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Abstract

Most EEG-based brain-computer interface (BCI) paradigms include specific electrode positions. As the structures and
activities of the brain vary with each individual, contributing channels should be chosen based on original records of BCIs.
Phase measurement is an important approach in EEG analyses, but seldom used for channel selections. In this paper, the
phase locking and concentrating value-based recursive feature elimination approach (PLCV-RFE) is proposed to produce
robust-EEG channel selections in a P300 speller. The PLCV-RFE, deriving from the phase resetting mechanism, measures the
phase relation between EEGs and ranks channels by the recursive strategy. Data recorded from 32 electrodes on 9 subjects
are used to evaluate the proposed method. The results show that the PLCV-RFE substantially reduces channel sets and
improves recognition accuracies significantly. Moreover, compared with other state-of-the-art feature selection methods
(SSNRSF and SVM-RFE), the PLCV-RFE achieves better performance. Thus the phase measurement is available in the channel
selection of BCI and it may be an evidence to indirectly support that phase resetting is at least one reason for ERP
generations.
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Introduction

Brain-Computer Interfaces (BCIs) are communication systems

that allow people to send information to a computer or commands

to other electronic devices only by measuring brain activities

without any body movement. Such systems can be considered as

the solely way of communication for people who suffer severe

neuromuscular diseases and are incapable of any motor functions

but are cognitively intact [1],[2]. To date, in non-invasive

functional brain monitoring methods, the electroencephalography

(EEG) provides a preferable solution in most circumstances with a

high time resolution as well as simple and affordable recording

requirement [3].

The P300 speller is one of the most popular EEG-based BCI

paradigms and provides many clinical applications [4–6]. As

described by Farwell and Donchin, a P300 speller presents a

character matrix on a computer display in front of BCI users. Each

cell of the matrix contains a character and either row or column is

intensified individually and randomly. Spelling with the BCI, users

should pay attention to the character they wish to communicate

with [7]. Since the occurrence rate of the row (column) containing

the focused character is often below 20%, intensifications of this

row (column) exert target stimuli and elicit P300 responses. The

BCI system identifies these P300 potentials and transforms users’

attention to character output (i.e. the intersection of the row/

column targets). The P300 response is an internal mechanism of

the human brain, which allows the P300 speller to require no BCI

user training [8].

The performance of the P300 speller depends greatly on the

quality and amount of the information acquired from EEG

records [9]. Nowadays, a great challenge of the P300 speller is the

optimization of the number of electrodes for each user [9],[10]. A

reduced number of electrodes will take less time to install, be more

user-friendly, reduce the expense of BCI equipment and consume

less power. This may efficiently support wireless EEG caps

[10],[11]. Previous works on this subject pay most attention to

neuroscience evidences. According to what the neurophysiology

suggests, early research focused on the standard locations (i.e., Fz,

Cz, Pz) [8],[12],[13]. Some offline studies suggest that the use of

additional locations, particularly posterior sites, may improve

classification accuracy [14–18], and a six/eight-electrode config-

uration is proposed to provide a satisfactory classification with

appropriate use [19–22]. However, P300 signals are subject-

specific [19], and the optimal EEG recording locations for P300

identification may vary in practice. It is possible that a different

montage would be required for patients with various neuromus-

cular pathologies. Accordingly, an adaptive channel optimization

method is necessary for practical applications to identify an

individual montage [23].

The classical greedy strategy, known as ‘backward elimination’,

has been popularly recommended and used in recent BCI channel

selections [9],[10],[23],[24]. In general, it starts with a full set of
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electrodes according to the 10–20 system (covering all areas of the

head) and reduces the number of required EEG channels while

keeping the classification accuracy optimal [9]. A robust feature

space should contain more identifiable but less redundant

information. To this end, features worthless for accuracy should

be removed. One approach is to use pure mathematical evidence,

which is called dependent criteria, i.e., constructing a series of

feature combinations and selecting the best one with the highest

classification rate. Some methods in this approach, such as genetic

algorithm or SVM-RFE, have been used successfully for channel

optimization in BCIs [23–25]. However, it’s difficult to use them

in P300 spellers because of the high computational complexity.

Another approach, called independent criteria, is computationally

simple. It directly evaluates all features, and then removes the

identified ‘‘worthless’’ features. Algorithms of this method are

popular in many fields, but rarely used in EEG feature selections.

