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Abstract: Sherry wine vinegar is a Spanish gourmet product under Protected Designation of Origin
(PDO). Before a vinegar can be labeled as Sherry vinegar, the product must meet certain requirements
as established by its PDO, which, in this case, means that it has been produced following the
traditional solera and criadera ageing system. The quality of the vinegar is determined by many
factors such as the raw material, the acetification process or the aging system. For this reason,
mainly producers, but also consumers, would benefit from the employment of effective analytical
tools that allow precisely determining the origin and quality of vinegar. In the present study, a
total of 48 Sherry vinegar samples manufactured from three different starting wines (Palomino
Fino, Moscatel, and Pedro Ximénez wine) were analyzed by Fourier-transform infrared (FT-IR)
spectroscopy. The spectroscopic data were combined with unsupervised exploratory techniques
such as hierarchical cluster analysis (HCA) and principal component analysis (PCA), as well as other
nonparametric supervised techniques, namely, support vector machine (SVM) and random forest
(RF), for the characterization of the samples. The HCA and PCA results present a clear grouping trend
of the vinegar samples according to their raw materials. SVM in combination with leave-one-out
cross-validation (LOOCV) successfully classified 100% of the samples, according to the type of wine
used for their production. The RF method allowed selecting the most important variables to develop
the characteristic fingerprint (“spectralprint”) of the vinegar samples according to their starting wine.
Furthermore, the RF model reached 100% accuracy for both LOOCV and out-of-bag (OOB) sets.

Keywords: characterization; Fourier-transform infrared spectroscopy; cluster analysis; Sherry vine-
gar; spectralprint; random forest; support vector machine

1. Introduction

The production of high-quality vinegar is increasingly important for manufacturers as
consumers’ demand for a high-quality product presents a growing trend. The quality of
vinegar is heavily determined by numerous factors, among which it is worth noting the
raw material, the acetification system, and, in some cases, the specific wooden casks used
for its aging [1].

In order to preserve and guarantee the quality of certain vinegars associated with
specific geographical areas, the European Union recognizes these vinegars with the category
of Protected Designation of Origin (PDO) (Council Regulation (EC) 510/2006). Such is
the case of Sherry wine vinegar, from the Jerez-Xérès-Sherry, Manzanilla de Sanlúcar, and
Vinagre de Jerez PDO region (in SW Spain). The quality of this PDO vinegar is related
to the raw material (i.e., the grape variety), the production process, the type of cask used
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(America oak barrels), and the aging method [2]. This gourmet-grade wine vinegar is
produced from high-quality Sherry wines which are, in turn, protected by a PDO that
establishes very specific and traditional aging methods [3]. Both production and quality are
precisely described and strictly regulated by law [4]. Sherry vinegar elaboration consists
mainly of two production steps. The first step consists of the acetification procedure, which
can be performed by traditional (oak barrels for several months) or industrial methods
(steel tanks in just a few hours). Regardless of the acetification procedure applied, vinegar
is in every case subjected to aging in oak barrels as the second production step. According
to European Regulations, there are three categories of PDO Sherry vinegars depending on
their aging time in oak wood barrels as follows: Vinagre de Jerez (at least 6 months of aging
time), Vinagre de Jerez Reserva (at least 2 years of aging time), and Vinagre de Jerez Gran
Reserva (at least 10 years of aging time) [5]. Vinegar diversity, increasing demand, and the
fact that a convincing and objective authentication method is still an unresolved issue, the
development of reliable analytical methods that allow establishing valid criteria regarding
quality, origin, and verification of the production processes, such as aging, are required.

A large number of regular analytical methods have been developed until now for
the characterization of different vinegar types on the basis of determining some of the
individual compounds of interest that can be found in vinegar.

