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Abstract

Background: Endothelial healing after deployment of cardiovascular devices is particularly important in the context
of clinical outcome. It is therefore of great interest to develop tools for a precise prediction of endothelial growth
after injury in the process of implant deployment. For experimental investigation of re-endothelialization in vitro cell
migration assays are routinely used. However, semi-automatic analyses of live cell images are often based on gray
value distributions and are as such limited by image quality and user dependence. The rise of deep learning algorithms
offers promising opportunities for application in medical image analysis. Here, we present an intelligent cell detection
(iCD) approach for comprehensive assay analysis to obtain essential characteristics on cell and population scale.

Results: In an in vitro wound healing assay, we compared conventional analysis methods with our iCD approach.
Therefore we determined cell density and cell velocity on cell scale and the movement of the cell layer as well as the
gap closure between two cell monolayers on population scale. Our data demonstrate that cell density analysis based
on deep learning algorithms is superior to an adaptive threshold method regarding robustness against image
distortion. In addition, results on cell scale obtained with iCD are in agreement with manually velocity detection, while
conventional methods, such as Cell Image Velocimetry (CIV), underestimate cell velocity by a factor of 0.5. Further, we
found that iCD analysis of the monolayer movement gave results just as well as manual freehand detection, while
conventional methods again shows more frayed leading edge detection compared to manual detection. Analysis of
monolayer edge protrusion by ICD also produced results, which are close to manual estimation with an relative error
of 11.7%. In comparison, the conventional Canny method gave a relative error of 76.4%.

Conclusion: The results of our experiments indicate that deep learning algorithms such as our iCD have the ability to
outperform conventional methods in the field of wound healing analysis. The combined analysis on cell and
population scale using iCD is very well suited for timesaving and high quality wound healing analysis enabling the
research community to gain detailed understanding of endothelial movement.
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Background
In the past decade enormous progress has been made in
the field of cardiovascular research and device develop-
ment. In particular the performance of stents and trans-
catheter aortic valve prosthesis has been proven in
multiple clinical trials (reviewed in [1, 2]).
Endothelial healing after deployment of cardiovascular

devices is particularly important in the context of clinical
outcome. Healthy endothelial cells (ECs) line the inner
wall of every vessel and are known to suppress inflam-
mation, re-stenosis and thrombosis. Numerous studies
points out that endothelial recovery following injury due
to device deployment is one of the most important limit-
ing factors in coronary healing after stent implantation
[3–5]. Furthermore, it was observed that endothelial
proliferation and functions are highly dependent on the
surface material [6, 7]. Therefore, the restoration of a
functional EC monolayer on the surface of implanted
devices represents an essential therapeutic goal to avoid
severe clinical complications [8, 9].
For in vitro investigation of re-endothelialization,

migration assays, generating a defined gap between two
cell monolayers, are routinely applied [10]. In general,
research objectives and thus analysis methods of cell
assays can be categorized into two different levels: popu-
lation scale and cell scale [11].
The subsequent analysis on a population scale such as

gap closure is based on temporal observations obtained
by live-cell imaging techniques and basically compares
the duration of wound closure, in response to different
chemical or mechanical stimuli [10]. Population scale
analysis distinguishes only between the cell monolayer
as an entity and the wound. This approach can be imple-
mented easily and is therefore widely used.
Particularly ECs are exposed to mechanical stimuli

generated by the blood flow and as a result the process
of wound healing comprises different aspects of cell mo-
tion such as directed migration of the border cells, au-
tonomous random migration of the inner cells and
coordinated cell motion within the endothelium [12, 13].
To distinguish between the different types of cell mo-
tion, analysis of cell velocity on an individual cell scale is
essential and must thus comprise the influence of local
hemodynamic conditions on migration and directionality
of EC movement.
To date, manual methods are applied to either count

single cells or track their movement over sequential
images [10]. This method is simple but it is also very
time consuming and leads to user-dependent results.
Therefore, an automated detection and segmentation
of the cells is one key factor to analyze cellular kine-
matics and thus gaining an understanding of how cells
behave and respond to changes in their local
environment.

Numerous attempts have been made, which address
this problem using automated methods. However, auto-
mated analysis of live cell images are often based on gray
value threshold or gray gradient methods, such as the
Canny method [14]. These analyses are limited by their
sensitivity to variations in contrast, brightness and noise.
Furthermore, assay contaminations or air bubbles may
lead to erroneous cell detection. To overcome these limi-
tations additional manual post-processing steps of image
analysis are required [11]. Consequently, the number of
cells to be detected must be kept small.
Several research groups pointed out that the rise of

deep learning algorithms, such as Convolutional Neural
Networks (CNNs), offers promising opportunities for ap-
plication in medical image analysis [15, 16]. CNNs, such
as the U-net architecture, are known as state-of-the-art
machine learning subgroup of deep neural networks and
have already proven their immense potential for image
segmentation [17, 18]. In fact well-trained deep neural
networks even exceeded human experts [18]. Numerous
U-net versions have been presented to address segmenta-
tion problems in the field of medical image analysis [17].
Here we present an intelligent cell detection (iCD) net-