The comprehensive work [10] on this subject by Cecotti et al

indicates that the cost function based on signal to signal-plus-noise

ratio (SSNR) is better than that based on classification accuracy in

terms of channel selection using backward elimination in P300

spellers. Meanwhile, a pre-processing using a spatial filter (SF)

based on the xDAWN algorithm [26],[27] helps to select the

optimal channels remarkably [10]. Thus it is promising to evaluate

the importance of EEG features on the classification by using a

global measure of EEG signals [10].

Up to now, there have been two distinct mechanisms to

generate averaged ERP responses. The evoked model, as a basis of

SSNRSF (i.e. SSNR plus SF), considers that the ERP response

results from a superimposed neuronal activity with fixed-polarity

and fixed-latency to background electroencephalographic oscilla-

tions [28–31], while the oscillatory model believes it is generated

by a partial phase synchronization of the ongoing EEG [32–37].

The debate between the two models has existed for a long time,

since neither of them can explain the evoked potential exclusively.

However, some recent literature suggests that the event-related

potential is at least influenced by oscillatory brain activity [38–40].

Phase relations reflect the cooperative interactions between

anatomically disparate neural populations [41],[42]. Such coop-

erative brain processes that are detectable at various spatial scales

are supposed to be fundamental to the dynamic organization of

sensory and cognitive brain functions [43],[44]. In ERP studies,

phase-based measurement provides robust and sensitive monitor-

ing on task-related fluctuations [39]. Moreover, recent studies

imply that it’s possible to evaluate how EEG features contribute to

classification by using phase related measurement. On one hand,

EEG records from the same or connected functional areas should

show more phase synchronization than those from different or

unconnected functional areas [43]. Such phase synchronization

between two specific channels would also be different from target

mental task to non-target [41]. On the other hand, task-relevant

cortical areas make a great contribution to a mental task, and the

corresponding channels should play an important role in

classification. Therefore, channel selection through phase mea-

surements is a promising approach in the P300 speller, but has

never been reported.

In this study, different from additive evoked model based

methods, the PLCV-RFE as a phase measurement based method

is developed and tested to verify its effectiveness. By measuring

phase relationship between EEG channels, the PLCV-RFE

separates channels into diverse clusters, and then ranks them to

ensure that the first n channels reflect as many important sources

as possible.

This paper is organized as follows. Section 2 addresses the

methodology including the BCI experiment and the PLCV-RFE

algorithm. Section 3 presents the results and discussion.

Materials and Methods

1. Ethics Statement
This study was approved by the Institution Research Ethics

Board at Tianjin University. All subjects gave written informed

consent after the nature and possible consequences of the study

were explained.

2. Experiment
The experiment paradigm followed Farwell and Donchin [7].

During the experiment, the participant sat in front of a computer

monitor and viewed a 6 by 6 letter matrix (Figure 1). The task was

to pay attention to a specified letter on the matrix and silently

count the number of times the target character intensified, until a

new character was specified for next selection. The character

currently specified for selection was presented on the top left of the

screen. At the beginning of each character block the matrix was

blank for 2.5 s. Then, the rows and columns were intensified for

100 ms with 75 ms blank between intensifications. The matrix

flashing presented 12 different stimuli to users and two of them

contained the target character (one particular row and one

particular column). A complete cycle of six row and six column

intensifications constituted an epoch, and 15 epochs constituted a

character block. 80 character blocks were conducted in the

experiment for each subject. Thus there were 2,400 target trials

and 12,000 non-target trials in this study.

Nine right-handed healthy subjects (23–25 years of age; 2

females) participated in the study. All subjects had no experience

with a P300-based BCI system. The EEG signal was recorded by

using a Neuroscan Synamps2 system with an EEG cap whose

located electrodes follow the 10–20 system (Figure 1). All channels

were referenced to the central lobe and grounded prefrontal lobe,

and then re-referenced to the bilateral mastoid. EEG signals were

bandpass filtered at 0.1–200 Hz, digitized at a rate of 1,000 Hz

and stored. In the pre-processing EEG signals were first filtered to

0.1–40 Hz and downsampled at 200 Hz for phase measurement,

and then downsampled at 20 Hz for classification. 700 ms of EEG

after stimulus onset from the 32 channels was defined as the

stimulus response and extracted. The first 40 character blocks

were used for training, while the others were the test session.

3. Phase Locking and Concentrating Estimation
Phase locking values (PLVs) may be an effective approach to

measure the variability of phase difference between two EEG

signals [45]. However, neglecting the initial phase value makes it

impossible to measure the degree of phase concentration which

induces the ERP from the view of the oscillatory model. In this

paper, we propose a novel method to estimate the phase locking

and concentrating value (PLCV) of EEG signals.