Since its aroma profile is considered one of the most important quality indicators of a
particular vinegar, gas chromatography/mass spectrometry (GC–MS) continues to be the
most widely employed technique for vinegar characterization and quality control [6]. In
this sense, Pizarro et al. [7] characterized the volatile content in a number of vinegars to
differentiate them according to raw material and production process (with or without aging
in wood). Likewise, Marrufo-Curtido et al. employed stir bar sorptive extraction coupled
to GC–MS (SPME–GC–MS) to characterize different vinegar samples—including Sherry
vinegars—on the basis of the identification of certain volatile compounds, and they suc-
ceeded in classifying them by raw material and aging process [5]. Cejudo-Bastante et al. [8]
performed a comparative study on the production of vinegar according to the acetification
process used. For that purpose, they determined the vinegar samples’ polyphenolic and
volatile profiles by gas and liquid chromatographic techniques. Ríos-Reina et al. compared
three different sampling methods prior to analysis by GC–MS with the aim of determining
the more suitable method for the characterization and differentiation between vinegar
PDOs and other categories [6].

Other methods such as inductively coupled plasma optical emission spectroscopy
(ICP-OES) were also successfully used to characterize the mineral composition of a number
of PDO Andalusian wine vinegars and classify them according to their origin [9]. Fur-
thermore, 1H-NMR combined with pattern recognition analysis was successfully used to
classify vinegars and wines from different raw materials [10,11].

Although all these methods achieved good results, they also present some drawbacks,
since they all require costly equipment, long analysis time, and highly qualified personnel.
Although such methods can be considered as perfectly suitable for research purposes, they
are deemed otherwise within a regular winery environment. Consequently, spectroscopic
methods are becoming more popular for the control of vinegar processes at an industrial
scale, since they are rapid, nondestructive, and easily applied in situ. In addition, they
require minimal or hardly any sample preparation. These attributes make spectroscopic
techniques a more appropriate option for the development of vanguard/rearguard an-
alytical strategies for the control of production processes, so that the need for specific
corrective actions can be determined in the shortest possible time [12]. Numerous methods
can be found in the literature where the individual identification of the compounds of
interest in wine, as well as in related drinks, is conducted by Fourier-transform infrared
spectroscopy (FT-IR) [13,14]. It must be noted that the IR spectra from wines, vinegar,
and other beverages are complex mixtures of overlapped peaks, i.e., unresolved peaks.
Therefore, they cannot be used as regular spectroscopic methods; instead, the application
of multivariate regression techniques is mandatory. Individual compounds can be deter-
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mined; however, no specific signals are used. Instead, a model including many different
signals must be used.

However, although most of these spectroscopic methods are based on the identifica-
tion of individual chemical compounds, in order to ensure vinegar authenticity, several
compounds would have to be quantified. On the other hand, more sophisticated fake
production methods are being continuously developed, which means that certain minor
variations that can make a substantial difference in certain cases represent an increasingly
demanding challenge. Thus, the characterization of samples based on a limited number of
markers can be sometimes complicated and time-consuming. For this reason, nontargeted
chemical analyses based on spectroscopic techniques combined with chemometrics are
becoming more frequently used for food characterization [15,16]. In this sense, the use of
the whole spectral range in combination with chemometrics to identify a unique fingerprint,
which has been recently given the name of spectralprint, allows a rapid characterization
of each sample with minimum or no preparation at all [13]. In this sense, Ríos-Reina et al.
applied fluorescence excitation–emission spectroscopy coupled to parallel factor analysis
(PARAFAC) and support vector machine (SVM) to characterize and classify the three above-
mentioned Spanish wine vinegars with PDO and concluded that SVM classification models
provide higher predictive accuracy (over 92%) [17]. The same authors demonstrated the
effectiveness of other spectroscopic techniques, namely, near-infrared spectroscopy (NIRS)
in combination with certain chemometrics such as principal component analysis (PCA)
and partial least squares - discriminant analysis regression (PLS-DA) regarding a rapid and
reliable classification and authentication of Spanish PDO wine vinegars [18]. However, to
date, only a few papers have been published regarding the use of FT-IR in combination with
pattern recognition techniques to discriminate wine vinegars according to their origins.
In this sense, the capacity of FT-IR in combination with PLS for the characterization of
Sherry wine according to its aging process was previously studied [19]. Guerrero et al.
proved that mid-IR spectroscopy combined with multivariate chemometric techniques
could be successfully used to classify vinegar samples elaborated from different raw mate-
rials, including apple, white/red wines, or balsamic vinegars, as well as their production
processes (with and without aging in wood), with 89% accuracy [20]. Ríos-Reina et al.
also studied the potential of FT-IR for the characterization of vinegar and classified them
according to the standardized aging categories of high-quality wine vinegars [2]. A reduced
number of studies can be found in the literature that investigated the use of the whole
ultraviolet/visible (UV/Vis) spectra for vinegar authentication [21].

