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Enhancing message propagation is critical for solving the problem of node classification in sparse graph with few labels. )e recently
popularized Graph Convolutional Network (GCN) lacks the ability to propagate messages effectively to distant nodes because of over-
smoothing. Besides, the GCN with numerous trainable parameters suffers from overfitting when the labeled nodes are scarce. )is
article addresses the problem via building GCN on Enhanced Message-Passing Graph (EMPG). )e key idea is that node classification
can benefit from various variants of the input graph that can propagate messages more efficiently, based on the assumption that the
structure of each variant is reasonable whenmore unlabeled nodes are labeled properly. Specifically, the proposedmethod first maps the
nodes to a latent space through graph embedding that captures the structural information of the input graph. Considering the node
attributes together, the proposedmethod constructs the EMPGby adding connections between the nodes in close proximity in the latent
space.With the help of the added connections, the EMPG allows a node to propagate its message to the right nodes at long distances, so
that the GCN built on the EMPG need not stack multiple layers. As a result, over-smoothing is avoided. However, dense connections
may cause message propagation saturation and lead to overfitting. Seeing the EMPG as an accumulation of some potential variants of
the original graph, the proposed method utilizes dropout to extract a group of variants from the EMPG and then builds multichannel
GCNs on them. )e multichannel features learned from different dropout EMPGs are aggregated to compute the final prediction
jointly. )e proposed method is flexible, as a brod range of GCNs can be incorporated easily. Additionally, it is efficient and robust.
Experimental results demonstrate that the proposed method yields improvements in node classification.

1. Introduction

Graphs are a pervasive data structure in different disciplines.
A problem that comes up often but has remained largely
unaddressed is node classification, especially when the
graphs are sparse and with few labels. )e aim of node
classification is to infer the category of the unlabeled nodes
by using the given labeled nodes and the graph structure. A
large number of methods for semi-supervised node classi-
fication have been proposed. )e earlier work was done by
using structural information only [1–6]. Recently, attention
has shifted to Graph Convolutional Networks (GCNs)
[7–14]. )e GCNs model graph structure and node attribute
jointly, and have been very promising.

Most GCNs work by a message-passing scheme. A
Graph Convolutional Layer (GCL) can be viewed as a
message-passing step. In a layer, each node sends its feature

representation, i.e., the “message,” to its neighbors, and then
updates its feature representation by aggregating all “mes-
sages” received from its neighbors. Different aggregation and
update functions lead to different GCNs, which yield dif-
ferent results. Due to this flexibility, the class of message-
passing networks has been widely used in various applica-
tions, including but not limited to publication citation
networks [7–12], social networks [15], applied chemistry
[16], natural language processing [17], and brain-computer
interface [18], and have recently achieved great success.

Despite the fruitful progress, the limitation of GCNs has
also been revealed as the study of GCN advances. For ex-
ample, the first GCN [7], which updates node features by
aggregating messages from one-hop neighbors, lacks the
ability to receive long-range messages. )is suggests it only
works on the graphs where the nodes from the same class
tend to be connected directly. However, in many practical
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graph data, the nodes with the same label may be far apart
from each other in the graph, even though they possess high
structural similarity. )at is, the graphs do not or only partly
satisfy the homophily assumption [19]. As shown by the toy
example plotted in the upper left corner of Figure 1, the articles
on the same topic but published by independent research
groups may be separated in the citation network, where the
node color represents the article label. In cases like this, the
performance of the GCNs that do not have the means to
capture long-range messages drops quickly, especially where
the labeled nodes are scarce and the graph is sparse [20, 21]. It is
therefore important to enhance message propagation to realize
information exchange between long-distance nodes.

However, there are significant challenges facing re-
searchers when addressing the problem. One straightfor-
ward way to expand message propagation is to stack more
layers to build deep GCNs. )eoretically, a k-layer network
can propagate messages from a node to the nodes at k-hop
distance. Unfortunately, stacking more layers tends to cause
the problem called over-smoothing [22], because repeatedly
applying Laplacian smoothing in a deep network would mix
the node features and make them indistinguishable. Besides,
deep networks may cause over-crashing [23]. Furthermore,
deep networks are more difficult to train.

Another way to enhance message propagation is to add
connections. To mitigate over-smoothing in deep networks,
some researchers introduced jumping connections or dense
connections to realize multi-hop message propagation
[24, 25]. On the other hand, some researchers attempted to
combine dense connections with shallow GCNs
[8, 13, 26–28]. However, too dense connections not only
make learning model complex, but also cause the problem of
overfitting, especially when the labeled nodes are scarce
[29, 30]. Additionally, as will be discussed in this article, too
dense connections cause message propagation saturation
and bring noise in message propagation, which would
certainly decrease the accuracy of node classification.

)is article proposes a new method to cope with the
challenges. )e proposed method first generates Enhanced
Message-Passing Graph (EMPG) and then builds multi-
channel GCNs on different dropout EMPGs, such that the
long-distance messages can be aggregated in an effective way
by shallow GCNs and the impact of label scarcity and graph
sparsity can be mitigated simultaneously. Unlike the
jumping connections that are added into deep GCNs to link
the output of low layers to the input of high layers [24, 27],
the connections are added between the nodes that are similar
in terms of structural proximity in a latent space where the
graph is embedded.)is operation is reasonable, because the
nodes with similar labels have a larger probability of being
neighbors [31, 32]. )ese added connections allow propa-
gating messages between long-range nodes without the need
of increasing convolutional layers. )us, the problem of
over-smoothing is avoided.