The instantaneous phase can be obtained by the analytic signal.

For casual signal s(t), the analytic signal z(t) is a complex function

defined as (1) and (2), where ŝs(t) is the Hilbert transform of s(t).

z(t)~s(t)zjŝs(t)~A(t)ejQ(t) ð1Þ

Where j is the imaginary unit, A is the amplitude and e is the

natural exponent.

Channel Selection Method of P300 Speller
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ŝs(t)~
1

p

ð?
{?

s(t)=(t{t)dt ð2Þ

If x and y denote the xth and the yth EEG channels, the phase

locking value (PLV) should be defined as follows [45]:

PLV (t)
x,y~D1

n

Xn

i~1

e
DQ

(t)
x,y

i D ð3Þ

where DQ(t)
x,y~(Q(t)

x {Q(t)
y ),Q(t)

x and Q(t)
y represent the instantaneous

phase of EEG signals in the xth and the yth channels. The PLV is

an average of n trials and ranges from 0 to 1. If channel x and

channel y are more/less likely to be homologous, DQ(t)
x,y will show

less/more variability, which brings a high/low PLV.

The phase concentration value can be defined similarly as

follows:

PCV (t)
x,y~D1

n

Xn

i~1

e
SQ

(t)
x,y

i D ð4Þ

where SQ(t)
x,y~(Q(t)

x zQ(t)
y )=2. PCV derives from the idea of inter-

trial phase coherence (ITC) whose equation is

Figure 1. Character matrix and electrode locations. Left: 6*6 character matrix displayed in front of the participant with the third row
intensifying. Right: 32-electrode locations follow 10–20 system in P300 spelling experiment.
doi:10.1371/journal.pone.0060608.g001

Figure 2. The computational process of RFE. A flow chart of RFE is shown with a 5-channel set. An earlier eliminated channel ranks lower.
doi:10.1371/journal.pone.0060608.g002
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ITC(t)
x ~D1

n

Xn

i~1

e
Q

(t)
x

i D ð5Þ

It extends ITC to the condition of two channels. Thus PCV

measures the consistency across the trials of two channels. If Q(t)
x or

Q(t)
y is phase-synchronized to a certain mental task, Q(t)

x or Q(t)
y will

be more constant when the task occurs according to the oscillatory

model. Otherwise, Q(t)
x or Q(t)

y will be more random as it has no

relation to the task. Therefore if channel x and channel y are

more/less likely to be phase-synchronized to a certain mental task,

SQ(t)
x,y will show more/less concentration, which results in a high/

less PCV.

PLV and PCV characterize different relationships between

EEG behaviors of two locations. PLV measures whether they

come from the same source, while PCV represents whether or not

they are related to a mental task. Here we combine them to

analyze ERPs and the phase locking and concentration value

(PLCV) is defined as:

PLCV (t)
x,y~ 1{PLV (t)

x,y

� �
:PCV (t)

x,y ð6Þ

1{PLV (t)
x,y is used here because homologous features rarely

provide useful information to the recognition and they can be

considered as having negative contributions. From (6) a high

PLCV represents a pair of heterologous channels synchronized to

a certain mental task.

4. Channel Ranking Using PLCV
It is the variance between target response and nontarget

response that is the most important element in the recognition of

event-related potentials. Then, the target effect of phase locking

and concentration is defined as:

TE(t)
x,y~PLCV

(t)
x,y,t arg et{PLCV

(t)
x,y,nont arg et ð7Þ

The TE value is a combined effect of mental task relativity and

channel homology factors. A high value of TE(t)
x,y signifies that the

phase concentration of channel x and channel y in target response

is significantly higher than that in nontarget response, and such

concentration is more likely to be multisource. However, a low

TE(t)
x,y value may be a result of a homologous source, or the brain

fluctuation behaving with little relation to the target mental task.

For example, the value of TE(t)
x,x is zero for the same source

reflected by channel x and itself. In this view, a low TE(t)
x,y value

may show that the EEG features are similar in the xth and the yth

channels. Under this condition, if the features from the xth channel

Figure 3. PLV and PCV presentations. Typical variations of PLV and PCV from target to nontarget are illustrated by certain channel pairs.
doi:10.1371/journal.pone.0060608.g003
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have been selected in the training of the learning machine, the yth

channel will provide little additional useful information, and then

can be regarded as a redundant channel, i.e., the yth channel

contributes little to the classification.

