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Abstract The spatial distribution of neurons and activity-dependent neurite outgrowth shape

long-range interaction, recurrent local connectivity and the modularity in neuronal networks. We

investigated how this mesoscale architecture develops by interaction of neurite outgrowth, cell

migration and activity in cultured networks of rat cortical neurons and show that simple rules can

explain variations of network modularity. In contrast to theoretical studies on activity-dependent

outgrowth but consistent with predictions for modular networks, spontaneous activity and the rate

of synchronized bursts increased with clustering, whereas peak firing rates in bursts increased in

highly interconnected homogeneous networks. As Ca2+ influx increased exponentially with

increasing network recruitment during bursts, its modulation was highly correlated to peak firing

rates. During network maturation, long-term estimates of Ca2+ influx showed convergence, even

for highly different mesoscale architectures, neurite extent, connectivity, modularity and average

activity levels, indicating homeostatic regulation towards a common set-point of Ca2+ influx.

DOI: https://doi.org/10.7554/eLife.47996.001

Introduction
Modularity is a fundamental design principle of neuronal systems and exists at the scale of cellular

compartments, local circuits or interconnected brain areas. From a structural perspective, modularity

can arise from inhomogeneities in the physical substrate that facilitate connectivity within a group of

functional entities versus connectivity between such groups.

At the mesoscale level of local circuits, the cerebral cortex is organized in local clusters of tightly

interconnected neurons (Feldman and Peters, 1974; Skoglund et al., 2004) that share common

inputs and targets (Bosking et al., 1997; Voges et al., 2010), have similar functional properties

(Ringach et al., 2016) and are thought to constitute a basic computational module

(Buxhoeveden and Casanova, 2002; Casanova and Casanova, 2019; Mountcastle, 1997).

Although cortical architecture is largely genetically predefined at this level, blocking electrical

activity during development disturbed the characteristic clustering of connections, suggesting that

activity-dependent self-organization influences network modularity (Durack and Katz, 1996;

Ruthazer and Stryker, 1996; Thompson, 1997). Intriguingly, computational models predict that

modular connectivity, in turn, promotes spontaneous activity (Kaiser and Hilgetag, 2010;

Klinshov et al., 2014; Mazzucato et al., 2015). Modularization and spontaneous activity may thus

co-evolve in a self-enhancing process.

In early postnatal development, neuronal migration and neurite outgrowth are regulated by activ-

ity-dependent changes of the intracellular Ca2+ concentration [Ca2+]i (Kater and Mills, 1991;

Komuro and Kumada, 2005; Spitzer, 2006; Zheng and Poo, 2007), suggesting that morphodeve-

lopmental processes contribute to cellular Ca2+ homeostasis (Zündorf and Reiser, 2011). Put
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simply, neurons would grow to increase neurite field overlap and the corresponding synaptic con-

nectivity (Kossio et al., 2018; Shepherd et al., 2005; Stepanyants et al., 2002; Tetzlaff et al.,

2010; van Ooyen et al., 1995) to establish the level of spike activity necessary to achieve some tar-

get value of [Ca2+]i. As inter-neuron distance strongly affects the overlap of neurite fields and thus

connectivity (Barral and D Reyes, 2016; Schnepel et al., 2015; Seeman et al., 2018), spatial clus-

tering of neurons may play an important role in shaping modularity (Hernández-Navarro et al.,

2017).

In the current study, we focus on the developmental self-organization that leads to different net-

work architectures. In a simple computational model, varying the ratio of activity-dependent homeo-

static growth versus migration was sufficient to modify neuronal clustering, mesoscale network

organization, and the degree of modularity. Since controlled manipulation of network architecture

and simultaneous activity monitoring is impractical in vivo, we tested this developmental interaction

by modifying growth and migration in networks of cortical neurons in cell culture. These networks

recapitulate major developmental processes such as cell migration and neurite outgrowth

(Guan et al., 2007; van Huizen et al., 1987; van Pelt et al., 2004), develop varying degrees of clus-

tering (Kriegstein and Dichter, 1983; Okujeni et al., 2017; Soriano et al., 2008; Teller et al.,

2014) and produce a rich repertoire of spontaneous bursting events (SBE) (Kamioka et al., 1996;

Okujeni et al., 2017; Wagenaar et al., 2006), similar to the developing cortex (Golshani et al.,

2009; Minlebaev et al., 2007).

On the biochemical level, neuronal morphology is regulated by an interplay between activity-

dependent kinases and phosphatases controlling cytoskeletal turnover rates (Flynn, 2013;

Quinlan and Halpain, 1996). A key player herein is PKC, a Ca2+-modulated enzyme regulating cell

migration (Itoh et al., 1989; Larsson, 2006) and neurite outgrowth (Gundlfinger et al., 2003;

Metzger, 2010).

Increasing PKC activity in cultured networks amplified cell body clustering and local neurite entan-

glement at the expense of long-range connections, promoting local burst initiation and average fir-

ing rate (AFR) but reducing network recruitment during SBEs (Okujeni et al., 2017; Okujeni and

Egert, 2019). This supports the theoretical predictions for modular networks mentioned above and

is consistent with results from clustered networks created by mechanical constraints or modified

growth substrates (Bisio et al., 2014; Tibau Martorell et al., 2018; Yamamoto et al., 2018).

Irrespective of network architecture, activity stabilized after approximately 21 days in vitro (DIV),

suggesting that the target of homeostatic network development had been achieved. Different AFRs

at this stage, however, conflict with previous studies assuming that AFR development reflects the

homeostatic regulation of [Ca2+]i (Abbott and Rohrkemper, 2007; Kossio et al., 2018; van Ooyen

et al., 1995). Ca2+-influx, however, exponentially increases with membrane depolarization

(Mazzanti et al., 1992) and thus depends on the temporal structure of spike activity. Our findings

suggest that because of this non-linearity and specific differences in network-wide peak firing rates

(PFR), long-term average Ca2+ influx converges despite different AFRs and connectivity. Migration

and neurite growth thus interact in a homeostatic process that defines the mesoscale architecture of

neuronal networks.

Results
The connectivity between neurons depends on the overlap of their neurite fields and on their spatial

distribution in the network. Like neurite growth, however, this distribution is dynamic because neu-

rons migrate even in postnatal development. In a recurrent network, the input a neuron receives

then depends on its embedding as well as the network’s overall connectivity and activity structure.

Here, we investigated how activity-dependent neurite growth and migration interact to establish

connectivity and activity in neuronal networks.

Simulating activity-dependent neurite growth and migration
To gain insights into interdependencies between neurite growth and neuronal migration during the

activity-dependent network self-organization, we extended a network growth model introduced by

van Ooyen et al. (1995) that reproduces the outgrowth and subsequent pruning of neurites

reported for developing neuronal networks (van Huizen et al., 1987; van Pelt et al., 2004). Follow-

ing this, neurons were initially randomly seeded on a torus and their interconnectivity was modeled
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as degree of overlap between their circular neurite fields (no distinction was made between axons

and dendrites). Input to neurons was calculated as the product of presynaptic firing rates and

respective connectivity. A sigmoidal transfer function governed the relation between input-depen-

dent membrane potential depolarization and firing rate (Figure 1A). A growth process superim-

posed onto this framework allowed neurons to adjust their input by growing or shrinking their

neurite fields, and thus the overlap with other fields, to establish a defined target firing rate

(Figure 1B,C). In addition to neurite growth, the final phase of neuronal migration observed in post-

natal development is modulated by network activity and thus interacts with the formation of neurite

fields and the regulation of connectivity. We therefore extended the original framework of the

model by adding activity-dependent migration, where neuron somata migrated in the direction of

the strongest input and gradually slowed down as their firing rates converged to the target level

(Figure 1B,D). In contrast to the bidirectional modulation of neurite fields, neurons were not

repelled, however, if the activity level was above target. Prior to the formation of first contacts,

migration was determined by erratic movements only. Neurons could thus increase their input by

extending neurites and by migration to increase the overlap of neurite fields. The relative contribu-

tion of migration in network formation herein depended on its rate in relation to the net rate of neu-

rite extension or pruning.

Migration and neurite outgrowth shape network architecture
Initially, neurite outgrowth (Figure 2A) and migration (Figure 2B) did not depend on activity. Once

neurite fields began to overlap, directed migration towards areas that provided more input ampli-

fied statistical variations in the local cell density and led to clustering, indicated by decreasing clus-

tering index (CI, Figure 2C). CI was calculated as the ratio between the average nearest neighbor

distance in a network and the expected average nearest neighbor distance for random networks. CI

above one indicates grid-like cell body arrangements and CI below one indicates clustering. Increas-

ing clustering promoted connectivity buildup (Figure 2D) and thus input to a neuron (Figure 2E),

which advanced the onset of spontaneous network activity (Figure 2F). Migration and clustering of

neurons ceased with the steep onset of network activity (Figure 2B,C,F). In homogeneous networks,

neurite fields had to grow larger than in clustered networks to establish the same degree of overlap

and thus connectivity (Figure 2A,D). As a result, the size of neurites in mature networks correlated

negatively with the degree of neuronal clustering (Figure 2—figure supplement 1). Connectivity,

input activity and firing rates eventually converged to the same levels for different migration condi-

tions (Figure 2D–F).

Varying the rate of migration crucially impacted on the overall architecture of developing net-

works (Figure 2I, Figure 2—videos 1–4). Without migration, networks developed the most homoge-

neous neurite field diameters and neurite coverage (Figure 2G). Clustering led to more variable

neurite field diameters as more isolated neurons required large fields to receive sufficient input,

whereas within dense clusters, strongly overlapping neurite fields remained small.

The evolution of the largest connected subnetwork, that is the giant component, suggested that

full network connectivity was established along the same developmental time line, irrespective of

the degree of clustering (Figure 2H, inset). In clustered networks, however, individual neurons

played an important role in bridging subnetworks (Figure 2I, arrows in the bottom panel). To quan-

tify the tendency for modularity with different architectures, we calculated the giant component

remaining after removing increasing subsets of randomly selected neurons in mature networks

(Figure 2H). In clustered networks, the giant component shrunk faster with an increasing fraction of

neurons removed, demonstrating that individual neurons became critical bottlenecks in connectivity.