According to the recently published review by Ríos-Reina et al., there are not many
studies where the suitability of the different spectroscopic techniques that have been used
in this field were compared for effectiveness [13]. Thus, the development of an analytical
method that is suitable to be implemented as a routine for the characterization of vinegar
remains a challenge. The same review reported that parametric techniques such as PCA,
partial least squares (PLS), PLS-DA, and linear discriminant analysis (LDA) are the most
often used chemometric tools. However, the implementation of nonparametric techniques
such as SVM or, more specifically, random forest (RF) to the characterization of wine or
vinegar is scarce or even nonexistent. Nevertheless, according to several studies with a
similar approach, the use of nonparametric techniques has been reported to provide better
results [22,23].

Therefore, the aim of this work was to design an analytical method based on FT-
IR spectral profiles in combination with support vector machine and random forest to
produce spectralprints that allow the classification of Sherry wine vinegar according to their
starting wine.

2. Materials and Methods
2.1. Samples

A total of 48 samples obtained from different Sherry vinegars under Protected Desig-
nation of Origin (PDO) from a local winery (Bodegas Páez Morilla S.A., Jerez de la Frontera,
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Spain). All of the samples were “Reserva” vinegars, i.e., more than 2 years of aging in
oak barrels. The samples were taken directly from certain oak barrels in the winery. The
vinegar samples were divided into three categories accordingly to the origin of the wine
used to elaborate the vinegar as follows: 24 Palomino Fino vinegar, 12 Moscatel vinegar,
and 12 Pedro Ximénez vinegar. In order to ensure a wide assortment, the samples from
the winery were taken directly from oak barrels of varied volume located inside different
buildings, at different positions, and containing different starting grape/wines. The sam-
ples were tagged after their specific starting wine as follows: PF for Palomino Fino, MO for
Moscatel, and PX for Pedro Ximénez, followed by the barrel row level indicated by OB1
for solera (ground level) and OB2 for first criadera (first level)—corresponding to different
aging times. In order to reduce turbidity and remove impurities, before being subjected
to FT-IR spectrophotometry, the samples were filtered through 0.45 µm filters. No further
preparation procedures were required. In addition, all samples were analyzed in duplicate,
and the average value for each sample has been used.

2.2. Fourier-Transform Infrared Spectra Acquisition

Fourier-transform infrared spectra were obtained for all samples by means of a Mul-
tiSpec (TDI, Barcelona, Spain) spectrophotometer. A 7 mL (standard setting) sample
was collected and pumped through the system. The spectra were recorded in the range
952–3070 cm−1 with 3.86 cm−1 resolution and 20 µm optical path length. The operating
temperature was maintained at 25 ◦C. The total process time per sample was 1 min. All of
the samples were measured after doing a blank using a commercial solution provided by
TDI, which is a water solution of Triton® (TDI, Barcelona, Spain).

2.3. Data Analysis

No data pretreatment was performed. Thus, the spectral raw data were placed into
Dnxp matrices where n denotes the number of samples and p denotes the number of
variables. Therefore, a D48×555 (48 spectra recorded at 555 different wavenumbers) matrix
was obtained for multivariate analysis. The processing of the data, using both unsupervised
techniques such as hierarchical cluster analysis (HCA) and supervised nonparametric
techniques such as support vector machine (SVM) or random forest (RF), was performed
using RStudio software (R version 4.0.5, Boston, MA, USA).

3. Results
3.1. Exploratory Analysis

Firstly, each sample’s (n = 48) raw FT-IR spectrum without any pretreatment (p = 555)
was subjected to hierarchical cluster analysis (HCA) followed by Ward’s method with Man-
hattan distance to determine any clustering trends. The resulting dendrogram, represented
as a phylogenetic tree for easier comprehension, can be seen in Figure 1.