However, it is hard to select the channel of the least contribution

directly by evaluating TE measurements. To solve this problem,

we use a hierarchy clustering method combined with a recursive

strategy to group channels and iteratively rank each of them. We

call this method ‘‘phase locking and concentrating value based

recursive feature elimination (PLCV-RFE)’’. In the clustering of

PLCV-RFE, the TE is used to characterize the behavioral

similarity between two channels. Since TE is a time varied value,

we define the maximum value in the time window after the

stimulus onset as the similarity,

Sx,y

� �
n|n

~ maxt(TE(t)
x,y)

h i
n|n

ð8Þ

where n is the number of channels. Once the xth and the yth

channels are identified as the most similar couple among all

available channel couples, the less important channel is identified

with the lower task relativity value (TRV) which is defined as: .

TRVx~
Xk

j~1
Sx,j ð9Þ

where k is a decreasing variable in the recursive procedure. Its

initial value is n. In each step of the recursive procedure, the

current similarity matrix Sx,y

� �
k|k

is used to construct a hierarchy

cluster, in which each EEG channel is considered as a leaf on the

hierarchy cluster tree Z. According to the Z, the couple with the

least Sx,y is identified at first, and then the channel with a lower

TRV is eliminated from the identified couple. Before the next

repetition, the similarity matrix needs to be reconstructed, since

the number of channels surviving has been decreased. This process

is carried out iteratively and all channels are sorted with ascending

importance. Figure 2 illustrates a flow chart of PLCV-RFE that

takes a 5-channel set as an example.

The Pseudocode of PLCV-RFE is as follows:

Initialize:

1) subset of surviving channels: SC = [1,2,…,32].

2) the size of SC: k = 32.

3) channel rank list: R = [].

Procedure:

1) calculate [Sx,y]k6k, where x,yMSC.

2) construct a hierarchy cluster tree Z by [Sx,y]k6k.

3) group channels into k21 classes by using the cluster tree Z.

4) identify the only class that contains two channels: C = [p,q],

where p,qMSC.

5) compute the TRV of each channel in C.

Figure 4. Character recognition errors of all subjects. CREs against the number of selected channels is shown in 1, 8 and 15 repetitions with all
subjects.
doi:10.1371/journal.pone.0060608.g004

Table 1. CRE comparison.

Repetitions OCS size CRE of OCS (%)
CRE of full
channels (%)

1 22.1 36.4 42.8

2 20.6 19.4 23.1

3 17.4 12.2 14.7

4 17.2 5.3 8.1

5 17.4 2.5 4.4

6 13.4 2.2 4.2

7 9.8 1.7 2.5

8 7.9 0.8 2.2

9 8.1 0.8 1.4

10 9.9 0.3 0.6

11 8.2 0.3 0.6

12 8.0 0.3 0.6

13 5.2 0.6 0.8

14 5.2 0.6 0.6

15 7.3 0.3 0.6

doi:10.1371/journal.pone.0060608.t001
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6) find the channel with lower TRV in C: w = arg-

minx(TRVx,xMC).

7) update the feature ranked list: R = [SC(w),R].

8) reset SC = [SC(1),…,SC(w21),SC(w+1),…,SC(32)], k = si-

ze(SC) and C = [].

9) repeat this procedure until SC = [].

Output: channel ranked list R.

5. Recognition Method
To evaluate the performance on a selected subset of channels,

we measured the character recognition accuracy. 80-character

spelling data for each subject was divided into two parts. The

channel ranking ran on the first 40-character data, while the

following 40-character data were used to calculate accuracies of

the channel sets selected previously. Fisher’s Linear Discriminant

Analysis (FLDA) was used for character recognition. As a

benchmark method for BCI classification, FLDA has been proven

to be capable of providing good performance P300-based BCI

spelling [22].

Results and Discussion

Figure 3 shows PLV and PCV differences between target and

nontarget responses in certain channel pairs. In pair Cz and Pz,

target PLVs achieve lower values from about 100 ms to 250 ms,

while maintaining the level of nontarget at other times. In contrast,

pair C4 and P8 gives higher target PLVs from about 100 ms to

450 ms. For PCV, the decrease and increase between nontarget

and target can be found in pair Fc1-Oz and Fp1-Cz, respectively.

Therefore, the phase measurement can reflect the changing

relationship between channels.

