11)

Here, it is assumed that Kd is similar to the previous

definition (eq. 2) and only involves the concentrations of

the species involved (L, R, and LR):

Kd ¼ ½L� � ½R�½LR� (12)

It should be noted that while the definition of Kd here

is similar to that given earlier (eq. 2), the previous one

(eq. 2) is a macroscopic equilibrium constant that relates

to a complete single-step reaction scheme (eq. 1) and can

be measured in an equilibrium-binding assay, whereas the

present one (eq. 12) is a microscopic equilibrium con-

stant that relates to a single step in a multistep reaction

scheme and cannot be measured in an equilibrium-

binding assay (eq. 11). While Kd has units in molarity,

the equilibrium constant for the second step (activation

of the receptor with a bound ligand) is unitless; hence, a

different notation with Greek symbols will be used here

(s; replacing what was denoted as E in Jenkinson’s

description of the model (Jenkinson 2003)). As tradition-

ally defined for this minimal two-state model, s(mtsm) rep-

resent the ratio of active to inactive occupied ligand-

receptor complex:

sðmtsmÞ ¼ ½LR
��

½LR� (13)

Hence, efficacy as defined here (s, eq. 13) ranges from

0 for an antagonist that occupies the receptor but pro-

duces no activation to infinity (∞) for a full agonist that

shift all receptors to the active form. This assumption

results in an effect function somewhat similar to the sim-

ple Clark equation (eq. 9), but one that also allows for

both affinity (via Kd) and efficacy (via s) (Jenkinson

2003; Colquhoun 2006; Kenakin 2006):

E=Emax
¼ s½L�
ðsþ 1Þ½L� þ Kd

(14)

A formal derivation can be obtained following the same

method that was used earlier for the Clark equa-

tion (eq. 9). First, the different forms of the receptor in

the system are summed up and the corresponding equi-

librium constants are introduced:

½Rtot� ¼ ½R� þ ½LR� þ ½LR�� ¼ ½R� þ ½L�½R�½Kd� þ s
½L�½R�
½Kd�

¼ ½R� 1þ ð1þ sÞ ½L�
Kd

� 	
(15)

Since the response is assumed to be linear, the fraction

of response can be written as
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E=Emax
¼ a½LR��

a½Rtot� ¼
½LR��
½Rtot� ¼

s½L�½R�
½Kd�

½R� þ ½L�½R�½Kd� þ s ½L�½R�½Kd�

¼ s½L�
Kd þ ð1þ sÞ½L� (16)

This corresponds to the main equation of this model as

given in eq. 14. A set of illustrative response functions cor-

responding to different s values are shown in Figure 2. Such

a general model (eq. 11) that assumes two distinct states of

the receptor, so that occupied and active states do not fully

overlap, is part of the generally accepted receptor activation

model that lies at the foundation of quantitative pharmaco-

logical works and is commonly cited in corresponding text-

books (Katzung and Trevor 2014; Rang et al. 2015).

Single-state model with nonlinear response:
operational (Black and Leff) model

Another, different approach is to stay within the frame-

work of a single-state model (i.e., eq. 6), but assume that

the response is nonlinear and not just simply propor-

tional with the number of occupied receptors (Fig. 1). In

other words, the effect generated is connected to the

number of activated receptors via a transducing function

f, and the response function f([LR*] is not linear as it

was assumed so far (i.e., eq. 7 no longer holds):

occupiedvacant

inac�ve ac�ve
Kd

L    +     R LR* Effect
ƒ(LR*)

τ (17)

Since in some cases, occupation of only a fraction of total

receptors can cause close to maximal response, it makes sense

to assume a hyperbolic response where the fractional response

is larger than the fractional occupancy. This assumption

forms the basis of the operational model introduced by Black

and Leff (1983; Black et al. 1985). In this model, all occupied

receptors are assumed to be active, but the linear response

(eq. 7) is replaced by a hyperbolic response:

E ¼ f
��
LR�

�� ¼ a

�
LR�

�
�
LR�

�þ Ks
;
�
LR�

� � �
LR

�
(18)

This also has a maximum (when all receptors are

active). Hence, by using the expression from the law of

mass action for [LR] � [LR*] (from eq. 5), the fractional

response can be expressed as:

E=Emax
¼

�
LR�

�
�
LR�

�þ Ks
¼

½Rtot� ½L�½L�þKd

½Rtot� ½L�½L�þKd
þ Ks

¼ ½Rtot�½L�
½Rtot�½L� þ ½L�Ks þ KdKs

¼ s½L�
ðsþ 1Þ½L� þ Kd

(19)

Here, following the operational model (om) formal-

ism, s(om) = [Rtot]/Ks was introduced in the last step,

making it clear that this is mathematically equivalent

with the minimal two-state model (eq. 14). It is note-

worthy that even though the minimal two-state (del

Castillo-Katz) model was mainly introduced to account

for partial agonism via partial activation and the opera-

tional (Black–Leff) model was mainly introduced to

account for receptor reserve via increased effect due to

a hyperbolic response function, in the end, they lead to

the same equation. Ultimately, this is also a hyperbolic

function of [L], just with a modified shape and posi-

tion. In fact, mathematicians have long known that the

function resulting from two (or more) hyperbolic

(Langmuir) functions in sequence is also a hyperbolic

function, and this has also been clarified in phar-

macological applications (Paton and Rothschild 1965;

Black and Leff 1983). By slightly rearranging the above

form,

E=Emax
¼ s

sþ 1

½L�
½L� þ Kd

sþ1
(20)

is clear that this is the same type of dependency on ligand

concentration [L] as in the Clark equation (eq. 9) just

with a lowered maximum, s/(s + 1), and a shifted

observed activity, Kobs = Kd/(1 + s). From this, it can

also be seen that, in most cases where full response is

achieved, s is essentially an amplification factor: for s val-

ues that produce full response (s >> 1), s � s + 1 essen-

tially shifting the observed curve s-fold to the left. In

other words, such cases make the activity to appear s-fold
increased moving the sigmoid response by s units to the

left on a semi-log scale. The lower Ks, as compared to

[Rtot], the stronger the amplification since s = [Rtot]/Ks.