As can be seen, three clearly differentiated branches were obtained—each one cor-
responding to each of the three starting wines used to elaborate the vinegars. It can be
observed that the PX samples (pink color) were closer to the branch containing the MO sam-
ples (green color). This suggests that these two types of wine vinegars have a closer similar-
ity with regard to their FT-IR spectrum. Additionally, Figure S1 (Supplementary Materials)
shows the FT-IR spectra for all of the vinegar samples, where this greater similarity can
be observed. On the other hand, the PF samples (blue color) were the most clearly dif-
ferentiated from the rest of the samples, especially from the PX ones, which were farther
apart. These trends could be associated with the specific ethanol initial content in each
starting wine, since PF wines generally exhibit lower ethanol content than MO wines and
substantially lower content than PX wines. It must be mentioned that the total acidity of
all the vinegars analyzed in this study did not significantly fluctuate.
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Figure 1. Dendrogram from the HCA analysis combined with Ward’s method with Manhattan distance. The vinegar
samples are colored according to their starting wine: blue for PF (Palomino Fino), green for MO (Moscatel), and pink for PX
(Pedro Ximénez). OB1: solera and OB2: first criadera (n = 48).

It should also be noted that the PF group was the most heterogeneous and that it
could be divided into two different sub-branches: one exclusively including samples aged
for longer times, i.e., PFOB1, and the other comprising all of the PFOB2 samples plus the
remaining PFOB1 samples. These results may suggest that FT-IR could also be somewhat
correlated with aging time, even if a clear trend in this sense was not ascertained.

It could be said that, in general, this unsupervised exploratory analysis brought to
light some data patterns that would allow differentiating between wine vinegars regardless
of their aging time.

Additionally, to corroborate this clustering pattern, as well as the wavenumbers
responsible for this trend, principal component analysis (PCA) was carried out. Figure 2A
shows the scores obtained by the observations for PC1 and PC2. Figure 2B represents the
loadings obtained in each of the PCs. As can be seen, in Figure 2A, the grouping trend was
exactly the same as in HCA. In this case, PC1 (explaining 92% of the variability of the data)
was mainly responsible for the separation of the samples according to the starting wine
vinegar. Thus, PF samples were farther away from the rest, acquiring negative scores for
PC1, while MO and PF samples were closer to each other with positive scores. However,
the three groups were clearly differentiated. Figure 2B gives an idea of the most important
wavenumbers for such a separation. The highest loadings were obtained for the region
from 972 to 1174 cm−1, which is related to hydroxyl group (C–O stretching of alcohol).
In addition, other spectral regions such as 1600 cm−1 (related to aromatic compounds)
and 2850 cm−1 (related to the O–H stretching of acid components) seem to be important
according to the PCA results.

3.2. Supervised Techniques

Both HCA and PCA analyses achieved a quite thorough separation of the vinegar
samples according to the type of starting wine. However, this technique does not allow
predicting future observations; thus, it is necessary to elaborate a predictive model. For
our study, support vector machine and random forest were selected as nonparametric
techniques that would allow a predictive model to be generated. According to the most
recent studies, RF has never been applied to wine or vinegar samples, while SVM has
rarely been used for this purpose [13]. However, both models have exhibited considerable
potential when applied to other foodstuffs [22,23].
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3.2.1. Support Vector Machine (SVM)