Increasing activity-dependent migration relative to neurite growth thus increased the modularity (Q,

Figure 2I) of the network.

Mesoscale network architecture in vitro
The growth model suggested that spatial clustering of neurons during development could play a

crucial role in the formation of network connectivity by influencing the probability of neurites to

overlap during outgrowth. We assessed this dependence experimentally by chronic activation or

inhibition of PKC (PKC+ and PKC� respectively), a regulator of neuronal migration, in developing

networks of cortical neurons in cell culture. As described previously (Okujeni et al., 2017), PKC
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Figure 1. Model of activity-dependent network development. Neuronal wiring strategies may involve expansion of neurite fields and migration

towards other neurons to increase connectivity modeled as neurite field overlap. (A) Transfer function of membrane depolarization between resting and

maximal potential to firing rates. Dotted line: target firing rate. (B) Neurite growth (orange) and migration (green) were modulated as a function of

[Ca2+]i that corresponded to average firing rates. Neurites grew while the firing rate (corresponding to long-term average Ca2+ influx) was below target

and were pruned when above it. Migration rate decreased as neurons approached the target firing rate (dotted line). (C) The area of neurite field

overlap, corresponding to connectivity in the model, can be increased by neurite outgrowth and neuronal migration towards neighboring neurons (D).

DOI: https://doi.org/10.7554/eLife.47996.002
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Figure 2. Model of activity-dependent growth and migration. (A) Activity-dependent growth produced a characteristic overshoot and subsequent

pruning of neurite fields. The overall size of developing neurites decreased with increasing migration rates and clustering. (B) Mean migration distance

of neurons after seeding (smoothed by 1 hr sliding average). (C) Migration promoted clustering of neurons, which saturated with the onset of network

activity and neurite pruning (curves smoothed by 1 hr sliding average). All networks were initialized with the same spatial cell body distribution with CI

Figure 2 continued on next page
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manipulation significantly altered the mesoscale architecture of networks with 600–800 neurons/

mm2 (Figure 3A), with striking similarity to mature networks generated with the growth model.

Under control conditions (PKCN networks), networks appeared as inhomogeneous density land-

scapes with both, clustered and sparse regions (Figure 3A, center panel). In particular in clustered

areas, neurites formed tangles, which would increase the probability of local connections. Axons

spanning several millimeters indicated monosynaptic connections between distant network regions.

In comparison, PKC� networks with diminished migration had a more homogeneous distribution of

cell bodies and coverage with dendrites and axons (Figure 3A, left panel). Reduced fasciculation of

neurites and a high density of long-range axons suggested a more isotropic embedding of neurons

and more random-like connectivity. In turn, PKC+ networks with enhanced migration had well delin-

eated clusters of about 30–60 neurons with dense tangles of neurites that rarely reached into neigh-

boring clusters (Figure 3A, right panel), indicating high local connectivity and reduced inter-cluster

connectivity.

Cell migration promotes neuronal clustering
To quantify the structural development, we seeded networks at lower densities of about 300 neu-

rons per mm2 that were more suitable for morphometric analyses (Figure 3—figure supplement 1).

Within the first day of random seeding of neurons, rapid neurite outgrowth resulted in overlapping

neurite fields between neighboring neurons. Simultaneously, neuronal cell bodies migrated across

the substrate. Neuronal migration with concurrent outgrowth of neurites gradually increased neuron

clustering within about three weeks in vitro (Figure 3B). Chronic manipulation of PKC activity differ-

entially modulated neuronal clustering during development (Table 1). At 22 DIV, clustering was

moderate in PKCN networks (CI = 0.75 ± 0.03) but significantly increased in the PKC+ networks

(CI = 0.67 ± 0.02, p=3.3*10�2) and significantly reduced in the PKC� networks (CI = 0.88 ± 0.01,

p=4.4*10�4). CI did not change significantly after 22 DIV, indicating cessation of neuronal migration.

Note that the spatial patterning of somata depended on neuron density. Clusters in dense net-

works (~700 neurons/mm2 at >22 DIV) typically contained 30–60 neurons (Okujeni et al., 2017),

Figure 2 continued

close to 1. Note that the fluctuations for zero migration results from the random jittering of neuron positions by half the cell body radius (6 mm). (D)

Average connectivity increased more rapidly with stronger migration and clustering. (E) Input increased faster with increasing migration rate because

clustering initially promoted connectivity. Input levels eventually converged. (F) Firing rates increased sharply once critical input levels were attained.

Migration and clustering accelerated the onset of activity. With increasing migration, steps arise because of incremental integration and activation of

clusters within the larger network. Note that clustering reduced the developmental overshoot of firing rates. (G) Moderate migration and clustering

produced the highest variability of neurite field size across neurons in mature networks. (H) High migration rates increased modularity in mature

networks. With increasing migration rate, the giant component more rapidly decreased in clustered networks when a certain fraction of neurons was

randomly deleted, indicating that these networks break into disconnected subnets. Inset: the fraction of neurons in the giant cluster, that is the largest

connected subnetwork, evolved similarly in different migration conditions. (I) Migration rates crucially determined the mesoscale architecture and

modularity (increasing Q indicates stronger modularity) of developing networks. While average neurite fields were small in clustered networks, more

isolated neurons generated larger fields (arrows) and formed bottlenecks for activity propagation by connecting otherwise unconnected or weakly

connected subnetworks.

DOI: https://doi.org/10.7554/eLife.47996.003

The following video and figure supplements are available for figure 2:

Figure supplement 1. Influence of neuronal clustering on neurite field development.

DOI: https://doi.org/10.7554/eLife.47996.004

Figure supplement 2. Simulation of saturating network growth.

DOI: https://doi.org/10.7554/eLife.47996.005

Figure 2—video 1. Simulated network development with migration rate 0 mm/day.

DOI: https://doi.org/10.7554/eLife.47996.006

Figure 2—video 2. Simulated network development with migration rate 10 mm/day.

DOI: https://doi.org/10.7554/eLife.47996.007

Figure 2—video 3. Simulated network development with migration rate 50 mm/day.

DOI: https://doi.org/10.7554/eLife.47996.008

Figure 2—video 4. Simulated network development with migration rate 300 mm/day.

DOI: https://doi.org/10.7554/eLife.47996.009
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Figure 3. Morphometric analyses of network development. (A) Dense networks established characteristic mesoscale architectures for the different PKC

conditions. PKC� networks had a more homogeneous distribution of axons (red), dendrites (green) and cell bodies (green) than PKCN networks. In

PKC+ networks, neurons formed well-delineated clusters. Note that the following morphometric analyses are based on sparser cultures. (B) Decreasing

CI during development reflects cell migration and ongoing clustering of neuronal cell bodies until ~15 DIV. PKC+ promoted and PKC� diminished

Figure 3 continued on next page
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whereas in sparse networks (~100 neurons/mm2 at >22 DIV) clusters mostly consisted of fewer than

10 neurons (Figure 3—figure supplement 1).

Clustering diminishes dendrite outgrowth
To address the interaction of neurite field extension, migration and clustering, we analyzed the aver-

age size of dendrites at several time points during development (Figure 3C). Dendrite size was

quantified as the ratio between the total length of detected dendrite stretches and the number of

neurons within regions of interest (Table 1). The measure estimates the average contribution of each

neuron to the dendritic mesh. Chronic manipulation of PKC activity had little impact on dendrite size

up to 8 DIV but significantly modulated dendrite outgrowth during subsequent development. At 22

DIV, dendrite size was significantly increased in the more homogeneous PKC� networks but signifi-

cantly reduced in the more strongly clustered PKC+ networks (PKCN: 1021 ± 41 mm; PKC�:

1413 ± 64 mm, p=7.9*10�5; PKC+: 816 ± 24 mm, p=3.6*10�4). In all conditions, dendrite size did not

change significantly between 22 and 29 DIV, indicating stabilization of the dendritic network after

the third week in vitro. As in the model (Figure 2—figure supplement 1), dendrite size in mature

networks was negatively correlated with the degree of cell body clustering and, thus, the distance

between neurons (Figure 3D).

Dendrite outgrowth promotes synaptic connectivity
Network connectivity requires neurite overlap but further depends on the probability by which syn-

apses are realized at axo-dendritic intersections. To assess how synaptic connectivity evolved in the

different PKC conditions, we stained and detected presynaptic boutons (Figure 3—figure supple-

ment 2) and determined the synapse density as the average number of presynaptic boutons per

neuron (Figure 3E, Table 1) and the dendritic occupancy as the number of synapses per unit den-

drite length (Figure 3F, Table 1). Manipulating PKC activity had no significant influence on early syn-

aptogenesis up to 8 DIV, consistent with the comparable dendrite density in different PKC

conditions at this stage. Paralleling dendritic outgrowth, synapse density increased significantly with

increasing dendritic occupancy between 8 and 22 DIV in all conditions. Synapse densities and den-

dritic occupancy subsequently decreased between 22 and 29 DIV. This reduction was not significant

in PKC� networks, however. Developmental manipulation of PKC activity profoundly affected mature

synapse densities (PKCN: 1114 ± 56; PKC�: 2019 ± 110, p=4.5*10�8; PKC+: 669 ± 21, p=5.7*10�8)

and dendritic occupancy (PKCN: 1.19 ± 0.04 mm�1; PKC�: 1.47 ± 0.04, p=3.0*10�5 mm�1; PKC+:

0.9 ± 0.04 mm�1, p=2.3*10�5) at 29 DIV, both of which were significantly increased in the PKC� and

reduced in the PKC+ condition. Similar to dendrite densities, synapse densities were thus negatively

correlated with the degree of clustering. Across PKC conditions and developmental stages, synapse

Figure 3 continued

clustering during development. (C) Dendrite size increased until 22 DIV, with boosted growth in PKC� and diminished growth in PKC+ networks. (D)

In late development, dendrite size scaled inversely with the degree of clustering. For visualization the CI axis was inversed, so the degree of clustering

increases from left to right. (E) The synapse density increased concurrently with dendrite growth. After 22 DIV synapse densities decreased in PKCN and

PKC+ networks, indicating synaptic pruning. (F) Dendritic occupancy with synapses differed slightly between conditions and decreased after 22 DIV. (G)

The number of synapse per neurons increased with the dendrite size. Gray lines connect networks of the same age. The blue line illustrates a proposed

quadratic scaling rule between dendrite size and synapse densities. (H) Neuron density declined with DIV to about one third of the seeding density. (I)

Estimated upper bounds for connectivity based on the synapse density and the total number of neurons (on 113 mm2 cover slips). PKC�at least

doubled average connectivity. (J) In mature networks, maximum connectivity scaled inversely with clustering. All parameters are presented as

mean ± SEM. Data from 4 to 24 images (Table 1, area 3.5 mm2) taken in each of 2 networks per condition and age. Asterisks indicate p-values �0.05

(*), �0.01 (**) and �0.001 (***) tested against PKCN.