Meanwhile, the multi-channel GCNs built on different
dropout EMPGs well combat the problem of overfitting
caused by label scarcity and too dense connections. Various
techniques have been developed to tackle overfitting, an
incomplete list includes early stopping [33, 34], data

augmentation [35, 36], adding statistical noise to inputs [37],
and regularization [38–40]. Dropout, which was first in-
troduced by Hinton et al. [41] and subsequently proved to be
a stochastic regularization technique by Srivastava et al. [42],
is an effective technique for tackling overfitting. Dropout can
be applied to nodes [15] or edges [43]. Because it is rea-
sonable to view the EMPG as an accumulation of some
potential variants of the input graph, we apply dropout to the
EMPG instead of to the input graph. A series of variants of
the input graph is extracted by dropping EMPG edges out
randomly, which is equivalent to augmenting the input data.
Besides, dropping EMPG edges out randomly can prevent
message propagation saturation and reduce noise.

)e scheme of adding connections and the way of
employing the added connections proposed in this article are
different from the existing work [12, 26, 28]. Furthermore,
our method adopts a multi-channel aggregation architecture
that is different from the two-channel architecture [12] and
the bi-level aggregation architecture [28]. Multi-channel
neural networks are effective at combining information from
different views [44, 45].)e difference between the proposed
method and the existing work will be compared and dis-
cussed in detail in the relevant section of this article. )e
results of extensive experiments on benchmark datasets
show that the proposed method outperforms the baseline
methods on the task of node classification in terms of
classification accuracy. We summarize the contributions of
this article as follows:

(1) A dense connection scheme based on graph em-
bedding is proposed for enhancing message prop-
agation over long-range nodes in GCNs without the
need of increasing convolutional layers, which
therefore can prevent over-smoothing.

(2) A multi-channel GCN architecture is constructed to
learn node representation from a group of variants of
the input graph. )e architecture leverages the
strengths of the augmented training data that possess
the same underlying distribution of the input graph
and keeps the complexity of the GCN in each
channel low, so that it can avoid overfitting.

(3) )e experimental results demonstrate the superiority
of the proposed method in contrast with other state-
of-the-art methods on the task of node classification
in sparse graph with few labels.

)e rest of this aticle is organized as follows. Section 2
presents the motivation and the method framework. Section
3 describes the method implementation in detail. In Section
4, extensive experiments on benchmark datasets are con-
ducted to evaluate the proposed method. A review of related
work is provided in Section 5. Finally, Section 6 concludes
this article and presents future work.

2. Motivation and Method Framework

In this section, we present the motivation after introducing
relevant background knowledge and then put forward the
method framework.
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2.1. Motivation. Let G � (V,E) be an undirected graph
with a node setV and an edge set E. N � |V| is the number
of nodes and M � |E| is the number of edges. )e weight of
the edge (vi, vj) ∈ E is stored by the element aij of the
adjacency matrix A ∈ RN×N. )e node features are denoted
by X � x1, · · · , xN􏼈 􏼉 ∈ RN×d, where xi ∈ Rd is the feature
vector of the node vi ∈ V. Y ∈ 0, 1{ }N×C is the label matrix,
where C is the number of node categories. )e node setV is
divided into a labeled node setVL and an unlabeled node set
VU. In this article, we address the problem of semi-su-
pervised node classification over sparse graph with few la-
bels, that is, |E|≪ |V|2 and |VL|≪ |V|. Our goal is to build
a classifier fA,X,Y,vi∈VU

(vi)⟶ y that predicts the label of the
nodes of VU based on the adjacency matrix A, the node
feature matrix X, and the label matrix Y.

)eGCNdeveloped byKipf andWelling [7] achieved great
success in semi-supervised node classification. )e feed-for-
ward propagation in GCN is recursively conducted as follows:

H
(k+1)

� ReLU 􏽢AH
(k)

W
(k)

􏼐 􏼑, (1)

where H(k) � h
(k)
1 , · · · , h

(k)
N􏽮 􏽯 are the hidden vectors of the k-

th layer with h
(k)
i as the hidden feature for the node vi; 􏽢A �

􏽢D−1/2
(A + I) 􏽢D−1/2 is the re-normalization of the adjacency

matrix A and 􏽢D is the corresponding degree matrix of
(A + I); W(k) ∈ RD(k)×D(k−1)

is the filter matrix of the k-th
layer and D(k) is the size of the k-th layer.

Soon afterward different variants of GCN emerged. Most
of them focus on improving message propagation and ag-
gregation across network. For example, Wu et al. [8] pro-
posed an efficient network name SGC by removing the
nonlinearities between layers:

H � 􏽢AkXW(0)W(1)
· · ·W(k)

� 􏽢AkX 􏽥W � 􏽢Sk􏽦W, (2)

where 􏽢Sk � 􏽢AkX is a feature extraction/smoothing compo-
nent. Xu et al. [24] combined all previous representations
[H(1), · · · , H(k)] to learn the final representation. Li et al.
[25] incorporated residual layers, dense connections, and
dilated convolutions into GCN architecture. APPNP [46]
adopts k-hop aggregation. Sun et al. [47] combined the
predictions from different orders of neighbors by using
AdaBoost.

We abstract the GCN and its variants into a block di-
agram shown in Figure 2, which depicts the general orga-
nization and the recursive training process. It can be found
that the main difference between the GCNs mentioned
above lies in the way of using the representations
H(1), · · · , H(k) of all intermediate layers to learn the final
representation. )e existing models focus either on in-
creasing the number of layers k, or on finding a particular
way to combine H(1), · · · , H(k). However, with the increase
of convolutional layers, the output features may be over-
smoothed and converge to the same values. Additionally,
stacking more layers into a GCN increases its complexity
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Figure 1: )e framework of the proposed method.
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and makes it much more difficult to train. What is worse, a
complex model with numerous trainable parameters easily
tends to overfit training samples, especially when training
samples are scarce.