Support Vector Machine is a supervised method that is commonly used for classi-
fication purposes. It is based on a concept known as hyperplane. Hyperplanes allow
a clear separation of the items observed according to support vectors. Thus, there is a
hyperparameter known as cost (C) that controls the number of support vectors and, con-
sequently, the balance between bias and variance. Furthermore, for this type of analysis,
a Radial basis function (RBF) is used so that the separation limits are not linear. Thus, a
new hyperparameter known as gamma (γ) is introduced to control the behavior of the
Gaussian kernel. Both hyperparameters are to be determined by the analyst and, for this
purpose, fivefold cross-validation was used [24,25]. In this case, a grid search method
where sequences of C and γ grow exponentially was chosen. Thus, the values in the range
(−10, 10) with an increment step of 0.5 units were taken for log2C and log2γ. Note that,
for the fivefold cross-validation, the dataset was divided into five subsets of equal size.
Four of such subsets were used to train the model, and the remaining one was used as a
test. This process was repeated for each of the subsets. Thus, 8405 models were generated,
i.e., 41 × 41 (combinations of C and γ) × 5 (subsets). Figure 3 represents the log2γ values
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(y-axis) versus the log2C values (x-axis) and the accuracy obtained (z-axis). As can be seen,
for gamma values roughly below 0.031 (log2γ = −5) and cost values above 1 (log2C = 0),
the accuracy stabilized at the maximum level. On the one hand, the best results were
obtained with the lowest values of gamma and, since this hyperparameter controls the
behavior of the kernel, this suggests that the groups were practically linearly separable. In
this case, the optimal gamma value was established at 0.00781 (log2γ = −7). On the other
hand, it seems that the accuracy increased with higher C values. Since this hyperparameter
controls the balance between bias and variance, this indicates that fewer misclassified
observations would be allowed by the hyperplane and, consequently, there would be fewer
support vectors, resulting in a less biased model but with a higher variance. For this
reason, the optimal value for C was established at 1 (log2C = 0), since it was the lowest
value allowing maximum accuracy. In this way, overfitting (lower variance) was avoided,
and excellent performance (lower bias) was achieved, corroborating the robustness of the
predictive model. Using the abovementioned hyperparameters, a new model was trained
and leave-one-out cross-validation (LOOCV) was performed to determine the error. Both
the trained and the LOOCV sets exhibited 100% accuracy, confirming the good performance
of the model.

Foods 2021, 10, x FOR PEER REVIEW 7 of 12 
 

 

the balance between bias and variance. Furthermore, for this type of analysis, a Radial 

basis function (RBF) is used so that the separation limits are not linear. Thus, a new hy-

perparameter known as gamma (γ) is introduced to control the behavior of the Gaussian 

kernel. Both hyperparameters are to be determined by the analyst and, for this purpose, 

fivefold cross-validation was used [24,25]. In this case, a grid search method where se-

quences of C and γ grow exponentially was chosen. Thus, the values in the range (−10, 10) 

with an increment step of 0.5 units were taken for log2C and log2γ. Note that, for the five-

fold cross-validation, the dataset was divided into five subsets of equal size. Four of such 

subsets were used to train the model, and the remaining one was used as a test. This pro-

cess was repeated for each of the subsets. Thus, 8405 models were generated, i.e., 41 × 41 

(combinations of C and γ) × 5 (subsets). Figure 3 represents the log2γ values (y-axis) versus 

the log2C values (x-axis) and the accuracy obtained (z-axis). As can be seen, for gamma 

values roughly below 0.031 (log2γ = −5) and cost values above 1 (log2C = 0), the accuracy 

stabilized at the maximum level. On the one hand, the best results were obtained with the 

lowest values of gamma and, since this hyperparameter controls the behavior of the ker-

nel, this suggests that the groups were practically linearly separable. In this case, the op-

timal gamma value was established at 0.00781 (log2γ = −7). On the other hand, it seems 

that the accuracy increased with higher C values. Since this hyperparameter controls the 

balance between bias and variance, this indicates that fewer misclassified observations 

would be allowed by the hyperplane and, consequently, there would be fewer support 

vectors, resulting in a less biased model but with a higher variance. For this reason, the 

optimal value for C was established at 1 (log2C = 0), since it was the lowest value allowing 

maximum accuracy. In this way, overfitting (lower variance) was avoided, and excellent 

performance (lower bias) was achieved, corroborating the robustness of the predictive 

model. Using the abovementioned hyperparameters, a new model was trained and leave-

one-out cross-validation (LOOCV) was performed to determine the error. Both the trained 

and the LOOCV sets exhibited 100% accuracy, confirming the good performance of the 

model. 

 

Figure 3. Accuracy of the SVM model calculated using k-fold cross-validation according to log2C 

and log2γ values. 

Although the SVM model proved excellent behavior, the nature of the algorithm does 

not allow the selection of the most relevant variables regarding the definition of each vin-

egar spectralprint for classification purposes. Consequently, another nonparametric tech-

nique known as random forest (RF) was used for that purpose. 
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and log2γ values.