Note also that the maximum response of this function is

limited as the highest value it can reach even at high

ligand concentration (asymptotic limit, Elim[L]?∞) is

s/(s + 1), which is always less than unity. This is what

causes a limited response (partial agonism) for small

s values (see Fig. 2).

Problems with the existing models

Most current quantitative pharmacological models assume

receptor functions along the lines of these two models,

with some more complex variations to allow for constitu-

tive activity, receptor desensitization, and other effects,

which are not discussed here (Jenkinson 2003; Kenakin

2006). In addition, there are several other current recep-

tor models that build on these concepts (Ehlert et al.

2011; Slack and Hall 2012; Ehlert 2015b; Copeland 2016),
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and they have been also integrated within PK-PD models

for in vivo data (Danhof et al. 2007). However, there are

noticeable disadvantages that hinder the widespread use

of the corresponding Kd and s-based equation, which is

the same for both models (eq. 14, 19). One is that this

equation cannot be considered as a straightforward gener-

alization of the Clark (Hill-Langmuir) equation, and it

cannot be reduced back to this simple form: there are no

s values for which eq. 14 converts back to eq. 9 (Fig. 1)

so one cannot transition back to this form as a special

case of its parameters. Another disadvantage is that Kd

for this model is different from the apparent (observed)

K (EC50), and its value depends on the value of s,
Kd = Kobs(1 + s) (see eq. 20). While this should be an

important advantage of these models allowing the con-

centration–response curve to shift from the concentration

binding curve, and it has become accepted to use Kd as

an empirical parameter not necessarily related to receptor

binding as such, it becomes a disadvantage due to the

way it has to be achieved. With these models, a ligand

can behave as a full agonist (i.e., produce close to maxi-

mal activation) only when s is large enough (s > 100, see

Fig. 2); therefore, all full agonists will need to have Kd

values considerably (>100-fold) higher than the observed

Kobs (EC50). Because in this model, Kd shifts depending

on the value of the efficacy s, in some cases, Kd can shift

to unrealistically high values for ligand binding, especially

as s is difficult to determine by data fitting (see below).

As it has been pointed out, with this model, changes in

binding (Kd) and in conformation change (s) become

indistinguishable for very efficacious agonists, making

interpretations difficult and cumbersome (Colquhoun

1998).

To highlight a simple example, consider the case of a

compound acting on a given receptor for which a Kd

(�EC50) of 1 lmol/L is estimated first using the simple

affinity-only Clark equation. If later another compound is

found that produces partial activation requiring the use

of the operational model, a s of >100 needs to be intro-

duced for the first compound to act as a full agonist (i.e.,

to produce maximal response), which will shift the calcu-

lated binding affinity (Kd) at least a 100-fold (i.e.,

>100 lmol/L) even though nothing has changed for this

compound per se (Fig. A1). Furthermore, for full ago-

nists, the maximal (fractional) response, s/(s + 1), needs

to have values close to 1, so it is not sensitive to changes

in s. The corresponding large s values cannot be well-

defined by data fitting, which also makes the linked Kd

not well-defined. Fitting by nonlinear regression might

often lead to very large s values. A specific illustration

with extreme shifts that pushes Kd into unrealistic values

is shown in Figure A1. Hence, this model is difficult to fit

with nonlinear regression, and even if implemented in

some software (e.g., GraphPad Prism), it is rarely used

and difficult to apply (because it is overparameterized). A

further illustration and discussion of related problems is

also included later (e.g., Table 1D).

Finally, a hypothesis-related problematic issue is that

while the final equations are mathematically identical, the

two models arrive at it from two conceptually different

approaches that are both incomplete. The minimal two-

state model, which is now well accepted as a good

approach to describe switching of the receptor between

active and inactive states, does not formally incorporate

nonlinear transduction (signal amplification), which is

known to exist. The operational model, allows nonlinear

response, but it is a single-state receptor model that does

not formally incorporate the possible existence of active

and inactive ligand-bound receptor states. As a result,

these models merge together two different effects in their

s efficacy parameter: the ‘intrinsic’ efficacy of the ligand

in activating the receptor, which could be responsible for

partial agonism even with a linear response function, and

the ‘efficacy’ of the postactivation amplification down-

stream from the receptor, which can create the appear-

ance of receptor reserve and can be tissue or organ

specific.

Present Work: Proposed Receptor
Model

Two-state model with nonlinear response
and modified parameterization

The model proposed here is a fully generalized model

that still relies on the essential assumptions of the min-

imal two-state theory, which reflects our current under-

standing of receptor pharmacology, that is, ligand

binding and receptor activation are two different steps

(Katzung and Trevor 2014; Rang et al. 2015). However,

it (1) uses an alternative assumption on ligand binding

to the inactive and active receptor forms, (2) allows

nonlinear (hyperbolic) response following receptor acti-

vation to account for signal amplification if needed,

and (3) introduces a different parametrization with

more intuitive parameters that are also better suited for

optimization by nonlinear regression. Its most general

form uses three parameters: Kd, the classic equilibrium

dissociation constant to characterize binding affinity; e,
an (intrinsic) efficacy to characterize the ability of

bound ligand to activate the receptor (0 ≤ e ≤ 1); and

c, a gain (amplification) parameter to characterize the

nonlinearity of postactivation signal transduction

(1 ≤ c ≤ ∞). Accordingly, the overall schematic of the

present model is only slightly different from that of the

minimal two-state model (eq. 11) (Fig. 1): it allows
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binding to/dissociation from both forms of the ligand-

receptor complex (LR and LR*) and incorporates a

more general, nonlinear transduction function to

describe the dependence of the effect E on the LR*
concentration:

occupiedvacant

inac�ve ac�ve

εL    +     R LR LR* EffectKd

ƒ(LR*)

γ
amplified

(21)

Binding parametrization

Regarding receptor binding, we will deviate from the cur-

rent two-state model and assume that receptor activation

does not affect ligand binding and dissociation, or at least

not in a significant manner. The del Castillo–Katz model

assumes that binding (or more precisely dissociation, since

all models use Kd, the equilibrium dissociation constant)

only involves the inactive receptor form, LR. Hence, Kd is

defined only in terms of [L], [R], and [LR] (eq. 12). In

most cases, however, there is no reason why the ligand

could not dissociate from (or bind to) the active receptor,

LR*, as well, so that Kd represents an average constant for

the ensemble of receptors that the ligand effectively sees.