work based on deep learning approach for a comprehen-
sive assay analysis to obtain essential characteristics for
cell scale and population scale. The detection and track-
ing of individual cells based on iCD are the fundament
for further analysis of the wound healing assay and pre-
diction of wound closure. To evaluate our iCD approach,
we compared the results of important metrics based on
conventional methods such as Canny method and Cell
Image Velocimetry (CIV) as well as manual detection
methods in an in vitro dynamic wound healing assay to
the results obtained by iCD. Therefore we derived re-
sults of relevant metrics on cell scale such as cell density
and cell velocity from cell detection and tracking. In
addition, edge protrusion and wound closure, which are
often used as metrics on the population scale, were also
derived from individual cell detection by iCD. With our
robust CNN-based iCD approach we are able to bridge
the gap between automated cell-scale and automated
population-scale analysis.

Results
Some research groups are working intensively on the au-
tomated evaluation of wound healing experiments. Re-
cently, deep learning methods have also been evaluated
for this application. Often, the focus is on tracking cells,
generating cell paths and deriving information about cell
interactions. For example, Ulicna et al. developed an
analysis tool (DeepTree) consisting of two neural net-
works, one for segmentation (U-net) and the other for
deciding the status of the cell, like mitosis and apoptosis
[19]. Other groups focus more on segmentation accuracy
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by developing and establishing new network structures
[20–23]. They derive metrics from cell experiments that
can be evaluated using positional information from
individual cells. But, information on population scale,
particularly in wound healing, is lacking. Recently, Javer
et al. published a different deep learning approach for
analyzing scratch assays. They do not concentrate on the
exact segmentation of cells but on the positional prob-
ability of the cell center for investigation of collective
cell motion of scratch assays (DeepScratch).
We present a deep learning MATLAB application for

investigation of live cell images on cell scale and popula-
tion scale. For demonstration a wound healing experi-
ment under different flow conditions (1.5 dyn vs. 10 dyn)
was used. The workflow of the MATLAB application is
shown in Fig. 1.
The MATLAB application consists not only of the U-

net based iCD module but also of a training module.
The training module starts with semi-automatic labeling
of live cell images from wound healing assays. For this
purpose, we created an algorithm with an adaptive
thresholding method for segmenting cells and manually
processing incorrect or inaccurate segmentations. This
labeled data can be augmented to increase the training
data and decrease the number of semi-manual cell labels
needed. For creating the iCD network, we used a U-net
architecture developed by Ronneberger et al. [24]. Using
the trained network, we focus on segmenting each cell
as accurately as possible. The segmented cell images
were used for different application on cell scale (spatial
distribution of cell density and cell velocity) and popula-
tion scale (leading edge detection and wound closure
analysis).

Cell detection and segmentation
Cell detection is the initial step for further analysis pre-
sented in this paper. Live cell images of wound closure
were obtained every 15 min over a period of up to 10 h.
For validation of the iCD training we calculated the
intersection over union (IoU), and the Boundary overlap
ratio (F1-score) using 42 cell images with at least five
cells at each frame. Overall 1467 individual cells were
manual segmented. The IoU and F1 was computed for
each of the Images using the MATLAB function ‘jaccard’
and ‘bfscore’. The mean IoU reaches a value of 0.8214 ±
0.038 and the F1 score 0.9178 ± 0.045. Manually, an
average of 34.93 cells were detected on the validation
images, while the iCD method detected 32.83 cells on
the validation images (p-value: 0.644). Therefore, there is
no statistically significant difference in the number of
cells counted.
The adaptive threshold method is based on the local

grey value distribution. Therefore, we manually defined
a certain region of interest as well as a threshold sensi-
tivity, which means that this method cannot be consid-
ered user independent. An area of interest of 161 × 121
pixels and sensitivity 0.5–0.7 were suitable parameters.
To assess differences between the described methods,
we applied the different cell detection methods (iCD,
adaptive threshold method and freehand detection) to
calculate the initial cell density in a dynamic wound
healing assay using human coronary artery endothelial
cells (HCAECs, see Cell density section).