DOI: https://doi.org/10.7554/eLife.47996.010

The following source data and figure supplements are available for figure 3:

Source data 1. Source data and Matlab script for Figure 3B,C,E,F,H,I.

DOI: https://doi.org/10.7554/eLife.47996.013

Figure supplement 1. Clustering and dendrite development in sparse networks.

DOI: https://doi.org/10.7554/eLife.47996.011

Figure supplement 2. Development of synapses in sparse networks.

DOI: https://doi.org/10.7554/eLife.47996.012
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Table 1. Morphometric analysis of network development under different PKC conditions.

Results are presented as mean ± standard error of mean (SEM). Significance was determined against PKCN, or between specified

developmental time windows, using independent Student’s t-test. N specifies the number of analyzed images taken from two networks

per PKC condition and age.

DIV PKC- PKCN PKC+ unit

clustering index

8 0.92 ± 0.01 (1.8*10�10) 0.84 ± 0.01 0.82 ± 0.02 (6.1*10�1) CI

15 0.9 ± 0.01 (1.5*10�6) 0.73 ± 0.01 0.69 ± 0.02 (1.1*10�1) CI

22 0.88 ± 0.01 (4.4*10�4) 0.75 ± 0.03 0.67 ± 0.02 (3.3*10�2) CI

29 0.89 ± 0.01 (8.0*10�9) 0.79 ± 0.01 0.67 ± 0.02 (2.1*10�5) CI

8 vs. 22 �4.49 (3.5*10�4) �9.65 (3.1*10�2) �18.6 (1.2*10�5) % change

22 vs. 29 1.04 (4.9*10�1) 4.5 (2.7*10�1) 0.01 (1.0) % change

Dendrite size

8 476 ± 9 (1.3*10�3) 421 ± 12 408 ± 8 (3.4*10�1) mm

15 797 ± 22 (1.2*10�2) 676 ± 37 610 ± 30 (2.1*10�1) mm

22 1413 ± 64 (7.9*10�5) 1021 ± 41 816 ± 24 (3.6*10�4) mm

29 1380 ± 74 (1.9*10�4) 962 ± 65 760 ± 37 (1.3*10�2) mm

8 vs. 22 196.59 (4.0*10�20) 142.46 (9.1*10�12) 100.08 (1.4*10�15) % change

22 vs. 29 �2.38 (7.4*10�1) �5.81 (5.0*10�1) �6.86 (2.5*10�1) % change

Synapse density

8 281 ± 11 (2.2*10�1) 255 ± 18 254 ± 14 (9.4*10�1) #

15 1142 ± 44 (2.3*10�4) 754 ± 39 510 ± 9 (2.4*10�5) #

22 2188 ± 100 (2.1*10�5) 1427 ± 99 885 ± 27 (3.4*10�5) #

29 2019 ± 110 (4.5*10�8) 1114 ± 56 669 ± 21 (5.7*10�8) #

8 vs. 22 678.77 (4.7*10�24) 458.69 (2.1*10�10) 248.68 (1.2*10�17) % change

22 vs. 29 �7.75 (2.7*10�1) �21.93 (6.7*10�3) �24.35 (1.2*10�6) % change

Dendritic occupancy

8 0.59 ± 0.02 (6.4*10�1) 0.6 ± 0.04 0.62 ± 0.03 (7.5*10�1) #/mm

15 1.44 ± 0.05 (1.7*10�2) 1.13 ± 0.11 0.85 ± 0.04 (1.7*10�2) #/mm

22 1.55 ± 0.03 (9.6*10�2) 1.4 ± 0.09 1.09 ± 0.04 (5.7*10�3) #/mm

29 1.47 ± 0.04 (3.0*10�5) 1.19 ± 0.04 0.9 ± 0.04 (2.3*10�5) #/mm

8 vs. 22 163.83 (7.2*10�28) 132.26 (9.0*10�8) 76.65 (3.7*10�10) % change

22 vs. 29 �5.06 (1.5*10�1) �15.41 (2.3*10�2) �17.45 (3.8*10�3) % change

Neuron density

8 255 ± 6 (9.6*10�7) 185 ± 11 168 ± 7 (2.0*10�1) #/mm2

15 214 ± 9 (5.9*10�4) 131 ± 17 158 ± 12 (2.0*10�1) #/mm2

22 107 ± 8 (1.9*10�1) 123 ± 6 85 ± 6 (5.7*10�4) #/mm2

29 87 ± 5 (3.0*10�1) 96 ± 7 77 ± 4 (2.6*10�2) #/mm2

8 vs. 22 �58.03 (7.3*10�17) �33.66 (1.1*10�4) �49.42 (1.0*10�8) % change

22 vs. 29 �18.93 (4.5*10�2) �21.71 (1.3*10�2) �9.79 (2.6*10�1) % change

Maximum connectivity

8 0.01 ± 0.001 (3.5*10�2) 0.013 ± 0.001 0.014 ± 0.001 (6.3*10�1) fraction

15 0.048 ± 0.003 (4.6*10�1) 0.053 ± 0.006 0.029 ± 0.002 (9.2*10�4) fraction

22 0.209 ± 0.031 (8.2*10�3) 0.104 ± 0.007 0.098 ± 0.009 (5.9*10�1) fraction

29 0.229 ± 0.026 (9.2*10�4) 0.116 ± 0.014 0.081 ± 0.006 (3.8*10�2) fraction

8 vs. 22 1987.43 (5.9*10�10) 701.18 (2.6*10�11) 604.32 (1.4*10�10) % change

Table 1 continued on next page
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occupancy scaled approximately quadratic with the dendrite size (Figure 3G), which could result

from similarly modulated axonal densities (Okujeni et al., 2017) and the corresponding multiplica-

tive increase in intersection probability.

Clustering reduces maximum global connectivity
Network connectivity is limited by the number of synapses per neuron and the overall number of

neurons in a network since neurons obviously cannot have more partners than they have synapses.

The ratio between the number of synapses per neuron and the total number of neurons in the net-

work defines an upper bound of connectivity for a network (maximum connectivity). The degree of

connectivity realized, however, could be lower because of multiple structural synapses between neu-

ron pairs. Although the density of neurons decreased during early development (Figure 3H, Table 1),

maximum connectivity increased significantly in all conditions between 8 and 22 DIV (Figure 3I) and

saturated between 22–29 DIV. At the same time, maximum connectivity almost doubled in

PKC� networks compared to PKCN networks but was significantly reduced in PKC+ networks (PKCN:

0.12 ± 0.01; PKC�: 0.23 ± 0.03, p=9.2*10�4; PKC+: 0.08 ± 0.01, p=3.8*10�2) and thus was negatively

correlated with the degree of clustering (Figure 3J).

Mesoscale architecture and the development of spontaneous activity
We recently showed that the specific spatiotemporal patterns of spontaneous bursting depended

considerably on the mesoscale architecture of the network (Okujeni et al., 2017; Okujeni and

Egert, 2019) (Figure 4—figure supplement 1). In all networks types, spikes were typically orga-

nized in bursts that were synchronized across micro-electrode arrays (MEA; Figure 4—figure supple-

ment 1A,B) with low activity between SBEs. Mature PKC� networks typically generated strong SBEs

at low rates with many spikes per recording site (Figure 4—figure supplement 1C). SBE rates were

significantly increased in moderately clustered PKCN networks with fewer spikes per site (Figure 4—

figure supplement 1D). Strongly clustered PKC+ networks generated weaker SBEs at even higher

rates and fewer participating sites (Figure 4—figure supplement 1E).

During development, spontaneous activity started with sporadic, uncorrelated spiking in all net-

works. First SBEs typically appeared at very low rates at 3–5 DIV, indicating that neuronal migration

and neurite outgrowth had connected neurons sufficiently to synchronize their activity. Subse-

quently, activity became increasingly dominated by SBEs attaining mature levels with around 70–

90% of all spikes in SBEs at 10–14 DIV (PKCN: 82 ± 2%; PKC�: 87 ± 2%; PKC+: 71 ± 3%). SBE rates

increased faster with enhanced migration and clustering (Figure 4A, Table 2). The positive correla-

tion between the degree of clustering and SBE rates persisted beyond the end of the migratory

phase (10–14 DIV) where SBE rates continued to increase in all PKC conditions until stabilizing after

the fourth week. In late development (28–35 DIV), SBE rates were significantly increased in the clus-

tered PKC+ networks and reduced in the more homogeneous PKC� networks (PKCN:

17.0 ± 1.1 min�1; PKC�: 5.0 ± 0.8 min�1, p=2.2*10�13; PKC+: 41.1 ± 5.1 min�1, p=7.9*10�9).

Table 1 continued

DIV PKC- PKCN PKC+ unit

22 vs. 29 9.31 (6.3*10�1) 11.48 (5.2*10�1) �17.23 (1.3*10�1) % change

N

8 24 11 15

15 9 4 7

22 15 11 11

29 17 16 15

DOI: https://doi.org/10.7554/eLife.47996.014

The following source data is available for Table 1:

Source data 1. Source data and Matlab script.

DOI: https://doi.org/10.7554/eLife.47996.015

Source data 2. Source data and Matlab script.