For most protein structures, it is not very likely that the

conformation change causing activation of the receptor

will completely or even strongly lock the ligand into its

binding site. Furthermore, even if there are two somewhat

different Kds for the active (LR*) and the inactive forms

(LR), they will only show up as two separate low- and

Table 1. Fitting of data from Figure 7 with the different models discussed here.

Model Parameter Phenylephrine Oxymetazoline Naphazoline Clonidine Tolazoline

(A) Experimental data from Ruffolo et al. (1979)

Emax 1.00 0.73 0.48 0.33 0.10

log ED50 �7.55 �6.77 �8.20 �7.60 �6.64
log Kd

1 �6.46 �6.36 �8.23 �7.66 �6.69
(B) Standard Emax (Prism: log[agonist] vs. response - variable slope [four parameters], eq. 9; Hill slope = 1, Bottom = 0)

Top 99.6 � 1.26 72.9 � 1.04 48.0 � 0.56 33.2 � 0.70 10.0 � 1.08

LogEC50 �7.55 � 0.035 �6.77 � 0.029 �8.20 � 0.027 �7.60 � 0.047 �6.64 � 0.174

r2 0.9958 0.9978 0.9972 0.9937 0.9491

SSE 56.25 10.50 4.26 7.52 2.95

(C) Present (Prism implementation of present model, eq. 31 with no amplification c = 1 [i.e., eq. 26] [n = 1])

e 0.996 � 0.0126 0.729 � 0.0104 0.480 � 0.0056 0.332 � 0.0070 0.100 � 0.0108

c 1 1 1 1 1

log Kd �7.55 � 0.035 �6.77 � 0.029 �8.20 � 0.027 �7.60 � 0.047 �6.64 � 0.174

r2 0.9958 0.9978 0.9972 0.9937 0.9491

SSE 56.25 10.50 4.26 7.52 2.95

(D) Operational model [Prism implementation for partial agonist, eq. 19; n (Hill) = 1, Basal = 0]

Effectmax 99.58 � 0.826 99.58 � 0.826 99.58 � 0.826 99.58 � 0.826 99.58 � 0.826

logKA (n.u.)2/~ �1.527 � 6082 �6.20 � 0.051 �7.91 � 0.056 �7.42 � 0.078 �6.59 � 0.312

s (n.u.)2/~106.02 � too wide 2.731 � 0.196 0.931 � 0.042 0.499 � 0.025 0.112 � 0.024

LogEC50 �7.55 � 0.023/(n.u.) (not used) (not used) (not used) (not used)

r2 0.9958 0.9978 0.9972 0.9937 0.9491

SSE 56.25 10.50 4.26 7.52 2.95

(E) Present (Prism implementation of present model, eq. 31; Kd from experimental [n = 1])

e 1 0.1739 � 0.0274 0.0637 � 0.0106 0.0369 � 0.0064 0.0088 � 0.0022

c 11.88 � 2.02 11.88 � 2.02 11.88 � 2.02 11.88 � 2.02 11.88 � 2.02

log Kd

(from exp.)1
�6.46 �6.36 �8.23 �7.66 �6.69

↓3

Emax 1.000 0.714 0.447 0.313 0.096

log EC50(Kobs) �7.53 �6.82 �8.46 �7.81 �6.73
r2 0.9957 0.9964 0.9508 0.9736 0.9430

SSE 57.22 17.21 76.18 31.71 3.30

All fitting were done with models implemented in GraphPad Prism, and in addition to the calculated parameters (shown with their calculated

standard errors), descriptors of the quality of fit (correlation coefficient, r2, and sum of squared errors, SSE) are also included.
1

Experimental data, average of log KA (Table 3) and log KB (Table 4) from Ruffolo et al. (1979).
2

The operational model as implemented in GraphPad Prism, does not fit KA and s for a full agonist (not used) as well-defined values cannot be

obtained. A set of values were calculated here for illustration by re-using the data of the full agonist (phenylephrine) as another partial agonist.
3

Derived values for the present model (using eq. 33).
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high-affinity steps in the binding curve if the correspond-

ing values differ by close to three orders of magnitude–
especially with experimental data that always have some

scatter. Otherwise, it will appear as an intermediate affinity

with a decreased Hill slope. For example, Figure 3 illus-

trates ligand binding for a hypothetical case in which 40%

of the receptors are in a state with higher affinity

(Kd1 = 1 nmol/L) and 60% in a state with lower affinity

(Kd2, ranging from 1 to 1000-fold differences vs. Kd1). The

two consecutive steps become clearly separated only at

about 1000-fold difference even in this line-based graph

without any scatter in the data.

With this assumption that the dissociation constant is

similar for the inactive and active ligand-bound receptor

states, the definition of Kd becomes:

Kd ¼ ½L�½R�
½LR� þ ½LR�� (22)

This is somewhat different than the one used previ-

ously in the minimal two-state model (cf. eq. 12), where

the denominator only contained the concentration of the

inactive LR and not that of all ligand-bound receptors,

[LR] + [LR*]. Ultimately, a main advantage is that with

this modified definition, Kd will become independent

from the value of the efficacy parameter.

Efficacy parametrization (partial agonism)

To describe receptor activation (‘intrinsic efficacy’), we

will also use a slightly different form than the one used in

the previous model (cf. eq. 13 for s) as this will allow a

more intuitive final form that is also more suitable for

parameter optimization:

e ¼ ½LR��
½LR� þ ½LR�� (23)

Hence, efficacy e as defined here represents the fraction

of ligand-bound receptors that are active (eq. 23);

whereas, s, as used before, represents the ratio of active

to inactive ligand-bound receptors (eq. 13). Both are

unitless, but while s ranges from 0 to infinity (∞), e is

restricted from 0 to unity (1). With these definitions,

e = s/(s + 1). Hence, e is similar to the intrinsic activity

introduced by Ari€ens, which is the ratio of the maximum

response produced by the partial agonist to that produced

by the full agonist (Ari€ens 1954), and not to the efficacy

as defined by Stephenson, which can have values from 0

to infinity (Stephenson 1956). With the present defini-

tion, an antagonist that can occupy all receptors, but pro-

duces no effect has zero efficacy, e = 0, while an agonists

that can convert all occupied receptors to active ones has

an efficacy of unity, e = 1. The latter would correspond

to a ‘true’ full agonist at the receptor; postreceptor ampli-

fication can complicate things as response from a partial

agonist can be amplified to a maximum final response

(see discussion later). In the present formalism, since Kd

is the same for the active and inactive states, binding with

high(er) affinity to the active (or inactive) state is

replaced by binding and high (or low) efficacy activation.