Cell density
We compared different cell detection methods (iCD,
adaptive threshold method and freehand detection)

Fig. 1 Workflow of deep learning MATLAB application for valid usage of iCD network. Live cell images from cell culture experiment were labelled
manually supported by the implemented semi-automatic labeling module, which is based on the threshold method. Segmented image and the
corresponding raw image form an image pair. By using rotating, scaling and skewing the image pair is augmented which creates a multiplied
dataset for training. iCD Network is trained by using the raw image and the manually (semi-automatic) labelled image as input. Validation is
performed by using only raw images only as input to the iCD Network and comparing the results with manually (semi-automatic) labelled image.
After successful iCD training and validation, the network can be applied to novel live cell images to analyze cell motion at cell scale and
population scale
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regarding their suitability for cell density assessment. For
cell density analysis each image was divided into 50 col-
umns, analogous to Jin et al. [10]. The number of cells
was counted in each column and the total number of
cells, per column was divided by the column area to ob-
tain the cell density for each column. For illustration of
the quality of the different approaches Fig. 2 exemplarily
presents detected cells of a cell culture experiment.
For adaptive threshold we observed an overall relative

error in the total cell count of 1.6% and for our iCD ap-
proach 8.5%. The relative error refers to manual data.
To evaluate the temporal wound healing process, the

column-averaged cell density, obtained by the adaptive
threshold method and by the iCD approach, was plotted

for each time point. Exemplarily Fig. 3 depicts the results
obtained by iCD (t = 0 h up to 10 h, Δt = 15min).
The live cell images were of high quality (Fig. 2) re-

garding noisiness. Next, the robustness of these two
methods against image distortion was tested by manipu-
lating high-quality raw images applying the MATLAB
Gaussian noise filter. The analysis of cell density was re-
peated by means of adaptive threshold method and iCD
using the distorted images (Fig. 4).
In general, both methods showed similar cell density

values and distribution when using high-quality raw im-
ages (Fig. 4a and c). The asymmetry of the gap closing is
caused by the use of live cell images under flow condi-
tions. By applying the MATLAB Gaussian noise filter,

Fig. 2 Detection of initial cell density by means of adaptive threshold method, intelligent cell detection (iCD), and manual detection. HCAECs
were seeded in a 2-well insert (ibidi) and grown to confluency. Subsequently, the insert was removed to generate a defined gap between two
monolayers of HCAECs. Over a period of 15 h gap closure was monitored by live cell imaging under dynamic conditions applying a shear stress
of 1.5 Pa. a Shown here is a representative image of gap closure at t = 7.5 h after removal of the insert. b The cell density [cell counts / mm] was
obtained by column wise averaging of the Y-coordinate of the live-cell image. The manually marked cell centers and the corresponding cell
density distribution are in green, the iCD detection is in blue and the adaptive threshold detection is plotted in red
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the cell density of the scratch obtained from the adaptive
threshold method differs from the former results using
the high-quality raw images (compare Fig. 4c and d).
Especially in the region of the gap, where no cells are
present, noisy images lead to erroneous cell detection.
However, the results of the iCD method were barely in-
fluenced by image manipulation as shown in Fig. 4b
compared to adaptive threshold (compare Fig. 4a).

Cell velocity
We compared different approaches to validate the detec-
tion of cell motion: adaptive cell image velocimetry (CIV),
iCD-based cell tracking and manual tracking of individual

cells (Fig. 5a). The latter was used as reference. Since the
gap between the cell monolayers is positioned perpendicu-
lar to the x-direction, averaging characteristics in the y-
direction (column-wise), such as the cell velocity, are as-
sumed to be valid. Based on the velocity field of ECs
column-wise averaging of the velocity magnitudes was
performed, resulting in a velocity function, which only de-
pends on the x-direction. As reference, the cell velocity
was investigated three times by manual cell tracking for
one time step (at time point t = 7.5 h, Δt = 15min);
Fig. 5a). This time step was selected because the wound
healing was well established and therefore all cells were
set in motion, even at a distance from the gap.

Fig. 3 The cell density distribution for the time step t = 3.75 h (left) and 3D illustration of the temporal process (t = 0 h to 10 h; 40 live cell
images) of wound closure according to cell density distribution. Cell density was obtained by using iCD method

Fig. 4 Temporal and spatial cell density distribution. a ICD b ICD with noise c adaptive threshold d adaptive threshold with noise
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We obtained an average velocity magnitude of 0.031
mm/h with an absolute and relative error between differ-
ent manual analyses of 7 mm/h and 22%, respectively.
The relative error refers to manual data. The average
velocity detected by CIV was 0.012 mm/h with an aver-
aged absolute and relative error of 0.020 mm/h and
62.7% compared to manual tracking. The average vel-
ocity detected by iCD was 0.036 mm/h with an averaged
absolute and relative error of 0.0047 mm/h and 14.5%,
compared to manual tracking.
To investigate the cell velocity during the healing

process we applied the adaptive CIV and iCD method
on every live cell image (t = 0 to t = 24 h). The results
are plotted in Fig. 5b and c. A difference between the
cell velocities resulting from iCD and CIV was also ob-
served over time. For example, a maximum cell velocity
of > 0.05mm/h was determined using iCD, whereas the
highest cell velocity values for CIV were 0.03 mm/h.