DOI: https://doi.org/10.7554/eLife.47996.016
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Clustering thus promoted spontaneous activity generation, in line with predictions from simulations

(Kaiser and Hilgetag, 2010) but inconsistent with homeostatic regulation of connectivity towards a

target firing rate. Achieving defined AFR by homeostasis would require that increased SBE rates be

counterbalanced by a proportional reduction in SBE strength, that is the average number of spikes

per SBE. In early development, SBE strength rapidly increased and plateaued at levels that were

indeed inversely correlated to SBE rates (Figure 4B, Table 2), which resulted in similar AFRs across

PKC conditions at this age (Figure 4C, Table 2). Later in development, however, the decline in SBE

Figure 4. Development of spontaneous network activity. (A) SBE rates gradually increased during development until 28 DIV, which was accelerated in

clustered PKC+ networks and decelerated in homogeneous PKC� networks. In result, SBE rates differed considerably in mature networks and increased

with the degree of clustering. X-axis ticks indicate bin boundaries. (B) PKC� networks generated stronger SBEs with more APs per site than clustered

networks, compensating lower SBE rates to some extent. Burst strength increased initially but declined later on, putatively because of the maturation of

inhibition. (C) AFR increased comparably during early development in the different PKC conditions, indicating that stronger bursting compensated

lower SBE rates. Later in development, AFRs were increased in PKC+ and reduced in PKC� networks. (D) Neurons in PKC� networks showed strong

depolarization during SBEs that reached well above the spiking threshold around �40 mV causing depolarization block of spiking. In clustered

networks, neurons displayed higher membrane potential fluctuations below threshold that occasionaly passed the threshold leading to spikes. (E)

Membrane potential distribution. Thick lines indicate regions significantly different from PKCN (p�0.05). The fraction of time in which neuronal

membrane potentials were above the spiking threshold (dashed line) was significantly increased in PKC� networks compared to PKCN and PKC+

networks. Data in A-D and F show mean ± SEM derived from 1 hr recording sessions. Asterisks indicate p-values �0.05 (*), �0.01 (**) and �0.001 (***)

tested against PKCN. The number of recordings per age and condition is provided in Table 2.

DOI: https://doi.org/10.7554/eLife.47996.017

The following source data and figure supplement are available for figure 4:

Source data 1. Source data and Matlab script for Figure 4A–C,E.

DOI: https://doi.org/10.7554/eLife.47996.019

Figure supplement 1. Sample MEA recordings from dense networks.

DOI: https://doi.org/10.7554/eLife.47996.018
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Table 2. Electrophysiological characterization of network activity during development.

Data were pooled within defined developmental time windows. Significance was determined against

PKCN using independent Student’s t-test. N specifies the number of recorded networks per PKC con-

dition and age.

DIV PKC� PKCN PKC+

AFR

3–5 0.03 ± 0.01 (1.0*10�1) 0.05 ± 0.01 0.09 (1.4*10�1)

6–9 0.08 ± 0.01 (2.6*10�3) 0.18 ± 0.03 0.1 ± 0.02 (4.0*10�2)

10–14 0.36 ± 0.04 (1.8*10�2) 0.49 ± 0.03 0.42 ± 0.04 (2.0*10�1)

15–20 0.53 ± 0.06 (3.6*10�1) 0.61 ± 0.06 0.76 ± 0.19 (3.6*10�1)

21–27 0.69 ± 0.08 (2.5*10-1) 0.8 ± 0.06 1.21 ± 0.12 (7.3*10�4)

28–35 0.6 ± 0.07 (2.9*10�3) 0.96 ± 0.09 1.41 ± 0.15 (6.9*10�3)

36–44 0.42 ± 0.08 (2.4*10�7) 1.18 ± 0.1 2.04 ± 0.83 (4.3*10�2)

45+ 0.24 ± 0.02 (9.9*10�8) 1.06 ± 0.14 1.2 ± 0.63 (8.3*10�1)

SBE rate (SBE/min)

3–5 0.17 ± 0.04 (2.9*10�1) 0.11 ± 0.03 0.54 (1.5*10�2)

6–9 0.18 ± 0.03 (5.4*10�6) 1.02 ± 0.15 1.46 ± 0.19 (7.4*10�2)

10–14 1.21 ± 0.13 (2.0*10�8) 4.26 ± 0.44 11.69 ± 1.27 (3.4*10�10)

15–20 2.83 ± 0.35 (1.4*10�8) 6.36 ± 0.43 14.31 ± 2.03 (4.7*10�7)

21–27 4.58 ± 0.44 (2.4*10�10) 10.3 ± 0.62 26.82 ± 3 (5.5*10�12)

28–35 4.98 ± 0.81 (2.2*10�13) 16.97 ± 1.07 41.1 ± 5.07 (7.9*10-9)

36–44 4.08 ± 0.75 (9.0*10�12) 17.25 ± 1.28 26.21 ± 7.05 (8.7*10�2)

45+ 3.74 ± 0.56 (2.2*10�13) 18.85 ± 1.62 45.76 ± 23.86 (2.0*10�3)

SBE strength (APs per burst)

3–5 6.2 ± 3 (1.0*100) 6.2 ± 3.8 3.5 (7.6*10�1)

6–9 21.6 ± 2.1 (9.4*10�7) 9.5 ± 1 4.6 ± 0.6 (1.2*10�3)

10–14 21.2 ± 2.1 (5.7*10�9) 9 ± 0.8 2.7 ± 0.5 (1.5*10�7)

15–20 15.2 ± 1.9 (2.1*10�3) 8 ± 1.3 2.7 ± 0.3 (1.2*10�2)

21–27 10.1 ± 1 (6.1*10�8) 4.9 ± 0.4 4.4 ± 0.9 (5.4*10�1)

28–35 8.9 ± 0.9 (2.9*10�6) 4 ± 0.5 2.3 ± 0.3 (1.7*10�2)

36–44 6.2 ± 0.6 (2.2*10�1) 5.1 ± 0.6 5.1 ± 1.6 (9.8*10�1)

45+ 5.6 ± 0.8 (4.2*10�2) 3.8 ± 0.5 1.1 ± 0.4 (2.2*10�1)

PFR (Hz)

3–5 12.3 ± 3.8 (9.0*10�1) 13.2 ± 7.3 11.5 (9.2*10�1)

6–9 50.8 ± 4.8 (6.4*10�5) 28.3 ± 2.7 17.4 ± 1.7 (4.9*10�3)

10–14 76.6 ± 5.4 (6.7*10�14) 32.1 ± 2.3 10.3 ± 1.4 (2.1*10�9)

15–20 59.1 ± 6.5 (5.3*10�5) 29.8 ± 3.4 10.9 ± 1.3 (6.4*10�4)

21–27 43.3 ± 4.1 (7.4*10�10) 18.9 ± 1.5 13.7 ± 2 (4.4*10�2)

28–35 42.3 ± 4.4 (2.4*10�8) 15.5 ± 2 8.1 ± 1.2 (1.8*10�2)

36–44 30.5 ± 3.1 (2.7*10�2) 21.4 ± 2.6 6.1 ± 0.4 (1.3*10�1)

45+ 27.5 ± 3.8 (1.5*10�2) 16.4 ± 2.3 5.6 ± 1.7 (2.8*10�1)

Network synchrony

3–5 0.1 ± 0.03 (2.6*10�1) 0.04 ± 0.02 0.08 (3.4*10�1)

6–9 0.39 ± 0.02 (3.3*10�3) 0.29 ± 0.02 0.15 ± 0.02 (3.1*10�4)

10–14 0.52 ± 0.03 (2.5*10�10) 0.31 ± 0.02 0.12 ± 0.02 (1.4*10�10)

15–20 0.53 ± 0.04 (4.6*10�5) 0.35 ± 0.02 0.16 ± 0.03 (1.7*10�5)

Table 2 continued on next page
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strength was not proportional to the increase in SBE rates, in particular in PKC� networks. This

resulted in significantly lower AFRs in PKC� networks (0.6 ± 0.1 Hz, p=2.9*10�3) and significantly

increased AFRs in PKC+ networks (1.4 ± 0.2 Hz, p=6.9*10�3) compared to PKCN networks

(1.0 ± 0.1 Hz) at 28–35 DIV.

Clustering decreases PFR and depolarization during SBEs
The hypothetical set-point of the homeostatic process, however, is not the firing rate per se but the

associated [Ca2+]i (Mattson and Kater, 1987), which is linked to molecular processes involved in

growth and migration. Ca2+ influx increases supra-linearly with increasing membrane depolarization

(Mazzanti et al., 1992). This suggests that the long-term Ca2+ gain is not a linear function of AFR

but depends the depolarization of the membrane potential and thus on the temporal structure of

activity. Depolarization depends on the number and synchronization of excitatory synaptic input,

which becomes maximal during the peak phase of SBEs. Simultaneous intracellular and extracellular

recording showed that higher SBE strength was indeed associated with stronger depolarization dur-

ing SBEs (Okujeni et al., 2017). In PKC� networks, membrane depolarization high above spiking

threshold frequently led to a depolarization block that outlasted the spike burst (Figure 4D top

trace). The fraction of time spent above threshold (�40 mV, Figure 4E) was significantly larger in

neurons of PKC� networks (5.2 ± 0.7%, p=1.7*10�4, N = 30 neurons; mean ± SEM, independent Stu-

dent’s t-test) than in PKCN(1.7 ± 0.5%, N = 24) and PKC+(1.2 ± 0.7%, p=1.2*10�3, N = 24) networks

(14–23 DIV). Depolarization was therefore not necessarily correlated with the individual firing rate of

a neuron and the AFR in the network but rather reflected the network PFR during SBEs.

Homeostatic regulation of growth by long-term Ca2+ influx
To assess how Ca2+ influx depends on PFR, we determined the amplitude of Ca2+ transients in excit-

atory neurons expressing GCaMP under the CAMKII promotor while simultaneously recording SBEs

with MEAs (Figure 5A). Most neurons indeed showed an exponential relation between PFR and the

amplitude of Ca2+ transients (Figure 5B). PKC� networks realized much higher PFRs and had some-

what smaller exponents than PKCN (PKCN0.12 ± 0.02, PKC�0.11 ± 0.01, p=3.2*10�18; Figure 5C,D,

E).