With these, Kd can be written as follows:
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Figure 3. Semi-logarithmic plot illustrating the concentration-dependent response obtained for a hypothetical case in which 40% of the receptors

are in a state with higher affinity (Kd1 = 1 nmol/L) and 60% in a state with lower affinity (Kd2, which ranges from 1–1000 nmol/L). Even in these

theoretical curves with no scatter in the data, the difference is noticeable only if the affinities differ by close to three orders of magnitude (curves

with a reddish hue); otherwise, it appears as a single intermediate affinity with decreased Hill slope, n < 1 (curves with blueish or purple hues).
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Kd ¼ ½L�½R�
½LR� þ ½LR�� ¼

½L�½R�
½LR� 1þ e

1�e
� � ¼ ð1� eÞ ½L�½R�½LR� (24)

If, as a first approximation, one assumes linear

response, the fractional response (effect) equals the frac-

tion of activated receptors, which can be obtained again

via the expression of the total receptors present. The cor-

responding concentration, [Rtot], is the sum of all free

and occupied receptor forms and using eq. 24:

½Rtot� ¼ ½R� þ ½LR� þ ½LR�� ¼ ½R� þ ð½LR� þ ½LR��Þ

¼ ½R� 1þ ½L�
Kd


 �
(25)

Hence, the fractional response produced can be

expressed as:

E=Emax
¼ ½LR

��
½Rtot� ¼

e ½R�½L�Kd

½R� 1þ ½L�Kd

� � ¼ e
½L�

½L� þ Kd
(26)

This is essentially equivalent with a Clark equation that

includes a scalable maximum (Emax model), and links

the definition of the maximum achievable effect (re-

sponse) for a partial agonist to a two-state model. With

the slightly different definition of efficacy as used here, e
from eq. 23 versus s from eq. 13; e = s/(s + 1), e corre-

sponds to the fraction of maximum activation a partial

agonists can achieve as compared to the full agonist. For

full agonists, e = 1, and the above equation corresponds

directly to the Clark equation (eq. 9). One advantage of

this parametrization is that e is better suited for opti-

mization via nonlinear regression than s, which is diffi-

cult to define well by data fitting for full agonists where

it needs to have large values. A further advantage of the

present model is that Kd corresponds completely to the

classic model allowing this two-state model to translate

directly into the regular Emax model, which is familiar to

most users and also is available to fit as such in all pop-

ular nonlinear regression software such as GraphPad

Prism.

Gain parametrization (Nonlinear response
with signal amplification)

As a final step, signal amplification is incorporated in

the model by allowing nonlinear transduction. This is

done via a formalism similar to that of the operational

model, but with an important modification. One reason

for this is to obtain a more convenient parametrization.

Another one is that the amplification via the response

function as incorporated into the operational model is

a limited one: the hyperbolic function used (eq. 18)

cannot reach its asymptotic limit as its input [LR*] can

only increase up to Rtot and not to infinity. Hence, the

amplification approaching the maximum limit, where

the hyperbolic function approaches unity, is only possi-

ble when Ks << Rtot; otherwise, a considerable portion

of the response function is cut off. An illustration of

this using the 3D plot introduced for the operational

model (Fig. 2 in (Black and Leff 1983)), but shown

here with different Ks values is provided in Figure A2C

versus B. This is the reason why the operational model

results in a maximum, s/(s + 1), that is always smaller

than unity, which is what limits the maximum response

for small s values (see Fig. 2). It is also why the opera-

tional model, which was intended to model amplifica-

tion (hyperbolic response function), can also describe

partial activation. Therefore, we will use a hyperbolic

response function, but not with [LR*] as its input as

done in the operational model, but its odds-ratio type

transform (De Muth 2014), Λ = p/(1–p) = [LR*]/(Rtot–
[LR*]). This extends the range of the input from the

0–1 interval, which is the range for [LR*]/Rtot, to the

0–∞ interval. Hence, the response function linking E to

[LR*] will be:

E=Emax
¼ f ð½LR��Þ ¼ K

Kþ Kc

Rtot

¼
bLR�c

Rtot�½LR��
½LR��

Rtot�½LR�� þ
Kc

Rtot

¼ ½LR��
1� Kc

Rtot

� �
½LR�� þ Kc

(27)

The resulting function on [LR*] is still an essentially

hyperbolic response, particularly for small Kc (strong

amplification). This type of parametrization ensures that

the response (effect) generated when all receptors are

active ([LR*] = Rtot) always corresponds to Emax (Fig. A2

D,E). Using the form of [LR*] derived for the present

model (eq. 26):

½LR�� ¼ eRtot
½L�

½L� þ Kd
(28)

we get:

E=Emax
¼ ½LR��

1� Kc

Rtot

� �
½LR�� þ Kc

¼ eRtot½L�
eRtot½L� 1� Kc

Rtot

� �
þ Kcð½L� þ KdÞ

¼ ½L�
½L� 1� Kc

Rtot
þ Kc

eRtot

� �
þ KcKd

eRtot

(29)

By introducing c = Rtot/Kc in a manner similar to

that of the operational model, and multiplying with it

both sides of the fraction, we obtain the final general

form:
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E=Emax
¼ c½L�
½L� c�1þ 1

e

� �þKd
1
e

¼ ec½L�
ðec� eþ1Þ½L�þKd

(30)

Here, c represent an amplification factor (gain), and it is

again a unitless parameter. Since it is a gain, for all practical

purposes, it has a value larger than unity, c ≥ 1, in many

cases considerably so. A set of illustrative response curves

for a fixed value of Kd and different values of e and c are

shown in Figure 4. Employing the full model (eq. 30) only

makes sense if binding (occupancy) and effect can be

assessed independently, and if sufficient data can be col-

lected (see, for example, the illustrative data for a series of

imidazoline type a-adrenoceptor agonists causing contrac-

tion of an isolated rat aorta discussed in the next section).