Leading edge detection and wound closure analysis
Leading edges were detected by the conventional Canny
method (orange), by a second deep learning approach:
called intelligent direct scratch detection (iDSD) (light

blue), iCD (dark blue), and manual (green), see Fig. 6
(time point = 3.75 h). The leading edge obtained by
Canny method and iDSD show a tendency to become
more frayed, while the contour obtained from the iCD
method is in better alignment to the freehand line.
A quantitative evaluation of the leading edge detection

can be achieved by the highly sensitive edge length or
so-called edge protrusion. Again, we compared the
Canny method, our two different CNN approaches
(iDSD and iCD) against the freehand edge as reference.
The edge length was measured every 15 min over 6 h. In
Fig. 7(a-d) we plotted the absolute edge length of both
upstream and downstream edges. Manual data were ob-
tained three times for each time frame. The average
values at each time point is displayed in the diagram,
with its corresponding standard deviation and is used as
reference for the relative error computation. For statis-
tical analysis the relative errors of leading edge protru-
sion are compiled in a boxplot shown below (Fig. 7e).
The relative error in the determining of the leading

edge protrusion is lowest for freehand values, but even
here a relative error of 5.9% is found on average. Refer-
encing the freehand line, the iCD method has the lowest

Fig. 5 Spatial and temporal cell velocity: a Velocity field of EC at time step 7.5 h and c Column-wise averaged velocity magnitude for iCD method
(blue), CIV method (green) and Manual (orange and red) b Temporal and spatial velocity magnitude distribution in mm/h for CIV method and d)
ICD method ranging from 0 h to 24 h
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relative error regarding edge protrusion (11.7%) and has
the smallest variation around the mean value. An aver-
age relative error for left and right edge protrusion of
76.4% were found using the Canny method and 42.4%
using the iDSD approach. All methods detected an in-
creasing edge length, which indicate the migration of pi-
oneer cells into the wound. In general, the Canny
method overestimated the edge length compared with
freehand detection.
The wound healing process can also be quantified by

the position of the leading edge as a function of time.
Therefore, based on the former edge detection the
spatially averaged edge position was calculated at differ-
ent time steps (Fig. 8a, b) using Canny, iDSD, and iCD
method in comparison to the freehand analysis (3 inde-
pendent datasets were used). For statistical analysis the
relative errors of spatially averaged edge positions are
compiled in a boxplot shown below (Fig. 8c).
All methods detect a comparable wound healing be-

havior. It can be seen, that under low flow (1.5 Pa) the
upstream edge is slightly faster than the downstream
edge. The difference is more pronounced with increasing
flow (10 Pa). Even if the Canny method is distorted by
imaging artefacts, the edge position is in a very good
agreement with the manual detection due to spatial
averaging. The iDSD localized upstream edge behind the
edge positions, which were obtained by other methods.
The reason for this is shown in an example image, where
the direct detection of the edge works very well in the
beginning and can lead to false detection in the further
time through changes of the image quality (Fig. 8).
When determining the spatially averaged edge position,
the iCD method shows the same mean relative error

(2%) as freehand, but a slightly higher variation. Both the
Canny method (2.6%) and the iDSD (4.2%) approach
showed higher relative errors in the determination of the
spatially averaged edge position.

Discussion
Here we present a novel approach based on deep convo-
lutional neural networks – called intelligent cell detec-
tion (iCD) – to enable a reproducible, user-independent
method for the accurate evaluation of in vitro wound
healing assays both in population as well as cell scale.
To evaluate the suitability of our iCD approach, we com-
pared results based on currently used adaptive and man-
ual detection methods in an in vitro dynamic wound
healing assay to the results obtained by iCD. Overall,
iCD provides user-independent results regarding cell
density, cell velocity, leading edge detection, edge pro-
trusion, and wound closure with a substantially lower
susceptibility to errors than comparable methods.

Cell detection and segmentation
The utilized U-net architecture has previously been
proven to be highly suitable for CNN-based segmenta-
tion [24], which is further confirmed by the present
study. It is of particular benefit, that only very few anno-
tated images are needed to train the network on the one
hand owing to the structure of the network containing
feature concatenation (bridging) of the down and up-
ward convolutions and on the other hand due to exces-
sive image augmentation. We successfully trained the
neural network and scored IoU values that are compar-
able to those in literature. The IoU reaches a value of
The mean IoU reaches a value of 0.8214 ± 0.038 and is

Fig. 6 Leading edge 7.5 h after starting of wound healing assay. The predicted leading edge using conservative Canny method is plotted in
orange, as well as from iCD in dark blue, the iDSD in blue and freehand in green
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in a range of the IoU values presented by Ronneberger
et al. (IoU = 0.9203 for segmentation of Glioblastoma-
astrocytoma U373 cells and 0.7756 for segmentation of
HeLa cells) [24]. The results showed that our iCD
method is performing as good as conventional methods
such as adaptive thresholds methods when using high
quality images. To demonstrate the superior segmenta-
tion by iCD, we tested our method using distorted cell
images. Exemplarily, Fig. 9a show a live cell raw image,
the artificially distorted image (Fig. 9b) and the resulted

segmentation utilized the adaptive threshold method
(Fig. 9c) and our iCD method (Fig. 9d).
It should be noted that the outlined method can also

be applied to wound healing experiments with any other
cell line. Other microscopic cell experiments, involving
population and cell scale correlations, can also be
analyzed.
There are two options using the pre-trained MATLAB

application that will be uploaded on MATLAB file ex-
change. Option 1: If the pre-trained network achieves