In all network types, PFR increased steeply in early development and later declined concurrently

with SBE strength. Throughout development, however, PFRs were highest in homogeneous net-

works and lowest in clustered networks (Figure 5F, Table 2). Networks with low AFR thus had high

PFR.

Table 2 continued

DIV PKC� PKCN PKC+

21–27 0.51 ± 0.03 (5.8*10�13) 0.26 ± 0.02 0.2 ± 0.02 (4.8*10�2)

28–35 0.57 ± 0.04 (2.0*10�10) 0.24 ± 0.03 0.15 ± 0.03 (7.6*10�2)

36–44 0.53 ± 0.04 (1.3*10�5) 0.3 ± 0.03 0.11 ± 0.03 (1.3*10�1)

45+ 0.45 ± 0.05 (2.5*10�3) 0.26 ± 0.03 0.14 ± 0.11 (3.8*10�1)

N

3–5 7 3 1

6–9 33 40 24

10–14 70 92 47

15–20 53 65 27

21–27 77 121 56

28–35 47 62 29

36–44 38 57 4

45+ 38 36 2

DOI: https://doi.org/10.7554/eLife.47996.020
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Figure 5. PFR-dependent Ca2+ gain. (A) Spiking raster and firing rate averaged across all electrodes within 40 ms bins (synchronized to the frame

times of the Ca2+ measurement) and Ca2+ signal for one neuronal soma at 19 DIV in a PKCN network. Blue ticks: SBE onsets. (B) The amplitude of Ca2+

transients (shown for the PKCN neuron in A and a PKC� neuron at 20 DIV) scaled exponentially (solid line) with PFR. (C) Exponents had a narrow

distribution and were slightly higher in PKCN (p=3.2*10�18) than in PKC� conditions (PKCN: 179 neurons, 5 networks at 19 DIV, 714 SBEs total, mean

and standard deviation of exponent = 0.12 ± 0.02; PKC�: 622 neurons, 4 networks at 20 DIV, 248 SBEs total, exponent = 0.11 ± 0.01). Blue: average

exponent (0.11 ± 0.01) for the entire data set. (D) Ca2+ amplitudes scaled exponentially with PFRs across many neurons in these PKCN and

PKC� networks (E). The data represent median (data points) and standard deviation (error bars) of Ca2+ amplitudes, averaged across neurons for a

given PFR range (bin size 0.1 Hz). (F) PFR assessed during SBEs were higher in homogeneous networks and lower in clustered networks. PFR decreased

after week 3, putatively with the maturation of inhibition. (G) Prediction of the development of average Ca2+ influx per SBE estimated as e0:11�PFR � 1

(Figure 5D). (H) Average Ca2+ influx per minute, estimated from all SBEs in 1 hr recording sessions, suggests that long-term average Ca2+ influx in

different PKC conditions converged at network maturation. Data in G and H are presented as mean ± SEM. Asterisks indicate p-values �0.05 (*), �0.01

(**) and �0.001 (***) tested against PKCN.

DOI: https://doi.org/10.7554/eLife.47996.021

The following source data is available for figure 5:

Source data 1. Source data and Matlab script for Figure 5B–E,F.

DOI: https://doi.org/10.7554/eLife.47996.022
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Knowing the relationship between PFR and Ca2+ influx allowed us to estimate Ca2+ levels during

development based on MEA recordings. We approximated the development of the average Ca2+

influx per SBE (Figure 5G) from their respective PFRs and the exponential Ca2+ gain function with

the average exponent of 0.11. Because higher PFRs, Ca2+ influx per SBE was highest in the more

homogeneous PKC� networks and lowest in clustered PKC+ networks. Yet, in combination with the

systematic increase of SBE rate with clustering, long-term Ca2+ influx converged during late devel-

opment for different PKC conditions, network architectures and AFR (Figure 5H).

Differences in PFR reflect variations of network recruitment during
SBEs
The predominately short-range connectivity observed in clustered PKC+ networks could impair net-

work-wide recruitment (Okujeni et al., 2017) and synchronization of activity. This would decorrelate

inputs, explaining lower PFR and weaker membrane depolarization during SBEs. To test this, we

determined network synchrony as the average spike correlations between all electrode pairs

(Figure 6A). Consistent with the rapid buildup of connectivity, network synchrony increased steeply

between 3–15 DIV and reached stable levels already between 15–21 DIV, even though activity levels,

connectivity and inhibition continued to develop. In line with connectivity estimates, synchronization

was highest in PKC� networks (0.53 ± 0.04, p=4.6*10�5 compared to PKCN), intermediate in PKCN

networks (0.35 ± 0.02) and lowest in PKC+ networks (0.16 ± 0.03, p=1.7*10�5 compared to PKCN),

that is network synchrony indeed decreased with the degree of clustering.

Maturation of inhibition is comparable across PKC conditions
Neural development involves a transition from excitatory to inhibitory GABAergic transmission by

upregulation of the Cl--transporter KCC2. This maturation of inhibition considerably influences

Figure 6. Functional aspects of network maturation. (A) Network synchrony (average spike train correlation for all electrode pairs determined with 30

ms time bins, mean ± SEM) stabilized early in development in all PKC conditions but was significantly higher in homogeneous networks and significantly

lower in clustered networks. Asterisks indicate p-values �0.05 (*), �0.01 (**) and �0.001 (***) tested against PKCN. (B) Inhibition was probed by acute

blockade of GABA-A receptors with PTX. In early networks, PTX had highly variable impact on SBE strength (<14 DIV) but significantly increased it after

21 DIV in all network types. The maturation of inhibition was comparable across PKC conditions. (C) Illustration of the time course of key differentiation

processes shown in detail in Figures 3 and 5 in relation to the development of long-term average Ca2+ influx. Morphological parameters that showed a

similar time course across PKC conditions were normalized to final levels to visualize the relative change during development. The maturation of

inhibition is shown as average relative change in SBE strength upon PTX appliction. Y-axis scaling is linear for all graphs. An offset was added for

visualization.

DOI: https://doi.org/10.7554/eLife.47996.023

The following source data is available for figure 6:

Source data 1. Source data and Matlab script for Figure 6A,B.

DOI: https://doi.org/10.7554/eLife.47996.024
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activity levels and dynamics, while being activity-dependent itself (Fiumelli and Woodin, 2007). Inhi-

bition crucially affects network activity and thus interacts with Ca2+ influx and neuronal morphogene-

sis. Furthermore, since PKC promotes membrane incorporation of KCC2, reducing its activity could

delay the maturation of inhibition and thus indirectly influence activity-dependent network develop-

ment. To test if PKC manipulation altered the maturation of GABAergic inhibition on the network

level, we blocked GABA-A receptor-dependent transmission at different developmental stages (10

mM PTX; Figure 6B) and recorded the resulting change of network activity with MEAs (number of

recorded networks between 8–48 DIV; PKCN: N = 88; PKC�: N = 85; PKC+: N = 48). Acute applica-

tion of PTX had variable impact on SBE strength up to 14 DIV (PKCN: +76 ± 31%, p=4.0*10�1,

N = 33; PKC�: +62 ± 28%, p=3.6*10�3, N = 33; PKC+: +120 ± 45%, p=2.0*10�3, N = 24;

mean ± SEM, paired Student’s t-test) but significantly amplified bursting after 21 DIV (PKCN: +785 ±

159%, p=1.4*10�5, N = 31; PKC�: +455 ± 103%, p=3.8*10�10, N = 29; PKC+: +524 ± 188%,

p=3.7*10�2, N = 11). The developmental time course of the average PTX impact was comparable

across PKC conditions, indicating a comparable maturation of GABAergic inhibition. We therefore

concluded that the observed alterations in network dynamics were the result of differences in net-

work architecture rather than the result of differences in inhibition levels.

Discussion
Neuronal network architecture is not based on a genetic blueprint alone but is shaped by predefined

rules of activity-dependent self-organization (Spitzer, 2006). Herein, neuronal migration

(Komuro and Kumada, 2005; Zheng and Poo, 2007) and neurite outgrowth (Kater et al., 1988)

are regulated by activity-related changes of [Ca2+]i. Indeed, cell motility and growth is optimal within

a narrow [Ca2+] range and diminished otherwise, which led to the hypothesis that network connectiv-

ity and activity evolve under homeostatic control with the [Ca2+]i as set-point parameter (Kater and

Mills, 1991). However, basal cytosolic [Ca2+] is very low due to efficient Ca2+-buffering and extrusion

(Kater and Mills, 1991; Zündorf and Reiser, 2011) and remains relatively constant during develop-

ment (Maravall et al., 2000). Free Ca2+ for the regulation of growth is thus essentially determined

by transient [Ca2+]i elevations induced by synaptic input and spike activity. Accordingly, the develop-

mentally attained spike rate was proposed to reflect the Ca2+ set-point of growth (van Ooyen et al.,

1995).

The overall capacity for neurite growth ultimately relies on gene expression for cytoskeletal build-

ing blocks, which crucially depends on nuclear [Ca2+] (Berridge et al., 2000). Somatic membrane

depolarization increases Ca2+ influx close to the nucleus (Greer and Greenberg, 2008). In this con-

text, intracellular stores like the endoplasmic reticulum can accumulate Ca2+ over longer periods of

time and then considerably amplify Ca2+ signals by additional Ca2+-triggered release

(Berridge et al., 2000; Pivovarova et al., 2002). This effectively acts as a low-pass filter and ampli-

fier for Ca2+-signaling to the nucleus – modulating the expression of cytoskeletal proteins. Support-

ing this link, neurite tree morphology and size in different neuron types appear to depend on the

expression of specific Ca2+-binding proteins that determine nuclear Ca2+ buffering capacity

(Mauceri et al., 2015). In contrast to nuclear Ca2+ levels, local Ca2+ transients in neurites direct

migration and growth towards target neurons (Guan et al., 2007; Henley and Poo, 2004;

Hutchins and Kalil, 2008), which promotes neurite overlap and synaptic connectivity

(Shepherd et al., 2005; Stepanyants et al., 2002). Though local Ca2+ influx activating PKC modu-

lates cytoskeletal turnover involved in guided outgrowth and migration (Fogh et al., 2014;

Kabir et al., 2001; Larsson, 2006), PKC may not be essential for constitutive neurite outgrowth

(Flynn, 2013; Letourneau et al., 1987). We therefore speculate that local Ca2+ transients and PKC

activity regulate cytoskeletal motility to direct growth processes, whereas long-term accumulation of

Ca2+ in intracellular stores modulates signaling to the nucleus, transcription levels and thus the over-

all availability of cytoskeletal building blocks. This predicts a cessation of growth at a target long-

term average Ca2+ influx that is independent from PKC activity.