To overcome the weaknesses, we put effort into modi-
fying the block 􏽢A to improve its efficiency in message
propagation. As shown in Figure 2, the block 􏽢A plays an
important role in model learning. By modifying 􏽢A, a model
can propagate messages efficiently from a node to the ap-
propriate nodes at long distances. Enhancing message
propagation is critical for semi-supervised node classifica-
tion, especially when the labeled nodes are scarce. In the
original GCN proposed by Kipf and Welling [7],
􏽢A � 􏽢D−1/2

(A + I) 􏽢D−1/2 is generated from the graph with a
self-loop attached to each node. )e attached self-loops
could be regarded as a special way of enhancing node
messages. In the next section, we present a new dense
connection scheme for enhancing message propagation over
long-range nodes.

2.2.Method Framework. Motivated by the above discussion,
we propose the framework of our method as shown in
Figure 1. )e most important step is to generate the EMPG
that enhances message propagation efficiently. To this end,
we first map the input graph G � (V,E) to a continuous
latent space, and then construct the EMPG G′ � (V,E′) by
adding connections between the nodes that are structurally
similar. Because the EMPG allows nodes to propagate
messages to the right nodes that are far apart in the input
graph, it is not needed to stack many layers into a GCN to
realize long-range message propagation. However, the
EMPG is too densely connected. A reasonable under-
standing of the EMPG is to view it as an accumulation of
some potential variants of the input graph. )erefore, the
next step is to generate a group of dropout EMPGs by re-
moving some edges from the EMPG randomly. Each
dropout EMPG Gdrop′ � (V,Edrop′ ) works as a substitute for
the input graph G � (V,E) to train a GCN. )is is
equivalent to augmenting the input data. As a result, the
potential risk of overfitting is reduced. Additionally, by
removing edges from the EMPG G′ � (V,E′) randomly,
we can avoid message propagation saturation and mitigate
noise, the two most common adverse effects caused by the
added connections. Finally, we train the multi-channel

GCNs built on different dropout EMPG Gdr op′ � (V,Edr op′ )

and combine the multi-channel outputs together to produce
the final prediction.

3. Method Implementation

In this section, we describe the proposed method in detail,
focusing on two main parts: (i) generating EMPG based on
graph embedding and (ii) constructing multi-channel GCNs
on dropout EMPGs.

3.1. Generating EMPG Based on Graph Embedding

3.1.1. Graph Embedding. Graph embedding is vital to EMPG
generation. Given the input graph G � (V,E), graph em-
bedding maps each node v ∈ V to a vector zv ∈ Rd, where d

is the dimensionality of the latent space. It is required that
graph embedding preserves the graph structure effectively.
)ere are several methods that can embed a graph into a
latent Euclidean space according to the graph structure
[48–50]. Among them, DeepWalk [48] relies on truncated
random walk and uses a skip-gram model to generate node
embeddings. Since DeepWalk can preserve the local
structure around each node well, it is chosen to map the
input graph G � (V,E). Certainly, other suitable graph
embedding methods could be used for different applications.

3.1.2. Adding Connections. )e next step extracts the
structural neighborhood for each node v ∈ V, using the
result of graph embedding. )e structural neighborhood of
the node v, denoted by Nz(v), contains the nodes that are
similar to node v in terms of structural proximity, no matter
whether they are directly linked to node v or not. )e
structural proximity is measured by a distance function
dis(∙, ∙) that is defined in the latent space Rd as follows:

dis zv, zu( 􏼁⟶ r ∈ R, (3)

where r represents the structural proximity between the
nodes v and u in the latent space. Subsequently, we sort the
distance r from small to large and include the nodes in a
certain range of structural proximity into the neighborhood
Nz(v). Let [start, en d] denote the range, the structural
neighborhood Nz(v) is defined as follows:
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Figure 2: )e organization of GCN and the recursive training process.
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Nz(v) � u | u ∈V, start≤ #dis zv, zu( 􏼁≤ end􏼈 􏼉, (4)

where #dis(zv, zu) means the position of the distance
di s(zv, zu) in the sorted queue of r.

)e EMPG G′ � (V,E′) is constructed according to
Nz(v) afterward. If u ∈Nz(v) and (u, v) ∉ E, an edge (u, v)

is added to the graph G � (V,E). )erefore,
E′ � (u, v)∪E. An example of EMPG is shown in the lower
left corner of Figure 1. In the EMPG G′ � (V,E′), with the
help of the added connections, a node can propagate its
message to other nodes that are long distance from it in the
original graph but possess a similar structure.

Our approach to determining the structural neighbor-
hood is totally different from the existing work. For example,
Kampffmeyer et al. [26] use the path distance between nodes
to weight the contribution of different nodes. Pei et al. [28]
set a structural proximity threshold to extract the neigh-
borhood first, and then added connections between the
nodes in the neighborhood. However, this way of adding
connections changes the node degree distribution of the
input graph. Additionally, it easily leads to the appearance of
large degree nodes. Our way of adding edges does not change
the shape of node degree distribution, since the number of
edges added to each node is nearly same, that is about
(end − start). Furthermore, our way would not generate
nodes with much high degree. A node with large degree is
more likely to suffer from over-smoothing in a multilayer
GCN, since the repeatedly applying Laplacian smoothing
will converge to be proportional to the square root of node
degree [22, 27].