Figure 4 presents the character recognition errors (CREs)

against the number of selected channels by PLCV-RFE in 1, 8 and

15 epochs (repetitions). In most cases, the test error curves often

increase smoothly or remain steady after a rapid decrease, with the

number of selected channels increasing. In general, the more

repetitions used, the fewer test errors. For a further analysis, the

optimal channel subset (OCS) is proposed in this study, which

results in the least test error with the least number of channels. For

example, if 0%, the least CRE is achieved when 10 and 12

channels are used; then the OCS is the first 10 channels.

Compared with the full channel set, the OCS has fewer CREs

with fewer repetitions. For example, as illustrated by Table 1, the

averaged CRE decreases 6.4%, 3.6%, 2.5%, 2.8%, 1.9% and

1.9% with 1, 2, 3, 4, 5 and 6 repetitions respectively. Six paired t-

tests show that such decreases are significant (1 repetition:

t(8) = 23.5, p-value,0.01; 2 repetitions: t(8) = 24.3, p-value,0.01,

3 repetitions: t(8) = 22.3, p-value,0.05, 4 repetitions: t(8) = 22.2,

p-value,0.05, 5 repetitions: t(8) = 23.5, p-value,0.01 and 6

repetitions: t(8) = 22.2, p-value,0.05). In addition, with the

increased repetitions, the size of OCS will be reduced significantly.

For example, an average of less than 10 channels will be achieved

in the OCS when using more than 6 repetitions.

The important channel sites may give a further understanding

of the P300 speller. Table 2 illustrates the top 12 channel rankings

of all subjects. P7, P8 and Cz are common to most of the subjects.

In this study, all channels are weighted by z scores. P7 is the

highest and wins, then followed by P8, Cz, T8, FC5, Oz and Pz.

Figure 5 displays the channel weights by means of topography.

The weight distribution is subject-specific. For example, the

middle channels get less importance in S5, but they are essential to

S8 to get a good classification performance. In the last averaged

topography, the color distribution is approximately symmetric.

Coherently with the neurophysiologists, Cz, Pz and Oz play

important roles in the P300 speller. But on the contrary, Fz ranks

22nd, which shows less essential than FC5, the lateral channel in

the frontal area. In addition, P7, P8 and T8 also contribute

significantly to character recognition accuracy.

To confirm the efficiency of PLCV-RFE, two state-of-the-art

feature selection methods, (SVM-RFE [24] and SSNRSF [10]),

are involved in this study. Figure 6 shows the averaged size of

OCS against the number of repetitions with corresponding CREs.

The PLCV-RFE chooses fewer channels than SSNRSF and SVM-

RFE in most cases. For example, in 8 repetitions, the OCS has 7.9,

11.9 and 13 channels for PLCV-RFE, SSNRSF and SVM-RFE

respectively. Two paired t-tests prove that the PLCV-RFE is

significantly superior to the other two methods in channel

reduction (PLCV-RFE versus SSNRSF: t(134) = 21.9, p-val-

ue,0.05 and PLCV-RFE versus SVM-RFE: t(134) = 22.4, p-

value,0.01). In addition, all three methods have comparable

performance in CREs. For example, the least averaged CREs in 5

repetitions are 2.5%, 3.1% and 3.3% when using PLCV-RFE,

SSNRSF and SVM-RFE respectively, and all CREs are 0.8% in 8

Table 2. List of channel ranks.

rank s1 S2 S3 S4 S5 S6 S7 S8 S9 mean

1 P8 Cz T8 T8 P7 Cz P7 Cz PO3 P7

2 F4 F4 FC5 FC5 FC5 FC5 F3 FC5 FC1 P8

3 F8 T8 P4 P4 T7 P8 CP5 Pz F3 Cz

4 Pz P7 CP1 P7 AF4 P7 FP1 C3 O1 T8

5 P7 P3 P8 Pz C4 Oz FC1 Fz Pz FC5

6 O2 CP1 C3 O2 P8 CP2 Oz P3 AF4 Oz

7 FC6 C4 O1 P8 C3 C4 P8 FP2 F7 Pz

8 FC1 AF4 CP5 F8 FP1 FP2 CP1 FC6 P8 C4

9 AF4 Fz O2 CP5 Pz PO4 C3 P8 C4 F8

10 Cz O1 C4 FC1 Cz T7 CP6 P7 FP1 FC1

11 T8 F3 F7 Fz FC1 O1 F7 T8 Oz CP5

12 Oz F7 P7 Oz F4 F8 Cz CP5 FC6 O1

doi:10.1371/journal.pone.0060608.t002
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repetitions. Two-way analysis of variance (ANOVA) shows no

significant difference among these methods in terms of CREs (F(2,

360) = 0.03, p-value = 0.97). Therefore, PLCV-RFE achieves a

better performance, considering its OCS gets fewer electrodes

without loss of accuracy.