Migration contributes to homeostatic network development
Extending on growth models for homeostatic network formation based on activity-dependent neu-

rite outgrowth, neuronal migration could likewise contribute to the regulation of connectivity and

activity in developing networks. Eglen et al. (2000) already added migration implemented as
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repulsion between neurons to the neurite growth model by van Ooyen et al. (1995) to generate

regular neuronal arrangements as observed in dense retinal cell mosaics. We showed that activity-

dependent attraction between migrating neurons leads to different degrees of modularity by the

interaction of clustering with homeostatic regulation of neurite growth. While it is plausible to

assume that neurons with small neurite fields and little connectivity may move, this seems less realis-

tic once they are enmeshed in the network. In line with this, cell migration relies on localized Ca2+

transients in leading neurites and the resulting Ca2+ gradients across the cell (Guan et al.,

2007) but ceases with increasing neuronal activity and frequency of Ca2+ transients (Bando et al.,

2016). We approximated this in the model by allowing attraction while input was below the set-

point but omitted repulsion with input above the set-point. In consequence, cell migration ended

during the rapid increase of activity during development, similar to peaks in PFR and Ca2+ influx,

and cessation of clustering around 10–15 DIV (Figure 3B, Figure 5F,H). Moreover, with rapid transi-

tions to high network activity once neurite fields in the network overlapped sufficiently, the model

showed a transient overshoot of connectivity. A more gradual build-up of activity diminished the

average overshoot and pruning when the slope of the sigmoid mapping input to firing rate was

reduced (Figure 2—figure supplement 2), in agreement with reports of varying degrees of growth

overshoot or even saturating growth during development in vitro (Ito et al., 2013; Kondo et al.,

2017; van Pelt et al., 2004). Neurons that connected to the network early in development, how-

ever, still showed an overshoot of connectivity, in agreement with Kossio et al. (2018).

Average Ca2+ influx converges for different network architectures
Homeostatic regulation of growth processes by Ca2+ was proposed to guide network development

towards target firing rates (van Ooyen et al., 1995), which implies a quasi-linear relationship

between Ca2+ influx and AFR. In our model, connectivity, input activity and firing rates eventually

converged to the same levels for different migration conditions and network architectures. In appar-

ent conflict with the simulation, we found that different network architectures stabilized in vitro after

about 3 weeks but with different AFR. Consistent with theoretical studies predicting that network

modularity promotes spontaneous activity (Kaiser and Hilgetag, 2010; Klinshov et al., 2014;

Mazzucato et al., 2015), SBE rates and AFRs increased with the level of clustering. Clustering, how-

ever, reduced network synchronization, lowered PFRs and weakened depolarization during SBEs.

This strongly affected Ca2+-transients: Ca2+ peak amplitude increased exponentially with PFR during

SBEs, in agreement with reports of Ca2+ currents through voltage-gated Ca2+ channels increasing

exponentially with depolarization (Mayer et al., 1987; Mazzanti et al., 1992). Because of the oppo-

site modulation of SBE rates and PFRs with clustering, however, the estimated long-term Ca2+-gain

converged for different network architectures during development, despite different AFR. The low

spike rates during inter-burst intervals had negligible influence on Ca2+ influx.

To account for the supra-linear increase of Ca2+ with PFR we would need to use spiking neurons

in our model. In addition, Ca2+ influx would need to depend on the membrane potential, instead of

on the average spike rate of a neuron as in extensions of the growth model with spiking dynamics

(Abbott and Rohrkemper, 2007; Kossio et al., 2018). To accelerate the simulation of several weeks

of network development, these studies initially increased the neurite growth rate and thus effectively

decreased the temporal resolution until the networks approached the equilibrium state. The meso-

scale structures forming in our networks, however, crucially depended on the continuous feedback

between migration and neurite growth and activity. Low temporal resolution in the simulation would

amount to a large decrease of the feedback speed, which leads to a random walk of neurons and

more homogeneous network structures without clustering.

Interaction between growth and migration shapes network modularity
Increasing the rate of activity-dependent migration in the model promoted clustering, decreased

neurite fields and accelerated the development of spontaneous activity by more rapidly increasing

neurite overlap and connectivity. This resulted in network architectures covering a continuous gradi-

ent from homogeneous via partially clustered with scattered neurons to fully clustered networks with

corresponding degrees of modularity. This was remarkably similar to the development in vitro,

where PKC activity promoted clustering and SBE rates, and decreased neurite density. The model
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suggests that different network architectures can arise spontaneously based on simple rules regulat-

ing connectivity to achieve a target level of [Ca2+]i.

Among the grand average developmental time courses of the most relevant aspects across all

conditions, long-term Ca2+ influx was the first property to peak while the impact of inhibition on net-

work activity only started to increase when Ca2+ influx stabilized (Figure 6C).

Growth and migration shape the framework for synaptic connectivity
In our networks, synapse densities scaled approximately quadratically with the average dendrite size

and thus negatively with the degree of clustering. This could be explained by the co-modulation of

axonal and dendritic densities in the same direction (Okujeni et al., 2017), which multiplicatively

increases the number of axo-dendritic contact sites, rather than their modulation in opposite direc-

tions as used in Tetzlaff et al. (2010). Such potential synapses realize into functional synapses with

approximately constant probability in vivo (Stepanyants et al., 2002). The consistent relation of

synapse density and dendrite size across developmental stages and PKC conditions (Figure 3G) sug-

gests that PKC manipulation did not critically impair synaptogenesis. Our estimates of maximum

connectivity suggest a saturation of connectivity towards 10% in clustered and 20% in homogeneous

networks, in the range of values reported for cultured (Marom and Shahaf, 2002) and native cortical

networks (Feldmeyer, 2012).

The mesoscale network architecture formed early thus appears to determine the probabilistic

framework for connectivity. PKC activity additionally influences synaptic plasticity, yet without gen-

eral directionality towards LTP or LTD (Chung et al., 2000; Ferreira et al., 2011; Lan et al., 2001;

Boehm et al., 2006; ; Scott et al., 2007). Our model indirectly accommodates this influence. For

example, synaptic depression, corresponding to reducing the synaptic weight factor s, would extend

the outgrowth phase to increase connectivity and input necessary to reach the target level of [Ca2+]i.

Conceptually, this would be the inverse of the homeostatic scaling of synaptic weights with the level

of connectivity (Barral and D Reyes, 2016; Okujeni et al., 2017; Wilson et al., 2007). This contribu-

tion of synaptic plasticity to the activity-dependent fine-tuning of connectivity likely gains importance

with increasing developmental age and structural complexity of a network.

Conclusion
Based on our findings, we propose that interactions between neurite growth and neuronal migration

affect the balance between local and global connectivity, thereby shaping network modularity. Cell

migration defects were also proposed as a pathogenic mechanism involved in several neurological

conditions associated with altered size and spacing of mini-columns in the cortex, aberrant neurite

growth and hyper- or hypo-connectivity (Catts et al., 2013; Courchesne and Pierce, 2005; Di Rosa

et al., 2009; Donovan and Basson, 2017; Fan et al., 2013; McKavanagh et al., 2015), suggesting

that the mesoscale network organization could be a critical factor. The associated degree of modu-

larity thus appears to have crucial impact on activity generation, propagation and perpetuation, neu-

ral synchronization as well as network function and dysfunction.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation

Source or
reference Identifiers Additional information

Strain, strain
background
(Rattus norvegicus
domestica)

wildtype wistar
rat pups

CEMT, University,
Freiburg

Genetic
reagent

AAV9.CAG.GCaM
P6s.WPRE.SV40

Penn Vector Core,
University of
Pennsylvania

V3296TI-R titer 1e11

Antibody anti-MAP2
(chicken polyclonal)

Abcam, Cambridge, UK ab92434 RRID:
AB_2138147

1:500

Continued on next page
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Continued

Reagent type (species)
or resource Designation

Source or
reference Identifiers Additional information

Antibody anti-NeuN
(rabbit polyclonal)

Abcam, Cambridge, UK ab128886
RRID:AB_2744676

1:500

Antibody anti-Neurofilament
(mouse monoclonal)

Abcam, Cambridge, UK ab24571
RRID:AB_448148

1:10

Antibody anti-Synapsin
(mouse monoclonal)

Synaptic Systems
GmbH, Germany

106001
RRID:AB_887805

1:200

Antibody anti-chicken-
Cy2 (goat polyclonal)

Abcam, Cambridge, UK ab6960
RRID:AB_955003

1:200

Antibody anti-rabbit-Cy3
(goat polyclonal)

Abcam, Cambridge, UK ab6939
RRID:AB_955021

1:200

Antibody anti-mouse-Cy5
(goat polyclonal)

Abcam, Cambridge, UK ab6563
RRID:AB_955068

1:200

Chemical
compound, drug

4,6-diamidino-2-
phenyindole,
diclactate (DAPI)

Sigma-Aldrich, Germany D9562 1:5000

Chemical
compound, drug

Gödecke6976 Tocris Bioscience,
Bristol, UK

2253 1 mM

Chemical
compound, drug

Phorbol-12-
Myristate-13-
Acetate (PMA)

Sigma-Aldrich,
Munich, Germany

P1585 1 mM

Chemical
compound, drug

Picrotoxin Tocris Bioscience,
Bristol, UK

1128 10 mM

Chemical
compound, drug

DMSO Sigma-Aldrich,
Munich, Germany

D8418 0.1%

Chemical
compound, drug

DNase (type IV) Sigma-Aldrich,
Munich, Germany

D5025 50 g/ml

Chemical
compound, drug

minimal
essential medium

Invitrogen,
Karlsruhe, Germany

21090055

Chemical
compound, drug

horse serum
(heat-inactivated)