3.1.3. Message Propagation Enhancement. In a layer of GCN,
each node sends its message to its neighbors, and then
updates its feature representation by aggregating all mes-
sages received from its neighbors. )e messages from the
neighbors with the same label bring positive influences on
node classification, whereas the messages from the neigh-
bors with different label bring negative influences.)e added
connections should make more nodes receive positive in-
fluences more than negative influences from their neighbors.
To measure the enhancement of message propagation
brought by the added connections, we define a concept
named influence range of message propagation, which is a
novel metric that measures the effectiveness of a dense
connection scheme quantitatively.

Given a node vi ∈V and a k-layer GCN, the node vi can
receive the messages propagating from the nodes at k-hop
distance in the graph. When the recursive learning process
ends, the influence that the node vi receives from other
nodes in the graph can be defined as follows:

influence vi( 􏼁 � influencep
vi( 􏼁 + influencen

vi( 􏼁, (5)

where influencep(vi) and inf luencen(vi) represent the in-
fluence received by vi from the nodes with the same label and
from the nodes with different label, respectively. For a
k-layer SGC defined by (2), inf luencep(vi) and
influencen(vi) are defined, respectively, as follows:

influencep
vi( 􏼁 � 􏽘

j∈V
􏽘
l∈C

􏽢ski,j∙δ Yi,l � Yj,l􏼐 􏼑,

influencen
vi( 􏼁 � 􏽘

j∈V
􏽘
l∈C

􏽢ski,j∙δ Yi,l ≠Yj,l􏼐 􏼑,
(6)

where δ(∗ ) � 1 if the condition ∗ is satisfied; otherwise,
δ(∗ ) � 0.

)e influence range of message propagation is defined as
the ratio of the number of nodes that receive positive in-
fluences more than negative influences to the total of nodes.
)at is,

inf luence range �
􏽐vi∈Vδ influence vi( 􏼁> 0( 􏼁

|V|
. (7)

As an example, Figure 3 shows the positive influence
(blue) and the negative influence (orange) received by each
node in message propagation in the original Cora [51]
network (upper) and the enhanced Cora network (lower),
respectively. )e red points on the horizontal axis mean the
corresponding nodes are labeled nodes. Because of edge
sparsity and label scarcity, some nodes in the original graph
cannot receive messages from the labeled nodes or receive
negative messages only. )e influence range of message
propagation increases from 33.35% in the original graph to
59.23% in the enhanced graph.

Besides measuring the improvement of message prop-
agation, the concept of influence range of message propa-
gation can also be used to indicate message propagation
saturation. When the influence range of message propaga-
tion no longer increases, the message propagation reaches
saturation.

3.2. Constructing Multi-Channel GCNs on Dropout EMPGs.
With the aid of the added connections, a node’s message can
propagate to the nodes at long distances, without the need of
increasing convolutional layers. However, the added con-
nections may bring noise. Additionally, too dense connec-
tions are more likely to cause message propagation
saturation. What is worse, the GCN constructed on the
EMPG directly is prone to overfit the few training data, since
each layer has numerous trainable parameters. A reasonable
understanding of the EMPG is to regard it as an accumu-
lation of some potential variants of the original graph. In this
step, dropout is used to extract reasonable variants from the
EMPG first. Subsequently, the multi-channel GCNs are built
on the different variants, whose outputs are aggregated to
produce the final representation.

Dropout was first introduced by Hinton et al. [41] as a
way to train deep neural networks, in which a collection of
hidden neurons is stochastically “dropped out” at each it-
eration of a training procedure. It has been proven effective
in controlling overfitting. Dropout can be understood as a
regularizer. Alternatively, dropout can be seen as averaging
over many neural networks with shared weights [52].
Dropout also reduces model complexity and therefore im-
proves computational efficiency [53]. Here, we use dropout
as a data augmentation technique. A group of variants of the
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input graph is generated by repeatedly removing edges from
the EMPG randomly, each of which is used as a substitute for
the input graph to train the GCNs on different channels.

We apply dropout to the edges of the EMPG
G′ � (V,E′). Each edge (vi, vj) ∈ E′ is removed with a
probability p, independent of others. A dropout EMPG is
denoted by G′ � (V,Edrop′ ), whose adjacency matrix Adrop′
is calculated by Adrop′ � R∗A′. R ∈ 0, 1{ }|V|×|V| is a random
matrix that is generated according to the generative process
ri,j ∼ Bernoulli(1 − p). A′ is the adjacency matrix of the
EMPG G′ � (V,E′) and the symbol ∗ means an element-
wise product. As shown in Figure 1, the GCNs are con-
structed on various dropout EMPGG′ � (V,Edrop′ ). For the
i-th channel, the re-normalization trick is performed on
Ai−drop′ , leading to 􏽢Ai−drop′ � 􏽢D− 1/2

(Ai−drop′ + I) 􏽢D− 1/2. )e
feed-forward propagation in the i-th channel GCN is re-
cursively conducted as follows:

H(k+1)
i � ReLU 􏽢Ai−drop′ H(k)

i W(k)
i􏼐 􏼑. (8)

)e last but not least step is to aggregate the features
H(k)

i obtained from different channels to compute the final
prediction. Because it is reasonable to regard the features
learned from different dropout EMPGs as equally important,
we aggregate the features H(k)

i just by summarizing them
together as:

H(k)
� 􏽘

i
H(k)

i . (9)