Reliable fitting of the full model could require a large num-

ber of data as, typically, at least 5–10 data points per adjus-

table parameter are recommended (Knofczynski and

Mundfrom 2008; Austin and Steyerberg 2015). For a given

drug acting at a specific receptor, affinity (Kd) and (intrin-

sic) efficacy (e) should be the same (as long as binding and

activation of the receptor are not influenced by the envi-

ronment), but transduction (signal amplification) could be

tissue dependent. Hence, c, and, in fact, both of its compo-

nents, Rtot and Kc, can be tissue dependent.

Discussion: comparison with other
models

While the general equation proposed here has no striking

beauty or elegant simplicity, it has several benefits.

Rearranging it slightly, makes it clear that it has a form

somewhat resembling that of the operational (or del

Castillo–Katz) model with s being replaced by ec (cf.

eq. 14 and 19), but with an additional e (0 ≤ e ≤ 1) in

the denominator:

E=Emax
¼ ec½L�
ðecþ 1� eÞ½L� þ Kd

(31)

While the overall form is quite similar, the different

parametrization provides several advantages. First, all

parameters here are straightforward and intuitive, which

was not the case with the previous models, where s was

not clearly linked to an intuitive interpretation. Affinity

(binding) is characterized by Kd, the binding constant,

which is on a molar scale and is now uncoupled from the

ability to activate the receptor (efficacy) or the strength of

postactivation amplification (gain). Efficacy (ability to

activate the receptor) is characterized by e, which is unit-

less and ranges from 0 (for an antagonist that produces

no activation) to 1 for an agonist that can convert all

receptors into the active state. Nonlinear transduction,

due to, e.g., postreceptor amplification (gain), is charac-

terized by c, which is unitless and ranges from 1 (no

amplification) to infinity.

A second important advantage is that this general form

(eq. 31), contrary to the previous models, is a true gener-

alized model and reduces back to the simplified forms for

special cases of its parameters (Fig. 5). For example, if

there is no postreceptor amplification (no receptor

reserve, that is, no amplification/gain, c = 1), it reduces
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Figure 4. Response curves with the present model (eq. 31) for a ligand of 100 nmol/L affinity (Kd = 10–7 mol/L) for a full agonist (e = 1, blue

lines) at different amplifications (c = 1, 3, and 100) and a weak partial agonist (e = 0.25, red lines) at the same amplifications (c = 1, 3, and 100).

Another partial agonist without amplification is also included (e = 0.70, c = 1 orange line) for comparison. Note that with the present model, the

basic parametrization (e = 1, c = 1) fully reproduces the Clark model (blue and double green lines completely overlap), which could not be done

with the previous models (Figure 2). The effect of different post-activation amplifications on the observed response of a full and a partial agonist

is also illustrated in more detail in Figure 6.
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back to the equation for partial agonist with an efficiency

e (eq. 26) as e(c–1) in the denominator becomes 0. If

there is no amplification (c = 1) and no partial agonism

(e = 1), the equation reduces back to the Clark equa-

tion (Fig. 5), which was not the case with the operational

model (eq. 19) or the minimal two-state model (eq. 14).

If there is amplification (c > 1), the response for a full

agonist (e = 1) is a hyperbolic response with a multiplied

[L]:

E=Emax
¼ c½L�

c½L� þ Kd
(32)

In other words, for a full agonist (at the receptor), c is

a straightforward multiplication factor causing a c-fold
left-shift of the sigmoid response function on a semi-log

scale. Hence, for a full agonist, signal amplification causes

no change in the shape of the response on semi-log scale,

just a left-shift so that Kobs = Kd/c. For a partial agonist,

postactivation amplification will increase the maximum

response, and a sufficiently strong postreceptor amplifica-

tion can transform a partial agonist into a full agonist.

However, the left shift will be less than that for a full ago-

nist with the same Kd so that the change in the apparent

EC50 (Kobs) will be less. An illustration is provided in

Figure 6. This can be well seen in a rearranged form of

eq. 31

E=Emax
¼ ec
ðecþ 1� eÞ

½L�
½L� þ Kd

ðecþ1�eÞ
(33)

From here, it is clear that Kobs = Kd/(ec + 1–e), and
the maximum is ec/(ec + 1–e), which can approach

unity even with a small e if c is large enough. This can

account for cases where the mixture of receptor reserve

and partial agonism causes complex responses (Adham

et al. 1993; Hoyer and Boddeke 1993). Along these

lines, it can also account for different responses for the

same agonists if they are observed at different vantage

points along a stimulus-response pathway that involves

multiple amplification steps (e.g., Fig. 5.2 in (Kenakin

2006)).

To illustrate the possibilities of the present model and

its advantage over the previous ones, it is used here

(Fig. 7) to fit the dose–response data (contractions of iso-

lated rat aorta) obtained with a series of imidazoline type

a-adrenoceptor agonists that includes phenylephrine,

oxymetazoline, naphazoline, clonidine, and tolazoline

(Ruffolo et al. 1979). This data is particularly well suited
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for this, as in addition to response, receptor binding was

also assessed separately by two different methods, and it

is used as a classic textbook example to illustrate mis-

match between fractional receptor occupancy and

response (Rang et al. 2015). The response data alone can

be fitted well by a standard Emax model (eq. 9), the pre-

sent model with no amplification (eq. 26, which is essen-

tially the Emax model), and the operational model

(eq. 19); they all give identical fits (Fig. 7A; Table 1 B, C,

and D). However, while the present model in its simpli-

fied form reproduces exactly the Emax and EC50 values of

the standard model, the operational model results in a

different set of KA values and some not particularly infor-

mative s parameters, Emax = s/(s + 1) (Table 1 B vs. C

and D). Notably, in the current implementation of the

operational model in Prism, s and KA are not calculated

for the full agonist (here, phenylephrine) since if it is

done, it results in quite meaningless values (it can be

done by adding it as another partial agonist, see values in

Table 1C). This problem has been discussed earlier. These

models can be used for empirical fitting of response data,

but none of them offer even a remote possibility to con-

nect the response to the binding data (Kd), which has

been determined independently. This can be done, how-

ever, with the present general model (eq. 31), and the

obtained fit is only slightly less good (Fig. 7B; Table 1).