Invitrogen,
Karlsruhe, Germany

26050088 20%

Chemical
compound, drug

phosphate
buffered saline (PBS)

Invitrogen,
Karlsruhe, Germany

21600010

Chemical
compound, drug

glucose Sigma-Aldrich,
Munich, Germany

G7528 20 mM

Chemical
compound, drug

L-glutamine Invitrogen,
Karlsruhe, Germany

25030024 0.5 mM

Chemical
compound, drug

gentamycin Invitrogen,
Karlsruhe, Germany

15750060 20 mg/ml

Chemical
compound, drug

potassium
D-gluconate

Sigma-Aldrich,
Munich, Germany

G4500 125 mM

Chemical
compound, drug

EGTA Carl Roth,
Karlsruhe, Germany

3054 5 mM

Chemical
compound, drug

KCl Sigma-Aldrich,
Munich, Germany

P4504 20 mM

Chemical
compound, drug

Na2-ATP Carl Roth, Karlsruhe,
Germany

K054 2 mM

Chemical
compound, drug

Hepes Carl Roth, Karlsruhe,
Germany

9105 10 mM

Chemical
compound, drug

CaCl2 Sigma-Aldrich,
Munich, Germany

C3881 0.5 mM

Chemical
compound, drug

KOH Sigma-Aldrich,
Munich, Germany

P4504

Continued on next page
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Continued

Reagent type (species)
or resource Designation

Source or
reference Identifiers Additional information

Chemical
compound, drug

MgCl2 Sigma-Aldrich,
Munich, Germany

MO250 2 mM

Software MC Rack software Multi Channel
Systems, Germany

versions 3.3–4.5
RRID:SCR_014955

Software Spike2 software Cambridge
Electronics Design Ltd.,
Cambridge, UK.

RRID:SCR_000903

Software Zen Carl Zeiss, Jena,
Germany

RRID:SCR_013672

Software MEA-Tools Egert et al., 2002
(PMID 12084562)

version 2.8

Software FIND toolbox Meier et al., 2008
(PMID 18692360)

Software ImageJ Schneider et al., 2012
(PMID 22930834)

RRID:SCR_003070

Software Matlab Mathworks,
Natick, MA, USA

versions
2014a – 2017a

Network growth model
We adopted and modified the model of activity-dependent network growth introduced by

van Ooyen et al. (1995). All simulations were carried out with Matlab (version 2017a, Mathworks,

Natick, MA, USA; code available at doi 10.5281/zenodo.3459678).

Networks were initialized by randomly seeding 500 neurons onto a torus surface of 1 mm2 to

avoid boundary effects. Newly introduced neurons conflicting with the minimal neuron distance of

12 mm, approximately the size of cell bodies, were discarded and the procedure continued until the

required neuron density was obtained.

Neurite fields were modeled as circular fields, centered at cell bodies and were initiated with a

radius of 12 mm. Connectivity between neurons W was nonsymmetrical and defined as the area A of

neurite field overlap normalized by the area of the presynaptic neuron, which reflected the probabil-

ity that dendrites of neuron i overlapped with the axons of presynaptic neuron k.

Wki ¼ s
Ai \Ak

Ak

The gain s = 0.1 was chosen such that it produced networks with an intermediate degree of neu-

rite field overlap (for s = 1, neurons would only connect to one or a few other neurons). Instead of

simulating network growth with dimensionless equations (van Ooyen et al., 1995), we adjusted the

time steps such that we could compare the dynamics to realistic developmental timescales. We esti-

mated the loop-time across which activity is integrated based on the time constants for the accumu-

lation of Ca2+ in intracellular stores to be in the order of minutes (Pivovarova et al., 2002) and

therefore set the temporal resolution of the simulation to 1 min.

Since inhibition is not explicitly relevant to the questions addressed here, we adapted the model

for excitatory networks only. Long-term integration of activity in neurons was described by their

state variable xi (ranging between 0 and 1), which increased with input from presynaptic neurons

contributing with their firing rate f xkð Þ times the synaptic strength Wki:

dxi

dt
¼�

xi

t
þ 1� xið Þ

XN

k

Wkif xkð Þ

where dt= t= 1 min was the time resolution of the simulation, corresponding to the time constant

of long-term integration of activity. A sigmoidal transfer function for the depolarization state xi

determined the firing rate f xð Þ.
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f xið Þ ¼
1

1þ e ��xið Þ=a

where � = 0.5 reflected the firing threshold and a = 0.12 determined the steepness of the function

that crucially impacted on the developmental overshoot of connectivity and subsequent pruning of

neurites. We chose a slightly shallower function than the original model by Van Ooyen (a = 0.1) to

accommodate the degree of overshoot and pruning for cultured networks in recent reports

(Ito et al., 2013; Kondo et al., 2017; van Pelt et al., 2004).

As in the original model by Van Ooyen, neurons were modeled to grow neurites and thereby

increase input activity and firing rate to reach a target [Ca2+]i. If this Ca2+ level was surpassed, neu-

rites were pruned, in turn. These bidirectional changes in the radius R of circular neurite fields, were

determined by a sigmoidal function of the firing rate of a neuron multiplied with a fixed growth

rate �growth.

dRi

dt
¼ 1�

2

1þ e
"�f xið Þð Þ

b

�growth

where " = 0.6 defined the target level for activity or [Ca2+]i, b = 0.1 determined the steepness of

the sigmoidal function and �growth was the constant factor for the growth rate of neurite fields. We

assumed that connectivity is mainly determined by the density of neurites rather than their maximal

length. Given the homogeneous density of the neurite field used in the model, however, its radial

expansion must be considerably slower than the average elongation rates of individual dendrites,

which were reported to be 12 mm/day for isolated neurons in the first week in vitro (Mattson and

Kater, 1988). We therefore set �growth = 4 mm per day.

In our model, neurons additionally migrated in the direction of presynaptic inputs, thus mimicking

the guidance of migration by leading processes (Flynn, 2013; Guan et al., 2007) and consistent

with the positive correlation between the rate of soma translocation and the amplitude and fre-

quency of Ca2+ transients (Komuro and Kumada, 2005; Zheng and Poo, 2007). We assumed syn-

aptic activity in leading neurites as an important source of input, however, did not preclude contact-

mediated Ca2+ signaling (Sheng et al., 2013), which may contribute in regulating migration early in

development when activity levels are low. Changes in the spatial position of neuronal cell bodies S

were caused by migration impulses that depended on [Ca2+]i and, thus, on the firing rate f and a var-

iable factor for the maximal migration rate �migration.

dSi

dt
¼ ef xið Þ�migration

where �migration ranged 0-300 mm/day and m = -15 determined how strong migration impulses

were diminished as neurons reached their target Ca2+ level. We chose m to result in a negligible

migration impulse at the target [Ca2+]i. This mimicked a realistic migration process in which neurons

are guided by local Ca2+ transients in leading neurites and the resulting Ca2+ gradients across the

cell (Guan et al., 2007), but at the same time cease migrating when spiking-based Ca2+ transients

start to dominate (Bando et al., 2016). The migration speed of postnatal neurons in vitro indeed

decays approximately exponentially during development from 0.7 mm/min (1008 mm/day) at 0 DIV to

~0.05 mm/min (72 mm/day) at 12 DIV on Matrigel-coated substrates and with slower initial migration

speeds of 0.1 mm/min (144 mm/day) on PEI coated substrates (Sun et al., 2011), as used in this

study. In the model we varied migration rates within this range.

The direction of movement was determined involving a directed movement component and a

random movement component to match erratic movements observed in time lapse videos. Move-

ment direction of the directed component was determined by the vector sum vdir of direction vectors

vik that pointed to presynaptic neurons and were weighted by their input.

vdir ¼�
XN

k

Wkif xkð Þvik

To obtain the final direction vector V , directed and the random component (updated every 10
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min) were weighted (p = 0.9) and summed. The random directional component was necessary to

mimic the erratic movement patterns observed in in vitro time lapse studies.

V ¼
vdir

vdirk k
1� pð Þþ

vrand

vrandk k
p

New neuronal cell body positions P were determined by multiplying the normalized final direction

vector with the migration impulse.

P x;yð Þnew¼ P x;yð Þoldþ
v

vk k
�
dSi

dt

In addition, neurons were set to jitter randomly around their current position by maximally their

cell body radius to allow neurons to pass each other in the 2D simulation, which prevented unrealis-

tic chains of neurons. This positional jitter decreased according to the exponential decay function

modulating migration in dependence of [Ca2+]i such that neurons stopped moving when reaching

the target value. It was reset after each time step. Movements violating the minimal possible inter-

soma distance (12 mm) were discarded.

To assess the modularity of a network, we calculated the size of the largest subnetwork (the giant

component) remaining after removing defined fractions of randomly selected neurons from the net-

work as its fraction in the remaining total population. For each network, the results were averaged

across 1000 repetitions of the procedure. We quantified the degree of modularity Q in the final net-

works based on the connectivity matrix using the Louvain method (Blondel et al., 2008) imple-

mented for MATLAB by Mika Rubinov with gamma = 1 (Rubinov and Sporns, 2010). Q increases

towards one with increasing modularity. Random networks yield Q = 0.

Cell culture techniques
Primary cortical cell cultures were prepared on different MEAs (Multi Channel Systems, Reutlingen,

Germany (MCS); electrode grid layout/pitch distance (mm): 8 � 8/200; 6 � 10/500; 16 � 16/200) and

standard coverslips (12 mm diameter, Carl Roth, Karlsruhe, Germany). All substrates were coated

with polyethylene-imine (150 ml 0.2% aqueous solution; Sigma-Aldrich, Munich, Germany) for cell

adhesion. Cell cultures were prepared following (Shahaf and Marom, 2001). Cortical tissue was pre-

pared from brains of neonatal Wistar rat pups of either sex, minced with a scalpel and transferred

into phosphate buffered saline (Invitrogen, Karlsruhe, Germany). Tissue pieces were incubated with

trypsin (isozyme mixture, 0.05%, 37˚C, 15 min; Invitrogen). proteolysis was stopped with horse serum

(20%; Invitrogen). DNase (type IV, 50 mg/ml; Sigma-Aldrich) was added to eliminate cell trapping in

DNA strands if needed. Cells were dissociated by trituration with a serological pipette, centrifuged

(5 min, 617 g) and resuspended in growth medium (Minimal Essential Medium supplemented with

5% heat-inactivated horse serum, 0.5–1 mM L-glutamine and 20 mg/ml gentamycin (all from Invitro-

gen), 20 mM glucose (Sigma); 1 ml/pup). Cells were counted with an automated cell counter (CASY,

Schärfe Systems, Reutlingen, Germany) and seeded with ~300.000 cells per network (~1 cm2). Sparse

cultures for morphological analysis were seeded with ~37.500 cells per network. Networks devel-

oped in 1 ml growth medium in a humidified incubator (5% CO2. 37˚C). Animal handling and tissue

preparation were done in accordance with the guidelines for animal research at the University of

Freiburg and approved by the Regierungspräsidium Freiburg (permits X-12/08D, X-16/07A, X-15/

01H, X-18/04K).