Although the SVM model proved excellent behavior, the nature of the algorithm
does not allow the selection of the most relevant variables regarding the definition of each
vinegar spectralprint for classification purposes. Consequently, another nonparametric
technique known as random forest (RF) was used for that purpose.

3.2.2. Random Forest (RF)

Random forest is a nonparametric supervised technique commonly used for classifica-
tion and regression purposes. The RF model is made up of multiple individual decision
trees trained with a series of random training sets generated by bootstrapping (sampling
with replacement). Therefore, there is a data subset, known as out of bag (OOB) which
does not contribute to create the model. Thus, in order to evaluate the model performance,
a cross-validation method of these OOB instances can be used to determine an unbiased
generalization error [26]. Additionally, RF trees are decorrelated by randomly selecting m
predictors before evaluating each split in an individual tree. The m value, known as mtry,
is a hyperparameter to be optimized by the analyst. For classification purposes, the square
root of the total number of predictors is generally set to 24. In addition, a specific number
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of trees in the RF model must be established. In this sense, a greater number of trees does
not result in a greater risk of overfitting, although it should be noted that an excessive
number of trees demands longer computation times. Thus, 23 was selected as the mtry
value, i.e., the square root of the number of predictors (555 variables). In order to determine
the number of trees to be used, models from 2–100 at two-tree intervals were created using
the accuracy of the OOB dataset as the criterion (Figure 4). Although the error stabilized
rather quickly (at approximately 57 trees), it was continued up to the 100-tree model. In
this case, the model with 100 trees was chosen, since it was close to twice the number of
trees where the error stabilized.
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The model accuracy with the training set was 100%. In addition, two external valida-
tions were performed on the OOB and LOOCV sets, with accuracy levels at 97.24% and
100%, respectively. It was, therefore, confirmed that a highly reliable and accurate model
was obtained.

Given the nature of the RF model, it is possible to select the most relevant variables
for classification purposes. In this case, increasing node purity was the selection criterion.

The six most relevant wavenumbers selected in the RF included some signals re-
lated to C–O stretching (1099.28, 1145.57, and 1218.85 cm−1), C–H bending (1457.99 and
1469.56 cm−1), and O–H stretching in a carboxylic acid (2842.7 cm−1). An ANOVA was
performed for each of the selected variables, and all of them were significant at a confidence
level of 5%.

In order to verify that the model remained stable when based on just those data, a
new RF model was elaborated using just those 6 variables. In this case, the value of mtry
was set to 2 and the number of trees was set to 100. The result showed 100% accuracy
for the training set, as well as for the OOB and LOOCV sets. A summary of the accuracy
level achieved by this model (reduced RF) and by the model including all the variables
(complete RF) is shown in Table 1. It is worth noting the higher accuracy obtained on
the OOB dataset by the reduced RF. This could be explained by the random selection of
the samples that make up the OOB set, resulting in hardly any differences between both
models. The high collinearity between the predictors in the spectroscopic data is also
worth noting. Such collinearity could be explained by the related contributions from the
major compounds in the sample, i.e., acetic acid and ethanol, as well as other carboxylic
acids and alcohols. Therefore, by reducing from 555 to six variables, this collinearity was
reduced and, consequently, accuracy was expected to increase. The possible noise reduction
was also expected to contribute to an improvement in the model accuracy. Nevertheless,
given the minor error and that collinearity is not so relevant regarding RF models, both of
them—complete and reduced models—were considered stable.
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Table 1. Accuracy of both RF models for the different validations.