)e process of constructing multi-channel GCNs de-
scribed above is different from the existing work. For ex-
ample, Rong et al. [43] adopted the technique of dropping
edges also. )e major difference between their method and
ours is that our method applies dropout to the EMPG,
whereas their method applies dropout to the input graph
directly, which is certainly not workable when the input
graph is sparse. In order to boost GCN robustness, Ioannidis
and Giannakis [54] added and removed edges with prob-
abilities to simulated noise. In contrast, we use dropout to
augment training graphs and increase robustness by com-
bining multi-channel outputs. More importantly, our way of
generating training graphs by dropping EMPG edges can
make the augmented training graphs possess the same
underlying distribution of the input graph. Preserving the
distribution of training data has been proved to be critical to
training classifiers [55]. Because the training graphs in
different channels have the same distribution, we can ag-
gregate the multi-channel features directly by summation
without loss of accuracy. In contrast, to guarantee classifi-
cation accuracy, Peng et al. [56] measured the weight of the
feature map of each channel of each subgraph by a self-
attention mechanism while concatenating them into a
vector. )e two seemingly contradictory steps in our
method, adding links elaborately and removing edges ran-
domly, actually complement one another and make a dif-
ference in the task of node classification in sparse graph with
few labels.

3.3. Complexity Analysis. Now we analyze the computa-
tional complexity of the proposed method. We use aggregate
analysis, which counts up the complexity of each step and
uses the sum to determine the total complexity. As described
in Section 3.1, the first step of the proposed method is to
embed each node of the input graph G � (V,E) to a vector
space Rd through DeepWalk [48]. As we know, DeepWalk
first generates c random walks of fixed length q from each
node, and then utilizes the skip-gram model, which maxi-
mizes the cooccurrence probability among the nodes that
appear within a ω-width window in a random walk, to
embed the input graph.)e time complexity of DeepWalk is
Ο(c|V|qω(d + dlog|V|)) [57]. As the parameters c, q, ω,
and d are small integers, we can say DeepWalk runs in a time
bounded by Ο(|V|log|V|) for the sake of simplicity.

After embedding the input graph, the proposed method
generates the EMPG G′ � (V,E′) using formula (3) and
(4). )e time complexity of generating EMPG is bounded by
Ο(|V|2), because the distance between all pairs of nodes in
the latent space Rdshould be calculated. While constructing
Nz(v), we use a randomized-select algorithm that returns
the i-th smallest distance on average in linear time.

)e next step of the proposed method is to generate the
dropout EMPG G′ � (V,Edrop′ ) from the EMPG
G′ � (V,E′). )e time complexity of this step is Ο(|V|2)

because of the element-wise product Adrop′ � R∗A′.
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Figure 3: )e positive influence (blue) and the negative influence
(orange) received by each node in message propagation in the
original Cora network (a) and the enhanced Cora network (b).
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)e last step is to build a GCN on each dropout EMPG
G′ � (V,Edrop′ ) for every channel. Because the GCN in each
channel can be trained independently, we analyze the
complexity of a channel only. We build a two-layer SGC in
each channel. )e complexity of a two-layer SGC is
Ο(2|Edrop′ |d) [58]. Because |Edrop′ | ≈ |E|, the complexity of
this step is Ο(2|E|d). )us, the overall time complexity is
Ο(|V|log|V|)+Ο(|V|2)+Ο(|V|2)+Ο(2|E|d) �Ο(|V|2). It
is worth to note that the re-normalization of each adjacency
matrix Adrop′ can be computed in advance and each dropout
EMPG G′ � (V,Edrop′ ) is sparse, i.e., |Edrop′ |≪ |V|2. )us,
the execution time can be reduced significantly by using
parallel calculation.

4. Experiment and Discussion

)e effectiveness of the proposed method was evaluated on
the task of semi-supervised node classification in two ci-
tation networks, Cora [51] and Citeseer [59]. In this section,
the experimental results are presented and comprehensively
analyzed to illustrate the key properties of the proposed
method.

4.1. Datasets and Experimental Setup. )e experiments were
conducted on two real-world citation datasets: Cora and
Citeseer. )eir statistics are reported in Table 1. Please note
that the edge density of Citeseer is much lower than that of
Cora. )e edge density influences method performance. )e
experimental results described below indicate that the
scheme of enhancing message propagation is more effective
for sparse graphs.

Each dataset was split into three parts in the experiments:
1%–5% labeled data in each class were randomly selected for
training, 500 for validation, and 1000 for the test. A two-
layer SGC was built by using PyTorch and trained for 600
epochs by using Adam with learning rate 2e-2. )e L2
regularization parameter was set to 5e-4. In addition, step
decay schedule was used to drop the learning rate by 0.97
half every 60 epochs. )e experiments that investigated the
influence of a certain factor on the method performance
used the same parameter settings. However, delicate pa-
rameter selection was performed in the experiments of
pushing node classification accuracy.

All experiments run on a machine with an Intel (R) Core
(TM) i7-10700 CPU 2.90GHz with 16 threads and 256GB
memory. We first generated 10 dropout EMPGs from the
input graph and then trained the two-layer SGC of each
channel one by one. )e time spent on generating the
dropout EMPG from Cora and Citeseer is about 80.6 and
104.7 seconds, respectively.)e execution time for training a
two-layer SGC in a channel for Cora and Citeseer is 0.41 and
0.57 seconds, respectively. )e time spent on preparing the
training graphs of the multi-channel SGCs dominates the
overall running time. However, because the multiple
channels are independent of each other, the time cost can be
controlled at low level by using parallel calculation.