Fig. 7 Edge protrusion of the upstream and downstream edge under different flow conditions 1.5 Pa and 10 Pa. a Protrusion of the downstream
and b upstream leading edge at 1.5 Pa and c downstream and d upstream leading edge at 10 Pa using conservative Canny method (orange), as
well as iCD (dark blue), iDSD (blue) and freehand (green) e Relative errors plotted as boxplot diagram compiled from a-d. The median is plotted
as a vertical line in the box The upper box bound corresponds to the median of the upper half of the data and so also for the lower part. The
mean is shown as a cross. The length of the whisker corresponds to 1.5 times the distance between the lower and upper box boundary; outside
this range, the data are marked as outliers (circle)
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sufficiently good segmentation results, the network does
not need to be retrained and the user can apply the pre-
trained software implementation. Option 2: If the seg-
mentation results are insufficient, the network can be re-
trained and re-validated. The user is supported by the
implemented semi-automatic training module, which is
based on the threshold method.

Cell density
Local cell density is a crucial quantitative metric for the
evaluation of cell migration and proliferation [6] and is
therefore used to describe the progress of wound heal-
ing. In this context, wound closure is highly sensitive to
the initial cell density. It has been shown, that the detec-
tion of the initial cell density could enhance the repro-
ducibility of wound healing assays [10]. We were able to
prove that CNN-based cell density analysis is superior to
an adaptive threshold method, particularly when the
image is distorted. The obtained temporal cell density

function could be useful for parameter identification for
future analysis by the Fisher Kolmogorov approach [25].

Cell tracking and cell velocity
Detailed information about collective cell migration is
necessary to enhance the biological understanding of
wound healing, cancer invasion as well as embryonic
morphogenesis and tissue remodeling [26]. The former
analyzed cell density only provides information of the
cell distribution along wound healing process but does
not describe the cell motion. Franco et al. pointed out
that the velocity depends on the cells position regarding
the wound, on the shear forces applied and on the top-
ography of the substrate [27]. As consequence, not only
the velocity value but also the directionality of the cell
motion is a relevant factor for detailed cell analysis.
Thus, we compared the results obtained by the com-
monly applied CIV tracking with the results obtained by
iCD-based as well as manual tracking. Due to the
principle of the CIV method, it is possible to measure

Fig. 8 Spatial averaged edge position calculated at different time steps, depicts the wound closing rate at a 1.5 Pa and b 10 Pa. Using
conservative Canny method (orange), as well as iCD (dark blue), iDSD (blue) and freehand (green) c Relative errors plotted as boxplot diagram
compiled from a and b. The median is plotted as a vertical line in the box The upper box bound corresponds to the median of the upper half of
the data and so also for the lower part. The mean is shown as a cross. The length of the whisker corresponds to 1.5 times the distance between
the lower and upper box boundary; outside this range, the data are marked as outliers (circle)

Fig. 9 Segmentation example under image distortion, a original Image b image with applied Gaussian noise c segmentation using adaptive
threshold d segmentation using iCD approach
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collective cell movements by using adaptive correlation
as an established post-processing routine for PIV, which
was former developed for fluid flow measurements.
Recently, this routine has also been used for non-hydro
applications such as cell velocity measurement [28–32].
We tested the commercially available adaptive PIV algo-
rithm from Dantec Dynamics. However, open source
software is also available, [33] and has produced com-
parable results in additional tests. Our data show that
the column-wise averaged cell velocity determined by
CIV differs from the results obtained by iCD and manual
tracking by a factor of 0.5. These findings are in accord-
ance with assumptions in current literature, which states
that the CIV method does not detect the physical vel-
ocity of the cell monolayer, since deformation and prolif-
eration of the cells are also mistakenly considered as cell
motion [32]. But they assumed a valid impression of the
monolayer movement, since the errors occur in all direc-
tions. Furthermore, directionality as well as velocity gra-
dients of the monolayer can be derived directly from the
CIV dataset. It has to be noted that trajectory of individ-
ual cells cannot be investigated because the grey value
shift of the substrate in a certain interrogation area is
interpreted as velocity and not the motion of individual
cells [29].
For iCD-based cell tracking we used the nearest-