This fit is obtained using the independently derived Kd

values for each compound and adjusting only the com-

mon c (gain) and the individual e (efficacy) parameters.

Hence, the present model can do more than just an

empirical fit of the response data and can account for

complex cases where, depending on the ligand, the frac-

tional response can either exceed or lag behind the frac-

tional occupancy at the same receptor (Fig. 7C).
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Figure 7. Fit of complex dose–response data obtained with partial agonists where the fractional response can either exceed or lag behind the

fractional receptor occupancy. Data are for a series of imidazoline-type a-adrenoceptor agonists with response (contraction of isolated rat aorta)

shown relative to the maximal one caused by phenylephrine, a full agonist (data after (Ruffolo et al. 1979)). Fractional receptor occupancy values

used here are calculated from the average equilibrium dissociation constants (Kd) determined for the receptor binding by two different methods

(Ruffolo et al. 1979). (A) Fractional response as a function of log concentration for five compounds (symbols) fitted by three different methods

(lines). The three different methods (standard Emax–eq. 9, present model with no amplification–eq. 26, and operational model–eq. 19; see Table 1

B, C, and D) give identical fits and, hence, overlapping lines. (B) Same data fitted with the present model (eq. 31) using the independently

derived Kd values for the binding (dotted lines) and fitting the response data by adjusting only the common c (gain) and the individual e (efficacy)

parameters (Table 1). Fractional receptor occupancy data are also shown as dashed lines to highlight the ability of the model to account for the

mismatch between fractional response and occupancy. (C) Fractional response vs. occupancy data for these five compounds (symbols) and their

corresponding fit with the present model (curved lines).

ª 2017 The Author. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd,
British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

2017 | Vol. 5 | Iss. 3 | e00311
Page 15

Peter Buchwald Three-Parameter Two-State Receptor Model



The present model can also fit unusual response curve

data in different tissues, such as those due to different effi-

cacies resulting from receptor inactivation, just as well as

the operational model. For example, the data of guinea-pig

ileum through activation of muscarinic receptors with car-

bachol and oxotremorine in normal tissue and following

inactivation of muscarinic receptor via controlled alkyla-

tion (Kenakin and Christopoulos 2011) can be fit slightly

better with the present e and c based model than with the s
based operational model (Fig. A3). Just as the minimal

two-state or operational models, the present model can

also describe competitive partial agonism, which can be

considered a generalization of the Gaddum equation for

competitive antagonism, and it can do so with more mean-

ingful parameters than the previous models (Appendix 1).

The case of impromidine and histamine, a frequently used

example (English et al. 1986), is used here to illustrate fit-

ting (Fig. A1). We have also found similar behavior for a

partial agonist at the OX40 receptor (Song et al. 2014).

For the present model, an increase in the number of

parameters (from two to three) is a small hindrance as

model simplification is always an important consideration

(George 2000; Myung and Pitt 2004; Buchwald 2005,

2007) and obtaining well-defined values by fitting requires

increased number of (well distributed) data points. How-

ever, this disadvantage is compensated on one hand, by

the intuitive nature of the parameters, and on the other

hand, by the ability to use simplified forms with reduced

number of parameters when adequate (Fig. 5). For exam-

ple, if only partial agonism needs to be addressed, the

corresponding equation with only e as additional parame-

ter can be used (eq. 26). This corresponds fully to the

Emax model commonly used for nonlinear regression (e.g.,

log agonist vs. response model in GraphPad Prism) while

still representing a special case of the present general

model – something that could not be claimed for the del

Castillo–Katz or Black and Leff models. If only a straight-

forward amplification needs to be addressed for a full

agonist (where the effect is left-shifted compared to occu-

pancy), eq. 32 with only the additional c gain parameter

can be used. Fitting of the full model with all three

parameters (Kd, e, c) is only needed when both amplifica-

tion and partial activation have to be addressed (like the

cases presented in Figs. 6, 7, and A3), and this requires

considerable number of data points to be able to obtain

well-defined values for all parameters.

In conclusion, a three-parameter two-state model is

proposed here as a simple basis for quantitative receptor

theory linking ligand binding and effect generation for

cases that do not involve constitutive activity, receptor

desensitization, and other more complex effects. While it

is undoubtedly a simplification, it can provide quantita-

tive description even in complex cases (e.g., when the

generated effect is due to a mixture of interactions

between receptor reserves and partial agonism) in a man-

ner similar to the operational (Black and Leff) and the

minimal two-state (del Castillo-Katz) models. However,

contrary to those, for special cases of its parameters, it

can be reduced back to simpler models such as the Clark

equation or its Emax version providing a straightforward

bridge to them from a two-state receptor model and

mathematical forms that are more suitable for fitting by

nonlinear regression. Furthermore, in cases where recep-

tor binding and response can be measured separately and

they do not overlap, only the present model allows the

possibility to connect the response to the binding data

(Kd) via its efficacy (e) and gain (c) parameters.
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Appendix 1

Models of Competitive Antagonism and
Partial Agonism

Classic single-state receptor model: Gaddum
equation

In the presence of an antagonist, the response produced by

the agonist is diminished. In general, various antagonism

mechanisms are possible; among those involving the recep-

tor, competitive (orthosteric) and noncompetitive (allosteric)

are the two main mechanisms of interest. Competitive antag-

onists bind at (compete for) the same site as the agonist,

which can be envisioned schematically as having an inhibi-

tor-receptor complex (IR), whose formation competes with

that of the ligand-receptor complex (LR). Staying within the

framework of affinity-only receptor models, one can assume

that binding of the ligand produces an effect proportional

with the [LR] concentration, whereas binding of the inhibi-

tor produces no effect (i.e., an inactive IR complex). Hence,

competitive antagonism can be represented by the following

schematics (a generalization of eq. 6):

R
L

I

Effect

+

+ Kd

XKi

LR*

IR

occupiedvacant

inactive

active (A1)

Such antagonists produce an apparent decrease in the

affinity of the agonist (right-shift), characterized by the

Gaddum equation:

E=Emax
¼ ½L�
½L� þ Kd 1þ ½I�Ki

� � (A2)