)e classification accuracy was used as a metric to
evaluate the performance of the proposed method on the

task of semi-supervised node classification, which is defined
as follows:

Accuracy �
ncorrect

ntotal
. (10)

It is the ratio of the number of correct classifications
ncorrect to the total number of test data ntotal.

4.2. Experimental Results

4.2.1. Enhancement of Influence Range. )e aim of adding
connections is to enlarge the influence range of message
propagation, since a small influence range cannot lead to a
high accuracy of node classification. Figure 4 compares the
influence range of message propagation in the original graph
(blue) and the enhanced graph (orange) with the increasing
label rate on Cora (upper) and Citeseer (lower) datasets,
respectively. It can be observed from the left of Figure 4 that
the influence range of message propagation in the enhanced
graph is always larger than that in the original graph. )is is
as expected, because the added connections provide more
paths for message propagation. When only few labeled
nodes are given (<3%), the added connections lead to a rapid
increase in the influence range. When the label rate con-
tinuously rises above 10%, the influence range of messages
propagation nearly covers the entire graph, that is, nearly
reaches saturation. )e green curves on the right of Figure 4
show the enhancement of influence range, which increases
fast initially and drops gradually when the training label rate
increases over 3%. In addition, with the same training label
rate, the enhancement of influence range in Citeseer is larger
than that in Cora. )e reason is that the edge density of
Citeseer is much lower than that of Cora. )e added con-
nections play a relatively much more important role in
message propagation in Citeseer than in Cora.

4.2.2. Accuracy of Node Classification. )is experiment re-
veals how the accuracy of node classification benefits from
the enhancement of influence range. Figure 5 shows the
accuracy of node classification in the original graph (blue)
and the enhanced graph (orange) as the training label rate
increases from 1% to 20% on Cora (upper) and Citeseer
(lower) datasets. For Cora, the accuracy obtained on the
enhanced graph is consistently better than that obtained on
the original graph. For Citeseer, when very few labeled nodes
are given for training (<3%), the improvement on classifi-
cation accuracy is evident. When the label rate increases
from 3% to 10%, the classification accuracy obtained on the
enhanced graph is still better but the gap drops. When the
label rate increases over 10%, the improvement is very
limited and sometimes the accuracy may get worse. )e
green curves on the right of Figure 5 show the improvement

Table 1: Dataset statistics.

Dataset Nodes Edges Classes Features E-Den (%) N-Deg
Cora 2708 5429 7 1433 0.148 4.01
Citeseer 3327 4732 6 3703 0.086 2.84
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on classification accuracy. Compared with the enhancement
of influence range shown on the right of Figure 4, the
tendency of the improvement of classification accuracy is
consistent with the tendency of the enhancement of influ-
ence range for both datasets, which means the influence
range of message propagation is critical to node classification
accuracy and enlarging influence range via adding con-
nections really improves node classification accuracy.
However, when the training label rate is larger than 10%, the
influence range of message propagation is close to satura-
tion. As a result, the classification accuracy either increases a
little bit or even decreases.

Table 2 compares the node classification accuracy of our
method with that of seven baseline methods on Cora and
Citeseer datasets. )e reported numbers in Table 2 denote
the node classification accuracy in percent. )e results of the
benchmark methods were taken from the relative references.
All experiments were run on the same fixed split of 5%
labeled nodes of each class for training, 500 nodes for
validation, 1,000 nodes for test, and the rest of nodes as

unlabeled data, which is the standard split used in most
method evaluations [49].

)e last column of Table 2 lists the node classification
accuracies of all methods on the Citeseer dataset. Our
method significantly outperforms all the seven competing
methods on the Citeseer dataset. )is clearly indicates the
performance advantage of our method over the existing
methods for node classification in graphs that are very sparse
and have few labeled nodes, like the citation network
Citeseer. )e reason is that the added connections play a
relatively muchmore important role inmessage propagation
in very sparse graphs.

)emiddle column of Table 2 lists the node classification
accuracies of all methods on the Cora dataset. Our method
outperforms six of the seven competing methods and
achieves an accuracy as equally good as DGCN [12]. DGCN
combines two-channel GCNs, one learns the local consis-
tency from the adjacency matrix and another learns global
consistency from Positive Pointwise Mutual Information
(PPMI) matrix. In contrast, our method adopts multi-
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Figure 4: Comparisons of the influence range in the original graph (blue) and the enhanced graph (orange) as the training label rate
increases on Cora (a) and Citeseer (b) datasets.
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channel GCNs to aggregate the features learned from dif-
ferent dropout EMPGs. Both methods emphasize the im-
portance of performing graph convolution from different
views of the input graph. )at may be the reason why both
methods outperform other six methods on the two
benchmark datasets and perform equally well on the Cora
dataset. However, DGCN employs random walks to build
the PPMI matrix. Compared to the Cora network, the

Citeseer network is much sparser, where most nodes are
separated from each other. It is difficult for random walk to
collect the global structural information of a very sparse
graph, because random walk cannot reach the separated
nodes. Whereas our method utilizes random walk to collect
local structural information around each node when em-
bedding the original graph, but exploits the information of
long-range nodes through the added connections. )at may
be the reason why our method outperforms DGCN on the
Citeseer dataset.

Furthermore, we compare the computational complexity
of DGCN with that of our method. )e time complexity of
generating the PPMI matrix is Ο(c|V|q2)+Ο(|V|2), the
former is the complexity of random walks and the latter is
the complexity of constructing the PPMI matrix. DGCN
uses a dual graph convolutional architecture with two graph
convolutional layers in each channel, whose complexity is
Ο(2(|V|2d + |V|d2)). )erefore, the complexity of DGCN
is also bounded by Ο(|V|2). However, because the PPMI
matrix is not sparse, the upper bound Ο(|V|2) of DGCN
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Figure 5: Accuracy obtained in the original graph (blue) and the enhanced graph (orange) as the training label rate increases on Cora (a)
and Citeseer (b) datasets.