neighbor-algorithm. This cell tracking algorithms are
often extended by a prior estimation of the future pos-
ition of the cell using kinematic models. However, in
our case we have not found any benefits of this extended
method, because the movement of the cells is often not
continuous over time and so the estimation of the future
position is limited. If individual cells cannot be detected
consequently for every live cell image, it is possible that
the tracking algorithm links false cells. One can partly
counteract this failure by entering a maximum length of
cell motion (R) during one time step, which is recom-
mended to the user. When selecting the maximum
length of cell motion, care should be taken to ensure
that the length is not too small to prevent a systemic
threshold of larger cell velocity. Based upon the evalu-
ation of the manual tracking of our cell experiments we
set R between 25 and 30 Pixel, corresponding to a
velocity between about 0.14 mm/h to 0.17 mm/h. The
resulted velocity range is slightly above the maximal cell
velocity (< 0.1 mm/h). This ensures that the cell moves
within the previously defined radius. Our results showed
good qualitative and quantitative agreement with our
manual tracking of cells. Despite the fact that we used
the particle tracking algorithm provided by Dantec
Dynamics, we would like to mention that any other
tracking algorithm can be applied as well, such as the
MATLAB implemented algorithm by Tinevez et al. [28],
which gave us very similar results.

Wound closure analysis
We compared the common Canny method for population-
scale analysis of EC monolayer with respect to edge protru-
sion and gap closure to our iCD approach and manual
tracking. A valid detection of the leading edge is an import-
ant population-scale metric [11]. In particular, the edge
protrusion is useful metric to evaluate the influence of pi-
oneer cells on wound healing under various flow conditions
[27]. An attempt to directly detect the gap and differentiate
it from the cell monolayer, using U-net based direct scratch
detection (iDSD), shows no advantage over the conven-
tional method. The iDSD as well as the Canny method are
not able to distinguish between artefacts due to contamin-
ation or image distortions and the EC monolayer. So pollu-
tion and air bubbles can lead to false detection. Especially
when the gray scale distribution and the gradient of the ar-
tifacts are comparable to the EC, both methods are prone
to errors. This differs from the iCD method, in which the
individual cells are segmented and not only the monolayer
as an entity. Furthermore, the iCD post-processing routine
automatically removes small elements, such as artifacts and
contaminations, with improbable cell size. In conclusion
the detection of the leading edge based on individual cell
detection by our iCD approach gave results which are in
better agreement with the freehand detection than the
commonly applied Canny method and iDSD approach
(Figs. 7, 8, 9). The iCD method allows a comprehensive
analysis of the motion of the cell front or leading edge and
provides essential information on frequently asked ques-
tions: (i) How does the geometry of wound affect the
velocity of the leading edge? [11, 34], (ii) How does mech-
anical stress affect the velocity of the leading edge? [27] or
(iii) How does cell density affect the velocity of the leading
edge? [10].

Conclusions
Setting up in vitro live cell imaging experiments itself
can be challenging as cells die, air bubbles or pollutants
are trapped or objects in the image are difficult to distin-
guish from the background. This means that the re-
searcher may not always achieve a high image quality for
further analysis. But currently applied methods for ana-
lysis of wound healing assays are prone to errors espe-
cially for heterogeneous background brightness, variable
lighting conditions and similar gray scale distribution of
object and background. Deep learning algorithms, such
as CNN, promise to overcome the limitations of cur-
rently applied methods. In a CCN-based iCD analysis of
a wound healing assay, we demonstrate that this ap-
proach is superior to a commonly applied adaptive
threshold method in terms of robustness against image
distortion. Furthermore, we post-processed the results of
individual cell tracking for population-scale analysis such
as edge protrusion. The obtained results are in very good
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agreement with freehand edge detection. The Canny
method, a commonly used conventional threshold
method, leads to higher protrusion values due to false
cell edge detection. The attempt of direct scratch detec-
tion using an U-net architecture also showed too high
protrusion values. Up to now, researchers manually
tracked individual cells in tedious, time consuming stud-
ies to obtain information about the behavior of cells on
the cell-scale, or they developed new strategies to obtain
information about the population-scale in an automated
way. With our robust CNN- based iCD approach we are
able to close the gap between automated cell-scale and
automated population-scale analyses.
Our approach outperformed conventional methods

and is therefore feasible for comprehensive wound heal-
ing analyses and provides spatial and temporal resolved
information of the endothelialization process. Such an
approach is currently needed for the development of
next generation cardiovascular implants with improved
endothelial recovery.

Methods
Wound healing experiments
Human coronary artery endothelial cells (HCAEC) were
purchased from Cell Systems, Germany. To evaluate
initial cell growth, HCEAC were used at passage 3 to 5
and cultured in endothelial cell growth medium (Cell
Systems, Germany) containing 10% fetal calf serum
(FCS). Cells were seeded with a density of 3 × 105 cells/
mL in Culture-Inserts 2 Well (Ibidi, Germany) on a
25 × 75mm Thermanox™ coverslip (fisher scientific,
Germany). According to the manufacturer’s instructions,
70 μL of the cell suspension was added to each well.
After 24 h the insert was removed, thereby generating an
accurate longitudinal gap between both monolayers of
approx. 500 μm. Subsequently, the coverslip was at-
tached to a 0.8 mm sticky-slide I Luer perfusion channel.
Using the ibidi pump system (Ibidi GmbH, Germany),
endothelial cells were exposed to a constant laminar wall
shear stress of 0.15 Pa or 1 Pa in an incubator (5% CO2,
95% H2O). Additionally, control samples were kept
under static conditions. In the incubator, cell movement
was monitored over a period of 15 h using the JuLiTM
Life Cell Analyser (NanoEnTek, Korea). Every 15 min a
live-cell image was captured. Since this work is intended
to serve as a basis for future studies on cell growth
under flow conditions, all results presented here are
based on wound healing assays under flow.