PKC modulation and disinhibition
PKC inhibitor Gödecke6976 (Gö6976, 1 mM; Tocris Bioscience, Bristol, UK) and PKC agonist Phor-

bol-12-Myristate-13-Acetate (PMA, 1 mM; Sigma-Aldrich) were dissolved in dimethyl sulfoxide

(DMSO, Sigma-Aldrich) and added to the culture medium directly after cell preparation. The maxi-

mal concentration of DMSO in the growth medium was 0.1%. GABAergic transmission was probed

by acute application of the non-competitive GABA-A receptor antagonist Picrotoxin (PTX; 10 mM;

Tocris Bioscience) during electrophysiological recordings. Recordings of spontaneous activity were

started 10 min after application of PTX for 1 hr at different DIV. Changes of spike activity were calcu-

lated as mean burst strength across 1 hr with PTX vs. 1 hr baseline recording before application.

Networks exposed to PTX were discarded.
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Morphological analyses
The development of neuronal clustering, dendrite outgrowth and synapse densities was analyzed in

sparse networks of ~100 neurons/mm2 that were more accessible for quantitative morphological

analysis. Clustering of neuronal cell bodies was analyzed based on immunocytochemical staining of

neuronal nuclei (NeuN; Rabbit-anti-NeuN, 1:500; Abcam, Cambridge, UK, RRID:AB_2744676) and of

all cellular nuclei (DAPI; Sigma-Aldrich). Neuronal nuclei were detected based on NeuN and DAPI

colocalization and evaluated for their degree of clustering using a modified Clark-Evans clustering

index (CI) that accounts for cell body diameter as minimal possible inter-neuron distance (Clark and

Evans, 1954; Galli-Resta et al., 1999; Okujeni et al., 2017). CI was calculated as the ratio between

the average nearest neighbor distance in a network and the expected average nearest neighbor dis-

tance for random networks. Note that the degree of clustering increases with decreasing CIs below

1. CIs above one indicate grid-like cell body arrangements. Dendrite morphology was examined by

immunocytochemical staining of microtubule-associated protein 2 (MAP2, Chicken-anti-MAP2;

1:500; Abcam, RRID:AB_2138147). To quantify the total length of dendrites, MAP2 images taken at

20-fold magnification (0.323 mm/pixel) were processed by median filtering (3 � 3 kernel), back-

ground subtraction (lowest value in 7 � 7 pixel field), contrast adjustment (saturation at highest and

lowest 10%), thresholding and skeletonization of the resulting binary image, similarly to Pani et al.

(2014). Synapses were detected based on an immunohistological staining of the presynaptic protein

synapsin (Mouse-anti-Synapsin; 1:200; Synaptic Systems GmbH, Göttingen, Germany, RRID:AB_

887805). Synaptic punctae were then determined by local maximum detection in high-pass filtered

and contrast-enhanced images. We analyzed two networks per condition and age taken from images

covering approximately 3.5 mm2. In each image, we typically analyzed 10–20 regions of interest with

varying size (could overlap) and including dense and sparse network regions. The following measures

were determined as the slope of the linear regression through data pairs from all regions of interest:

Dendrite size, total length of dendrite stretches relative to the number of neurons; Synapse density:

average number of synapses relative to the number of neurons; Dendritic occupancy: average num-

ber of synapses relative to the total length of dendrite stretches; Neuron density, average number

of neurons per area; Maximum connectivity, ratio between the number of synapses per neuron and

the total number of neurons in the network (extrapolated for the entire network area of ~1.1 cm2

given the image neuron density). All morphometric analyses were done with Matlab (versions 2014a

– 2017a). Results are presented as mean ± standard error of the mean (SEM) and significance was

assessed with a two-tailed independent Student’s t-test. Network architectures of dense networks

(600–800 neurons/mm2) were characterized qualitatively at 22 DIV with antibodies against MAP2

and phosphorylated neurofilament 200 kD (Rabbit-anti-neurofilament; 1:10; Abcam, RRID:AB_

448148) to visualize dendritic and axonal compartments, respectively.

Extracellular recording and analyses
MEA recordings (MEA1060-BC and USB-MEA256-Systems; MCS, 25 kHz sampling frequency, 12 bit

AD-conversion; MCRack software versions 3.3–4.5, RRID:SCR_014955) of multi-unit spike activity

from individual networks were performed under culture conditions (37˚C, 5% CO2) and lasted at

least 1 hr. Action potentials were detected with a threshold set to �5 standard deviations of the

high-pass filtered baseline signal (Butterworth 2nd order high pass filter, 200 Hz cut-off; detection

dead time 2 ms).

Raw data from MEA recordings was imported into Matlab using MEA-Tools (Egert et al., 2002)

and the FIND toolbox (Meier et al., 2008). Spontaneous SBEs were detected as follows: Series of

spikes with consecutive inter-spike intervals smaller than a threshold value (100 ms) were detected

as bursts. SBEs were defined from periods in which a predefined fraction of electrodes showed

simultaneous bursts (10% of all sites detecting spikes but minimally 3 and maximally 20 sites to keep

criteria comparable between small and large MEAs). To account for buildup and fading phases of

SBEs, spikes within a time windows of 25 ms prior to and following this SBE core were included into

the SBE. Network activity was characterized by the following parameters: SBE rate in the recording

period, SBE strength as the average number of APs per SBE divided by the number of electrodes

with spikes at any time during the recording session (active sites); AFR as the grand average firing

rate per active site during the recording session. PFR was calculated per SBE as the peak of the net-

work-wide firing rate profile (box car filter applied to the global spike train; 0.2 s kernel width)
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divided by the number of active sites. Network synchrony was determined as average spike train cor-

relation (30 ms bin width) between pairs of active sites.

For the developmental analysis of network activity, recordings from many networks were pooled

within time windows of increasing width to account for the slowing development of activity dynamics

as networks matured (Table 2). Numerical results are presented as mean ± SEM and significance was

assessed with a two-tailed independent Student’s t-test.

For acute experiments with PTX, we defined as control period the last 1 hr section before applica-

tion of PTX and excluded the first 10 min after application from the analysis to avoid transients due

to handling. To determine the time course of the maturation of inhibition, changes in SBE strength

following PTX application were quantified relative to the control period for different DIV. For visuali-

zation, trend lines were calculated with a sliding average (±7 DIV).

Patch-clamp recording and analysis
Patch pipettes (6.3 ± 1.4 MW) were filled with a intracellular solution, containing potassium D-gluco-

nate (125 mM; Sigma-Aldrich), KCl (20 mM; Sigma-Aldrich), EGTA (5 mM; Carl Roth), Na2-ATP (2

mM; Carl Roth), HEPES (10 mM; Carl Roth), MgCl2 (2 mM; Sigma-Aldrich) and CaCl2 (0.5 mM;

Sigma-Aldrich), adjusted with KOH to pH 7.4, and with sucrose to 320 mOsm. Patch-clamp record-

ings in whole-cell configuration were conducted at 37˚C (PH01 perfusion heating, MCS; TC02 tem-

perature controller, MCS) and perfusion with carbogenated (95% O2 and 5% CO2; Air Liquide,

Düsseldorf, Germany) culture medium without horse serum and without Gö6976 and PMA. Data

were sampled at 25 kHz (Micro1401 amplifier and Spike2 software; Cambridge Electronics Design

Ltd., Cambridge, UK (CED), RRID:SCR_000903). Up to four neurons were recorded sequentially per

network for about 30 min each.

Data sets of at least 20 min were analyzed with Matlab. Membrane potential distributions for neu-

rons with resting potentials between �64 ± 4 mV were determined for the entire recording period

and averaged across neurons of the same PKC condition.

Calcium measurements and analyses
To assess neuronal Ca2+ dynamics, cultures were transfected with AAV (=Adeno Associated Virus)

vectors coding for GCaMP6s (AAV9.CAG.GCaMP6s.WPRE.SV40, titer:~1011; Penn Vector Core,

School of Medicine Gene Therapy Program, University of Pennsylvania) under control of the CAG

promotor after 10–14 days in vitro. Ca2+ dynamics were imaged at 20x magnification and 25 Hz

frame rate (Examiner Z1 microscope, Zen software 2015, Carl Zeiss, Jena, Germany). Somatic

regions were delineated by threshold detection in maximum projections of the Ca2+-movie with

ImageJ (Schneider et al., 2012). The resulting regions of interest were corrected manually. Changes

in the Ca2+ signal DF/F were calculated as relative change to baseline following (Jia et al., 2011).

For each SBE, the peak of the Ca2+ signal (DF/F) within 200 ms after onset was related to the PFR

determined from simultaneous MEA recordings. The exponential scaling between DF/F and PFR was

assessed by fitting with the function DF=F ¼ ek�PFR � 1 using the Matlab function fminsearch. Ca2+

data were derived from five PKCN and four PKC� networks at 19–20 DIV in recordings of ~30 min

and analyzed with Matlab. Ca2+ influx during SBEs was estimated as e0:11�PFR � 1 to match the scaling

found experimentally. Long-term Ca2+ influx was approximated as the Ca2+ influx integrated over all

SBEs per hour. All results are presented as mean ± SEM. Significance was tested with a two-tailed

independent Student’s t-test.
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