This is, in fact similar to the Clark equation, but with an

apparent Kd that is increased. Comparing the two forms

(eq. A2 vs. 9), it can be seen that the Gaddum equation has

the same functional dependence on [L] just Kd is increased

(1 + [I]/Ki) fold resulting in the well-known right-shift

characteristic for competitive antagonists. Derivation is
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obtained following the same general procedure. First, the

total number (concentration) of receptors can be written as

½Rtot� ¼ ½R� þ ½LR�� þ ½IR� ¼ ½R� þ ½L�½R�½Kd� þ
½I�½R�
½Ki� (A3)

Next, with the assumption of linear response, the frac-

tion of active vs. total receptors leads to the final form of

the Gaddum equation:

E=Emax
¼ ½LR

��
½Rtot� ¼

½LR��
½R� þ ½LR�� þ ½IR� ¼

½L�½R�
Kd

½R� 1þ ½L�Kd
þ ½I�Kd

� �

¼ ½L�
½L� þ Kd 1þ ½I�Ki

� �
(A4)

Contrary to a competitive antagonist, noncompetitive

antagonists do not bind at (hence, do not compete for) the

same site as the agonists. They bind at some different (al-

losteric) site and modulate the effect of agonist via this bind-

ing. Consequently, their effect is not surmountable (i.e., it

cannot be overcome by increasing the concentration of the

agonist), and they do not cause a right-shift but, instead, an

apparent diminished maximum response. A possible simple

model is to assume that the inhibitor I bounds to a separate

site of the receptor so that in addition to the ligand-receptor

complex (LR) of eq. 6, IR and ILR complexes can also form,

which, however, are nonfunctional and do not produce the

(desired) effect E. The resulting equation for the effect

indeed reveals a diminished maximum response as a func-

tion of the inhibitor concentration [I]:

E=Emax
¼ ½L�
ð½L� þ KdÞ

1

1þ ½I�Ki

� � (A5)

Competitive partial agonism with the minimal
two-state (and operational) model

With models that allow efficacy, competitive agonism can

be modeled for cases with competing partial agonist, where

both ligands can produce some effect, not just the case of a

full agonist competing with an antagonist producing no

effect. If two ligands (L1, L2) of different affinities (Kd1,

Kd2) and efficacies (s1, s2) are present simultaneously com-

peting for binding at the same receptor,

L1R
R

L1

L2

Effect1

+

+ Kd1

L2R Effect2Kd2

Effect

τ1

τ2

L1R*

L2R*

occupiedvacant

inactive active
(A6)

The expression for the total effect is obtained following

a procedure similar to the previous ones. First, by using a

corresponding equations from the minimal two-state

receptor model (eq. 12, 13) for L1 and L2, the total num-

ber (concentration) of receptors [Rtot] can be written as:

½Rtot� ¼ ½R� þ ½L1R� þ ½L1R�� þ ½L2R� þ ½L2R��

¼ ½R� þ ½L1�½R�
Kd1

þ s1
½L1�½R�
Kd1

þ ½L2�½R�
Kd2

þ s2
½L2�½R�
Kd2

¼ ½R� 1þ ð1þ s1Þ ½L1�
Kd1
þ ð1þ s2Þ ½L2�

Kd2

� 	

(A7)

Next, the total effect produced is expressed as a function

of the [L1] and [L2] concentrations present using the

assumptions that the effects E1 and E2 are proportional

with the corresponding [L1R*] and [L2R*] concentrations:

E=Emax
¼ ½L1R

�� þ ½L2R� �
½Rtot�

¼ s1
½L1�
Kd1
þ s2

½L2�
Kd2

1þ ð1þ s1Þ ½L1�Kd1
þ ð1þ s2Þ ½L2�Kd2

(A8)

Assuming that the efficacies are different enough

(s1 > s2), the partial agonist L2 can produce either con-

centration-dependent activation (when L1 concentrations

are low compared to Kd1) or inactivation (when L1 con-

centrations are high compared to Kd1) as illustrated by

Figure A1 (see also (Song et al. 2014)). The same equa-

tion can be obtained with the formalism of the opera-

tional model – see eqs. 6.21 and 6.79 in (Kenakin, 2006).

The fully general version of this equation for competing

partial agonists can also incorporate a Hill slope, n (see

Figure 10.15 and eq. 10.19 in Kenakin 2006):

E=Emax
¼

sn1
½L1�
Kd1

� �n

þ sn2
½L2�
Kd2

� �n

1þ½L1�Kd1
þ½L2�Kd2

� �n

þsn1 ½L1�
Kd1

� �n

þsn2
½L2�
Kd2

� �n (A9)

Competitive partial agonism with the present
model

The same problem can be addressed in a similar manner

within the formalism of the present model (assuming lin-

ear response, c = 1, for now). If two ligands (L1, L2) of

different affinities (Kd1, Kd2) and efficacies (e1, e2) are

present simultaneously competing for binding at the

same receptor, the situation can be summarized below

with a slightly modified version of the one used before

(eq. A6):

L1R
R

L1

L2

Effect1

+

+ Kd1

L2R Effect2Kd2

Effect

ε1

ε2

L1R*

L2R*

occupiedvacant

inactive active
(A10)
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With linear response functions, the total effect can be

obtained again as done previously. First, the total number

(concentration) of receptors [Rtot] is written as:

½Rtot� ¼ ½R� þ ð½L1R� þ ½L1R��Þ þ ð½L2R� þ ½L2R��Þ

¼ ½R� þ ½L1�½R�
Kd1

þ ½L2�½R�
Kd2

¼ ½R� 1þ ½L1�
Kd1
þ ½L2�

Kd2

� 	

(A11)

Next, the total effect produced is expressed as a function

of the [L1] and [L2] concentrations present using the

assumptions that the effects E1 and E2 are proportional

with the corresponding [L1R*] and [L2R*] concentrations:

E=Emax
¼ ½L1R

�� þ ½L2R��
½Rtot� ¼ e1

½L1�
Kd1
þ e2

½L1�
Kd2

½L1�
Kd1
þ ½L2�Kd2

þ 1
(A12)

This equation replaces eq. A8 of the previous model.