A further comparison is shown in Figure 7. Since a practical

BCI system prefers a small electrode set, one of the core objectives

of a channel selection method is to discover the fewest electrodes

with the least test error. Figure 7 displays the averaged CREs of 1

to 10 best subject-specific electrodes with different methods. A

channel subset with six electrodes can be found in many studies on

the P300 speller, and has been proven to be able to provide a

classification performance as good as other expanded channel sets

[20],[21]. Therefore, we make another comparison with the

performance of a subject-independent six-channel set whose

locations are predefined following previous studies on the P300

speller [21]. Among these four-channel sets, the PLCV-RFE

achieves the lowest CRE and three paired t-tests demonstrate

significant superiority (in the section of 3 to 15 repetitions, PLCV-

RFE versus SSNRSF: t(116) = 22.7, p-value,0.01, PLCV-RFE

versus SVM-RFE: t(116) = 22.3, p-value,0.05 and PLCV-RFE

versus the independent: t(116) = 22.9, p-value,0.01). In addition,

the PLCV-RFE performs significantly superior to others in 8

electrodes (in the section of 3 to 15 repetitions, PLCV-RFE versus

SSNRSF: t(116) = 22.0, p-value,0.05, PLCV-RFE versus SVM-

RFE: t(116) = 24.1, p-value,0.01). However, it is less effective

when using only 2 to 4 electrodes.

In this study, there are three feature selection methods

compared from the view of performance of channel selection in

the P300 speller. These methods are derived from different

mathematical ideas. The SVM-RFE is a kind of dependent

criterion that has been successfully used in many areas, such as

channel selection in motor imagery-based BCI. As the SVM-RFE

is an efficient universal algorithm, it can provide satisfactory results

in many cases, but may be not the best one such as in this study.

The SSNRSF and PLCV-RFE are both independent criteria with

global measurements of the EEG signal. The SSNRSF assumes

that spelling responses are additive to the spontaneous electroen-

cephalogram and other background artifacts according to the

mechanism of the evoked model. The quality of evoked potentials

is reflected by signal to signal-plus-noise ratio, which is related to

the classification accuracy in the SSNRSF. The aim of using the

spatial filter xDWAN is to amplify the evoked energy, while

restraining the background noise. However, the PLCV-RFE works

with the assumption of phase correlation between spelling

responses. The idea is rooted in the oscillatory model which

believes that stimuli induce a phase reset of ongoing neural

activity. If the phase resetting is an acceptable reason for the

generation of ERP just as suggested in [38–40], a proper phase

measurement approach can reflect abundant information about

the EEG evolution with which to select channels. Therefore, the

outstanding performance of PLCV-RFE may be an evidence to

indirectly support that the oscillatory model is at least a partial

reason for the ERP generation in BCI spelling tasks, due to no

Figure 5. Channel weights of PLCV-RFE. Channel weights acquired by PLCV-RFE are displayed by the topography with all subjects and the
averaged one.
doi:10.1371/journal.pone.0060608.g005

Figure 6. The comparison of optimal channel subsets. The
number of OCS channels against the number of repetitions is displayed
by dash lines with different methods. The corresponding CREs are
illustrated by solid lines.
doi:10.1371/journal.pone.0060608.g006
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utilization of energy or SNR information in the PLCV-RFE

procedure.

Previous studies have suggested that visual response and

cognitive processing are two main neural activities in response to

overt target stimulus [46],[47]. Other neurophysiology studies

have discovered that at least eight classes of independent

components contribute to visual evoked responses [35]. Frenzel

et al have realized a P300-based BCI system with two parallel

communication lines by detecting different brain activities [48].

Therefore, the responded potentials of the P300-speller can be

regarded as a mixed effect of many sources, which is consistent

with the idea of PLCV-RFE that pursues the new features from

different sources to robust channel selection.

From the view of results, the best channel location set is subject-

specific for users to control the P300 speller. And especially for

patients suffering from central nervous disorders, a measurement

of the best channel locations is beneficial and helpful for them to

use the BCI system, since the great change of brain structures and

functions may influence the normal EEG signal. This paper

introduces a novel approach to select channels in P300 speller

paradigms. The PLCV-RFE, as a phase measurement based

channel selection algorithm, can effectively remove the less

important channels without loss of classification accuracy, and

shows better performance than other state-of-the-art methods in

this study. Thus, phase measurement is effective in channel

selection of BCI spelling.
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