Table 2: Summary of node classification accuracy.

Model Cora Citeseer
DeepWalk [48] 67.2 43.2
GCN [7] 81.5 70.3
SGC [8] 81.0 71.9
GAT [9] 83.0 72.5
AGNN [10] 83.1 71.7
TAGCN [11] 83.3 71.4
DGCN [12] 83.5 72.6
Our method 83.5 73.3
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cannot be reduced to Ο(|E|), like in the case of sparse
dropout EMPG. Additionally, DGCN uses two-layer GCNs
and Batch Gradient Decent (BGD) to train the GCNs in
order to achieve good accuracy, whereas our method uses
two-layer SGCs and Stochastic Gradient Decent (SGD) to
train the SGCs. SGC runs faster than GCN and BGD is
slower than SGD. )erefore, DGCN is relatively slow in
practical calculation, which was also pointed out by the
authors of [12]. Our method achieves classification accuracy
equal to or better than that DGCN yields without loss of
efficiency.

Additionally, it is worth noting that our model out-
performs the original SGC [8] by obvious margins on both
benchmark datasets. Our method constructs a two-layer
SGC in each channel to learn feature representations from
different dropout EMPGs and then combines the multi-
channel outputs together. However, SGC [8] learns feature
representation directly from the original graph.)e accuracy
improvement proves that the scheme of adding connections
and the strategy of augmenting training samples by dropout
are indeed helpful for improving node classification accu-
racy. It is convenient to incorporate other GCNs into the
framework shown in Figure 1. It is rational to expect that the
proposed method may yield better classification accuracy
when incorporating other appropriate GCNs.

4.2.3. Effect of Densification Strength. )e pair of parameters
[start, end] affect the accuracy of node classification. )e
value (end − start) indicates how many connections are
added to each node of the original graph, which represents
the densification strength. Figure 6 shows the accuracy of
node classification on Cora (left) and Citeseer (right)
datasets when the parameters start and en d change from 0 to
9, given three different training label rates 1% (up), 2%
(middle), and 5% (down). )e block color represents the
value of accuracy, with lighter colors indicating higher
values and darker colors indicating lower ones. It can be
found that our method achieves good classification accuracy
when the parameter start is set a little less than the average
node degree and the parameter en d is set around double the
average node degree. )is is understandable, as there is a
high probability that the nodes with the closest proximity
have already been connected directly in the original graph.
On the other hand, setting a smaller start or/and a larger en d
to add more than double edges will not only bring more
noise but also make message propagation saturate soon.

4.2.4. Effect of Dropout Rate. )e dropout rate p is a tunable
parameter that indicates the probability of removing the
edges of the EMPG G′ � (V,E′). We increased it from 0 to
0.9 with an increment of 0.1 to examine how the classifi-
cation accuracy depends on it. Meanwhile, the densification
strength [start, en d] was set from the average node degree to
double the average node degree. Figure 7 shows the vali-
dation accuracy (blue) and the test accuracy (yellow) for
varying dropout rate p on Cora (left) and Citeseer (right)
datasets with the training label rate 1% (up), 2% (middle),
and 5% (down). A large p means few edges of the EMPG

G′ � (V,E′) are retained for message propagation. For the
training label rate 1% and 2%, both the validation accuracy
and the test accuracy on Cora continue to increase till p
reaches 0.8, followed by a rapid drop. However, for the
training label rate 5%, both accuracies increase till a larger
value of p. )e curves on the right of Figure 7 show that the
validation accuracy and the test accuracy on Citeseer drop
continuously with the increasing dropout rate p for the
training label rate 1% and 2%. For the training label rate 5%,
the validation accuracy and the test accuracy on Citeseer
increase till p � 0.4 and then take a turn for the worse.

)e clue to the complex trends of both accuracies ap-
pears when considering the average edge density, the den-
sification strength (end − start), the dropout rate p, and the
training label rate jointly. )e influence range of message
propagation is determined by all these factors that work
together. No matter which factor changes, if it expands the
influence range, the accuracy will increase. Otherwise, the
accuracy will decrease. Adding connections enhances
message propagation but dense connections may lead to
message propagation saturation as the label rate increases.
On the other hand, removing edges reduces noise and
prevents message propagation saturation. Generating vari-
ous dropout EMPGs can be viewed as a way of augmenting
training data. Using a group of complementary data to train
model jointly is helpful for mitigating overfitting. )e two
seemingly contradictory operations, adding connections
deliberately and removing edges randomly, play different
roles, which actually complement one another and work
together to improve the accuracy of node classification.

4.2.5. Analysis of Robustness. Robustness is important for a
GCN to obtain high accuracy when graph data contain noise.
To study the influence of different noise levels on the ac-
curacy of node classification, we randomly selected 10% to
50% samples from the training dataset, changed their labels,
and then used the changed training dataset to train the
model. Figure 8 depicts the accuracy obtained in the original
graph (yellow) and the enhanced graph (blue) for varying
noise level on Cora (left) and Citeseer (right), given three
different training label rates of 1% (up), 2% (middle), and 5%
(down). It is clear that the accuracy decreases as the noise
level increases. However, for Cora, the accuracy obtained on
the EMPG is consistently better, and the gap is obvious and
enlarges as the noise level increases. For Citeseer, with the
low training label rate of 1% and 2%, the accuracy obtained
on the EMPG fluctuates up and down around the accuracy
obtained on the original graph. When the training label rate
increases to 5%, the accuracy obtained on the EMPG is
always better than the accuracy obtained on the original
graph, but the gap decreases as the noise level increases. To
sum up, the model built on the enhanced graph is more
robust than the model built on the original graph.