Cell detection and segmentation
In order to segment the endothelial cells we used the
U-net semantic segmentation network, developed by
Ronneberger et al. 2015 [24]. Here, we utilized a vari-
ation of the network implemented in MATLAB

consisting of 3 encoder and decoder stages. Each con-
traction stage consists of two convolutions (3 × 3)
with a linear activation function (ReLU) followed by
2 × 2 maximal pooling layer. The stages of the upsam-
pling side of the network consist of transposed con-
volutions and the concatenated feature maps from the
corresponding downsampling path as well as following
ReLU layers [24, 35], see Fig. 10.
The Network structure was generated by using MATL

AB’s pre-implemented function unetLayers. For more
detailed descriptions of the network, refer to Ronneber-
ger et al. 2015 and to the MATLAB documentary. To
classify each pixel we used a softmax layer. The network
loss during training was calculated by Tversky-Loss
function, which balances false positive and false negative
detections (weighting factors: alpha, beta). Therefore, the
MATLAB implementation of Salehi et al. was used,
whose work is recommended to gain a detailed under-
standing [36].
Using U-net, a wide range of image sizes can be seg-

mented. The only limitation of the segmentation process
is that the edge lengths of feature maps must be even
before applying the max-pooling. To use any image size
the image needs to be mirrored at the edges and
cropped to the required size. Mirroring at the edges also
has the advantage that cells at the image border can be
segmented without artifacts [35].
To separately segment cells that are close to each

other cells and cell border were labelled separately as de-
scribed by Ronneberger et al. 2015 [24].
For Training we semi-manually segmented cell images

using an adaptive thresholding algorithm and manually
fine-tuned the predictions. Therefore, a customized
graphical user interface was programmed, which easily
allows the user to generate additional training images in
order to improve the segmentation result of the network
on specific cell images. In this way 280 arbitrary sized
training images were segmented. To train the network
sufficiently with few training images, it is absolutely
necessary, to perform data augmentation. In each epoch
we generated up to 100 augmented images from one
original training image by applying random skewing,
rotation, translation and brightness variation. The aug-
mentation of the images was performed on the fly, using
the imageDataAugmenter function in MATLAB.
In order to solve the minimization problem we used

an adaptive momentum solver with a learning rate of
0.001. As one of the most important hyperparameter for
the training; the learning rate was reduced by multiply-
ing 0.9 in every epoch. Before training, the image data
were normalized between 0 and 1. Training worked out
well with a small mini-batch size of 30 images. To avoid
that the network is only learning structures from the last
training images, the data was shuffled before each epoch.
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As weighting factor for the Tversky-Loss we achieved
the best results with alpha = 0.3 and beta = 0.7. The net-
work was trained on an Nvidia GTX 1500i with 4GB
GDDR5 RAM with Cuda 10.2.
The output of the network is an image, which is seg-

mented into background, cell and cell-border. We ap-
plied a median filter on the segmentation results to
remove noisy predictions. For further processing the re-
sults were binarized with the background. Therefore,
cell-borders were set to 0 and cells were set to 1. Ac-
cordingly, all connected pixel regions form an individual
cell. To validate the segmentation results, Jaccard matrix
was used and referred to as Intersection over Union
(IoU) and the F1 score. This metric also penalizes false
positives.
For conventional cell detection we applied an adaptive

threshold method in MATLAB by using the Image Pro-
cessing Toolbox (MATLAB R2019b). This threshold was
adjusted based on the locally calculated mean grey value
field. In our study, a size of 161 × 121 pixel was chosen
as neighborhood for the calculation of the mean inten-
sity. A sensitivity factor (ratio of background and fore-
ground pixels) was set manually, which allows for an
adaptation to the particular cell series. Using morpho-
logical operations, holes in detected cells were closed
(imfill) and very small segmentations below the manual
observed minimal cell size were removed (bwareaopen).

Cell tracking and cell velocity
Cell tracking based on iCD
By means of the iCD approach individual endothelial
cells were detected on every live cell image. As a result
we were able to define the position of an individual cell
by the centroid of the cell area and each individual cell
was assigned by a unique ID. The challenge of cell track-
ing lies in the recognition of individual cells in sequen-
tial images. For our cases we applied the so-called
nearest-neighboring-algorithm, see Fig. 11. According to
this method the nearest cell centroid on the following
frame is assigned to the cell center of the previous
frame. The quality of the algorithm was increased by de-
fining a maximum length of cell motion (R), which is an
additional criterion for cell recognition.