As before, if the efficacies are different enough (e1 > e2),
the partial agonist L2 can produce either concentration-

dependent activation (when L1 concentrations are low

compared to Kd1) or inactivation (when L1 concentrations

are high compared to Kd1). A competitive agonist L2 that

produces no effect upon binding, e2 = 0, acts as an antag-

onist I, and the above equation reproduces the well-

known Gaddum equation (eq. A2) for competitive antag-

onists (assuming L1 is a full agonist, e1 = 1, and

[L2] = [I]), which was not possible with the previous

models.

E=Emax
¼

½L1�
Kd1

½L1�
Kd1
þ ½L2�Kd2

þ 1
¼ ½L1�
½L1� þ Kd1 1þ ½L2�Kd2

� � (A13)

2017 | Vol. 5 | Iss. 3 | e00311
Page 20

ª 2017 The Author. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd,

British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

Three-Parameter Two-State Receptor Model Peter Buchwald



0

25

50

75

100

125

1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03

Pe
rc

en
t o

f m
ax

im
um

 re
sp

on
se

log C [mol/L]

His effect%
Fit_His
Impr effect%
Fit_Impr
Impr w His
Fit_Impr w His

Individual fit:
His    EC50 = 6.1 μM
His    Emax = 100%
Impr EC50 = 5.0 μM
Impr Emax = 29.5%
(SSE = 129.5)

0

25

50

75

100

125

1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03

Pe
rc

en
t o

f m
ax

im
um

 re
sp

on
se

log C [mol/L]

His effect%
Fit_HisOp
Fit_His
Impr effect%
Fit_ImprOp
Fit_Impr
Impr w His
Fit_Impr w HisOp
Fit_Impr w His

Present model, overall fit:
His    Kd = 6.6 μM
His    ε = 100%
Impr Kd = 0.5 μM
Impr ε = 23.0%
(SSE = 306.8)

Operational model, overall fit:
His    Kd = 0.43 M
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Figure A1. Illustration of full, partial, and competitive partial agonism with the often used example of histamine and impromidine, H2-receptor

agonist acting on isolated ventricular strips from human myocardium; data after (English et al. 1986). Concentration–responses shown are for

histamine alone (blue symbols), impromidine alone (red symbols), and impromidine in the presence of a constant concentration (100 lmol/L) of

histamine (purple symbols). As a partial agonist, impromidine alone can only produce a maximal response that is far less (~30%) than that

obtainable with histamine, and when used in combination, it can displace the full agonist and actually produce a reduction in the overall

response. Data were fitted with three individual curves separately using GraphPad Prism (A) and with a single set of parameters using the

operational model (eq. 19 and 41) and the present model (eq. 31 and A12, assuming c = 1 to avoid overparametrization and have the same

number of parameters as the operational model) and (B). While the quality of fit in B is essentially identical with both models (overlapping light

and dark lines; SSE values of 306.8 versus 311.7 as shown in the graphs), the parameter set of the operational model is quite meaningless

especially for histamine (e.g., Kd = 0.43 mol/L due to the large value of s obtained by fitting). In the meantime, fit of all three curves with the

present model using a single set of parameters results in values (B) consistent with those from the individual fit (A).
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Figure A2. 3D graphs illustrating the connection between ligand concentration [L] and effect E (purple curves) via the concentration of active

ligand-bound receptors [LR*] (blue curves) and the transduction (response) function generating the effect (red curves). (A) Simple single-state

(Clark) model with linear response and affinity only (Kd) as parameter; (B) operational (Black and Leff) model with high efficacy (high s, low Ks)

similar to the one shown in the original publication introducing this model (Black and Leff 1983); (C) operational model with low efficacy (low s,

high Ks; a case not illustrated in the original publication) – note that the response (red line) is below that of the linear one for much of the region

and most of the hyperbolic response function is left unused; (D) present model with full agonist (e = 1) and good amplification (c >> 1); (E)

present model with partial agonist (e < 1) and low amplification (c � 1) – note that the response is always larger than the linear one and partial

activation / effect is achieved via e. With the present model, if all receptors are active ([LR*] = Rtot), the response always corresponds to Emax.
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Figure A3. Fit of contraction data of guinea-pig ileum through activation of muscarinic receptors with carbachol (filled blue diamonds) and

oxotremorine (open red circles) in normal tissue (darker colors) and in the same tissue after controlled alkylation of the muscarinic receptor with

1 mmol/L phenoxy-benzamine for 10 h followed by 2 h drug-free wash (lighter colors). Data after (Kenakin and Christopoulos 2011) were fitted

both with the operational model (A, top, eq. 19) and the present model (B, bottom, eq. 31). Fit requires the assumption that oxotremorine has

higher receptor-binding affinity, but lower efficacy than carbachol. Both gave essentially identical fits with a slightly better fit for the present

model as judged by the sum of squared errors (SSE of 278 vs. 331) as well as by the Akaike Information Criteria, a more rigorous model selection

criteria used to compare models that have different numbers of parameters (Buchwald 2007) (AIC of 143.4 vs. 145.4).
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Table A1. Summary of all parameters used in the present paper.

a Proportionality factor between effect (response) and active receptors in linear models (e.g., Clark equation, eq. 7; minimal two-state

model, eq. 16)

e Efficacy parameter for the present model (eq. 28)

c Gain (amplification) parameter for the present model (c = Rtot/Kc, eq. 29 and 30)

k1, k–1 Rate of forward reaction or backward reaction (law of mass action, eq. 1, 2)

Kd Equilibrium dissociation constant of the receptor binding; defined by eq. 2 for Langmuir-Hill and Clark equations, eq. 12 for minimal

two-state model, and eq. 23 for present model)

Kc Constant for the hyperbolic response function of the present model (eq. 27)

Ki Equilibrium dissociation constant for an inhibitor (Gaddum equation, eq. A2)

Kobs Apparent (observed) K for the effect (response), that is, EC50

Ks Constant for the hyperbolic response function of the operational model (eq. 18)

n Hill slope (see eq. 10)

Rtot Total maximum number (concentration) of receptors in the system.

s Efficacy parameter in the minimal two-state model, s(mtsm) = [LR*]/[LR] (eq. 13) and in the mathematically equivalent operational model,

s(om) = [Rtot]/Ks (eq. 19)
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