5. Related Work

In the past few years, a number of methods for improving
message propagation in GCNs have been proposed, most of
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which fall into two broad categories: the methods toward
building deep GCN and the methods based on dense
connection scheme. )is section presents an overview of the
related work in both fields.

5.1. Methods Toward Building Deep GCN. A straightforward
solution to realize long-range message propagation is to
deepen GCN. However, a serious problem in deep GCNs is
over-smoothing, which was first discussed in [22]. To exploit
the strengths and overcome weaknesses of deep GCN, Xu
et al. [24] proposed JK-network, which enables different

neighborhood ranges and employs skip connections to re-
alize multi-hop message propagation. Li et al., [25] used
residual connections and dilated convolutions to facilitate
the building of deep GCN. GCNII, a simple and deep
network that prevents over-smoothing by residual con-
nections and identity mapping, was proposed in [27]. Sun
et al. [47] proposed an RNN-like deep network called
AdaGCNs, which uses AdaBoost to combine the predictions
from different order neighbors when building deep network,
rather than only stacking a specific type of graph con-
volutional layer. Zhang et al. [60] built a residual dense deep
network that extracts local features via densely connected
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Figure 6: Accuracy for varying start and end on Cora (left) and Citeseer (right) datasets with training label rate 1% (a), 2% (b), and 5% (c).
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convolutional layers. Klicpera et al. [61] proposed a message
propagation scheme based on personalized Pagerank, by
which they successfully built a deep network that can use the
message from a large and adjustable neighborhood.
DAGNN [62] incorporates the information from large re-
ceptive fields through the entanglement of representation
transformation and propagation. Zhao et al. [63] added a

normalization layer into graph neural network architecture,
by which they could stack more layers into a network.
Wenkel et al. [64] proposed a hybrid deep GNN framework
that combines traditional GCN filters with band-pass filters
to combat over-smoothing. )ese efforts have produced
promising results. However, stacking a large number of
convolutional layers leads to more complex models with
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more parameters. Training such complex models is chal-
lenging especially in semi-supervised classification. And
what is worse, the deep networks with too many trainable
parameters are very prone to overfitting when the labeled
data are scarce.

5.2. Methods Based on Dense Connection Scheme. On the
other hand, some researchers attempted to improve message
propagation with shallow neural networks. For example,
SGC [8] uses the k-th power of graph convolution matrix in
a layer to capture higher-order information. GAT [9] learns
the weight of messages from different neighbors and im-
proves message aggregation by an attention mechanism.
)ekumparampil et al. [10] removed all the intermediate
fully connected layers and replaced the propagation layers
with an attention mechanism to improve message aggre-
gation. A dual graph convolutional network that considers
local and global information together was proposed in [12]
to deal with semi-supervised node classification. Xu et al.
[13] proposed GIL that uses between-node paths to prop-
agate messages between long-range nodes. Kampffmeyer
et al. [26] proposed DGP that uses a weighted dense con-
nection scheme to select links among distant nodes to
improve message propagation. To extract long-range
structural information for aggregation, Pei et al. [28] rebuilt
the structural neighborhood by adding connections into the
input graph according to graph embedding. )e major
difference between their work and ours lies in the way of
selecting neighbors and utilizing the added connections. Our
method employs dropout to avoid the side effects of dense
connections and adopts a multi-channel aggregation ar-
chitecture. Whereas the method proposed in [28] uses a bi-
level aggregation scheme to update node features and
combats computational complexity by controlling the
number of virtual nodes. )e shallow models with dense
connection scheme are more effective than the shallow
models without enhanced message propagation scheme.
Compared to deep networks, shallow models are usually
computationally efficient because the number of layers is
small.

Our method belongs to the second category. )e major
difference compared with these works mentioned above lies
in the way of adding and using dense connections. Our
method adds connections according to graph embedding
and keeps the shape of node degree distribution unchanged
after adding connections. Furthermore, our method con-
structs multi-channel GCNs on different dropout EMPGs to
extract features from different views for aggregation, which
can leverage the strengths of the added connections and
avoid their negative impacts simultaneously.

6. Conclusion and Future Work

In this article, a new GCN framework is proposed to address
the problem of semi-supervised node classification in sparse
graph with few labels, whose distinguishing feature is a dense
connection scheme based on graph embedding, by which the
GCN can collect the messages from the right nodes at long

distances efficiently. )us, the proposed method need not
stack multiple convolutional layers into a GCN, which is
very useful for avoiding over-smoothing and reducing
model complexity. Meanwhile, the multi-channel GCN
architecture mitigates the negative effects of dense con-
nections and prevents overfitting by learning with aug-
mented data, which finally improves the accuracy of node
classification. )e experiments on benchmark datasets
demonstrate the effectiveness of the proposed method for
solving the problem of node classification in sparse graph
with few labeled nodes. Furthermore, the proposed method
is robust and efficient.

In future work, we plan to explore mechanisms for
adding connections adaptively and dynamically. It will be
worthwhile to model the relationship among graph prop-
erties, edge densification strength, and message propagation
range, which would be useful for preventing message
propagation saturation. We will also apply the proposed
method to solve more real-world problems.
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