Accuracy (%)

Training Set OOB Set LOOCV

Complete RF 100 97.24 100
Reduced RF 100 100 100

Therefore, the selected variables were used to perform a spectralprint that can be used
as a suitable routine method for the rapid, reliable, and straightforward identification
of wine vinegar types. Figure 5 displays in a radial graph the characteristic spectralprint
corresponding to each type of wine vinegar. In addition, the mean values of the six
variables in each group were normalized to the base peak at 100%. Therefore, intensities
and ratios could be used to clearly distinguish each type of wine vinegar. As can be seen,
the fingerprint created by each type of vinegar was different.
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PF vinegar, in particular, presented its maximum intensity at wavenumber 2842.7 cm−1

and remained below 0.3 at the remaining wavenumbers. This profile was completely
different from that of the other groups, especially at wavenumbers 1099.28 cm−1 and
1145.57 cm−1. The MO and PX vinegar samples presented more similar profiles, as ex-
pected in view of the data from the HCA and PCA analyses, with very high intensities at
wavenumber 1099.28 cm−1. However, even if their values at wavenumbers 2842.7, 1218.85,
1145.57, and 1457.99 cm−1 diverged, the most notable difference appeared at wavenumber
2842.7 cm−1, where MO vinegar showed its maximum intensity, while PX vinegar reached
an intensity around 0.7. The remaining variables, as well as their ratios, were also differ-
ent for each type of vinegar, thus giving different spectralprints that can be used for the
discrimination of the vinegar samples based on the starting wine. This notable signal at
2842.7 cm−1 can be attributed to the O–H stretching in carboxylic acid, which suggests
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that it is similarly and directly related to both prefermentative and fermentative acids, i.e.,
tartaric, malic, and/or citric acids and succinic, lactic, and acetic acids respectively.

The specific wavenumbers in the spectrum are strongly related to certain specific com-
ponents associated to the organoleptic properties of vinegar. Thus, some absorptions by
hydroxyl groups (C–O stretching of alcohol) were specifically recorded between 1010 cm−1

and 1150 cm−1. These absorptions came from ethanol and fusel oils, including propyl alco-
hol, butyl alcohols, isoamyl alcohols, and hexanol—all of them associated with organoleptic
properties. The wavenumbers 1099.28 and 1145.57 cm−1, which were previously identified
as the most relevant values with regard to the discrimination of PF vinegars from the other
wine vinegars, were within this region. The region between 2840 cm−1 and 2940 cm−1

presented several absorptions resulting from the O–H stretching of the acid components.
The most relevant ones were organic acids such as acetic and tartaric, as well as citric, malic,
succinic, and lactic acids. As already mentioned, wavenumber 2842.7 cm−1 within this
range is quite relevant regarding the discrimination of both PX and MO vinegars. The
region between 1450 cm−1 and 1510 cm−1 describes the absorptions related to aromatic
rings (C=C–C stretching). The wavenumbers 1457.99 cm−1 and 1469.56 cm−1 in this region,
which were selected to generate the spectralprints, are associated with many of the aromatic
compounds in these vinegars. Lastly, the wavenumber 1218.85 cm−1 is related to C–O
stretching in different kinds of compounds (region from 1200 to 1225 cm−1).

4. Conclusions

FT-IR combined with chemometric tools was demonstrated to be a quite practical
methodology for the characterization of Sherry vinegars according to their origin. Specifi-
cally, the SVM algorithm applied to the vinegar samples achieved 100% accuracy of the
LOOCV. The RF model also displayed an excellent performance at 100% LOOCV and
97.23% OOB accuracy. In addition, the six most relevant wavenumbers were selected from
the RF model to create a new RF model that achieved 100% accuracy for both validations
(LOOCV and OOB). This is the first time that the RF algorithm has been applied to wine and
vinegar samples, and that its validity and robustness have been demonstrated. In addition,
the six most relevant wavenumbers were also used to create a characteristic spectralprint
for each type of wine vinegar, which allowed their rapid, reliable, and uncomplicated
differentiation according to their starting wine.

To conclude, spectroscopic techniques were proven to be nondestructive and environ-
mentally friendly methodologies with the capacity to provide rapid and highly reliable
results regarding the characterization of vinegars. This, together with their simplicity
of use, portability, and low-demanding investment, makes them a highly recommended
methodology for in situ routine control of the production and aging processes of vinegars
in wineries. In addition, a web platform can be developed with the generated models in
order to facilitate data analysis for other users, making the characterization process even
easier and more automated.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/foods10061411/s1: Figure S1. FT-IR spectrum of all of the samples (D48×555). Samples are
colored according to the type of wine vinegar: MO (pink), PF (green), and PX (blue).
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