Cell image Velocimetry (CIV)
The Cell Image Velocimetry (CIV) approach originates
from Particle Image Velocimetry (PIV) method which
widely used in fluid mechanics [32]. PIV is a full-field
post-processing method for the determination of velocity
fields in fluid flows. For this purpose, correlations be-
tween small subunits, so-called interrogation areas (IA),
of two sequential images were determined. From the dis-
placement (grey value shift) and the time step between
the sequential images, a velocity vector was obtained for
each IA [29, 37]. Tracer particles which are usually

Fig. 10 Schematic representation of the network training of the used U-net architecture to segment live cell images of endothelial cells in
wound healing experiments. The network is composed of 3 down-sampling convolutional steps and 3 up-sampling stages of de-convolutional
layers, the dimensions and number of feature layers of the steps is noted below the blocks (x-dimension, y-dimension, feature layers). The
coloring of the blocks stands for: Input Image (blue), convolutional layer (orange), de-convolutional layer (apricot), max-pooling (purple), drop out
(cyan), rectifier layer – ReLU (red), classification output (green). The loss during training is computed due to Tversky-loss function. The final
segmentation results are pixels that are classified in cell, border or background

Oldenburg et al. BMC Molecular and Cell Biology           (2021) 22:32 Page 12 of 15



required for flow visualization when using PIV are not
necessary for CIV. Here, the movement of cell compart-
ments and structures already results in an evaluable sig-
nal. We applied an adaptive correlation algorithm from
Dantec Dynamics (Dantec Dynamics A/S, Denmark).
This algorithm is included in the PIV-analysis software
Dynamic Studio. The minimum and maximum size of
the IA was defined as 32 × 32 pixels and 64 × 64 pixels,
respectively. The permitted overlay of the IA was set to
50%. For this study, we used raw cell-images without
any image preparation.

Leading edge detection for wound closure analysis
Leading edge detection based on iCD
The iCD method provided individual segmented cells. In
order obtain a closed cell front on the edge of the mono-
layer one needs to upscale the results from cell -scale to
population -scale. Therefore each pixel of each cell
boundary was radially dilated by factor 15, so that all cell
boundaries were slightly overlapping. Afterwards, by
using the bwareaopen function of MATLAB the two lar-
gest areas, the gap and the cell monolayer, were kept.
Then both areas were eroded by a factor of 15. By means
of the bwboundaries function we were able to detect the
edge of the gap and calculated the edge protrusion as
well as edge velocity in an additional post- processing
step.

U-net for direct scratch detection
As a second AI approach, our intelligent direct scratch
detection (iDSD) approach aims to train a U-net on the

population -scale level by using the manually segmented
gaps. The network architecture corresponded to the one
described above for iCD. A total of 170 training images
were applied to train the network and again these data-
set was augmented by the MATLAB data augmentation
function as described before. In total 100 augmented im-
ages per live cell image were generated. A schematic il-
lustration of both U-net approaches is visualized in
Fig. 12.

Canny method
For conventional edge detection, we applied the Canny
method [38]. Customized image processing software
based on the Canny method was implemented by using
MATLAB’s image processing toolbox [edge (Image,
‘canny’]). First, images were converted to grayscale
(rgb2gray). The relevant edges between cell and back-
ground were isolated by manually adjusting a threshold
value. These edges were dilated by a user defined factor
typically in the range of 1 to 20 pixel. Finally, smaller el-
ements were removed and the resulting areas were
eroded again, resulting in a binary image consisting of
the cell monolayer and the gap (using bwareaopen and
imerode). The bwboundaries function from MATLAB
was used to calculate the position and length of the
edge.

Manual detection and segmentation
For training purposes and as a reference to the pre-
sented wound healing analysis methods, data were
manually generated. In addition to the 280 manually

Fig. 11 Scheme of cell tracking principle, of cell (i) at frame (t): cti : the distance between correct cell linking will optimally be found using nearest
neighbor function (d1 > d2). For missing cell detections (see c23) an maximum length of cell motion (R) can be applied to validate the computed
distance of linked cells (d3 < R)
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segmented cell images for iCD training we manually seg-
mented 1467 individual cells to evaluate the training
success of the neural network. For comparison with
automatic cell density determinations approximately 360
individual endothelial cells were manually marked. To
validate the cell velocity estimation, the velocity of each
cell was measured manually on two consecutive images.
Again, this process was performed for 360 single cells.
Furthermore, the manual cell tracking was repeated 3
times by different operators. Manual tracking was done
by using a custom made MATLAB application. In this
process, the user marked the cell in its centroid in two
successive images.
For training and evaluation of the population scale

methods the leading edge was detected three times
manually. Of these, 170 images were used for training
purpose and 50 for evaluation.
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