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Abstract
Methane production by methanogens in mangrove sediments is known to contribute signifi-

cantly to global warming, but studies on the shift of methanogenic community in response

to anthropogenic contaminations were still limited. In this study, the effect of anthropogenic

activities in the mangrove sediments along the north and south coastlines of Singapore

were investigated by pyrosequencing of the mcrA gene. Our results showed that hydroge-

notrophic, acetoclastic and methylotrophic methanogens coexist in the sediments. The pre-

dominance of the methylotrophic Methanosarcinales reflects the potential for high methane

production as well as the possible availability of low acetate and high methylated C-1 com-

pounds as substrates. A decline in the number of acetoclastic/methylotrophic methanogens

in favor of hydrogenotrophic methanogens was observed along a vertical profile in Sungei

Changi, which was contaminated by heavy metals. The diversity of methanogens in the var-

ious contaminated stations was significantly different from that in a pristine St. John’s

Island. The spatial variation in the methanogenic communities among the different stations

was more distinct than those along the vertical profiles at each station. We suggest that the

overall heterogeneity of the methanogenic communities residing in the tropical mangrove

sediments might be due to the accumulated effects of temperature and concentrations of

nitrate, cobalt, and nickel.

Introduction

Methane (CH4) is a key component in the global carbon cycle. As a major green-house gas, it is
approximately 26 times more effective than CO2 in retaining heat in the atmosphere [1]. The
atmospheric CH4 inventory is currently increasing by ~0.4% per year [2]. Mangrove wetlands
and paddy fields, as well as the enteric fermentation that occurs during digestion in ruminants
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are the most important sources of atmospheric CH4 [3,4]. Among them, the mangrove wet-
lands are the largest natural source of CH4, contributing about 20% of the total annual emis-
sion to the atmosphere [5,6].

The mangrove wetlands are very productive coastal ecosystems and various anaerobic
microbial processes occur in their predominantly anoxic sediments. In these sediments, CH4 is
produced during the terminal stage of anaerobic decomposition of organic matter by methano-
gens [7], when the redox potential of the sediment reached to below -150 mV [8]. Methanogens
are strictly anaerobic archaea and so they are very sensitive to of O2 [9]. The onset of methano-
genesis primarily occurs at a shallow depth (i.e., 20–25 cm) of the sediments. The CH4 pro-
duced undergoes vertical diffusive transportation from the sediment surface to the atmosphere,
and horizontal transportation to the adjacent estuarine and coastal water column [10]. Natural
factors such as the temperature, salinity and organic carbon content of the sediment [11] have
also been shown to affect the geographical variation in the production and emission of CH4 in
mangrove wetlands. In addition, several anthropogenic factors, such as disposal of sewage and
agricultural runoff into the mangrove ecosystem have also been reported to enhance the emis-
sion of CH4 [12].

Methanogens belong to the Euryarchaeota phylum of the Archaea domain, and consist of
six phylogenetically diverse orders, Methanobacteriales, Methanococcales, Methanomicrobiales,
Methanocellales, Methanopyrales and Methanosartinales, and 33 genera based on the gene
sequences of 16S rRNA [13,14]. Methanogens are widely distributed in natural, strictly anaero-
bic environments, such as: flooded rice fields [15]; freshwater and marine sediments [16,17];
deep-sea hydrothermal vents [18,19]; marine mud volcanoes [20]; hot springs [21]; and man-
groves [22]. By far, most studies on methanogens in mangrove sediments were focused on the
tropical regions. For example, Methanococcoides were important component in the Tanzanian
mangrove [23] and Methanomicrobia and Methanobacteria were the two most abundant
groups in the sediments of Sundarbans in India [24]; while Methanomicrobia dominated in the
sediments of Guanabara Bay [25] and Sao Paulo state in Brazil [26]. In a recent study on the
subtropical mangrove in Mai Po in China, groups of Methanomicrobiales, Methanosarcinales
and Methanobacteriales were revealed [27]. However, knowledge about the phylogenetic com-
position of methanogens has until recently been limited by the traditional culture-based proce-
dures and conventional molecular techniques [28]. The recently-developed pyrosequencing
technologymight significantly enhance the detection capability of rare species, and when
applied together with the functionalmcrA gene, the complex methanogenic communities in
natural anaerobic environments might be more accurately defined [29,30]. The mcrA gene,
which is unique to and ubiquitous among all knownmethanogens [31], encodes the α-subunit
of methyl coenzymeM reductase, which is the terminal enzyme involved in the methanogen-
esis pathway, where methane is released [31].

The Singapore coastline harbors extensive areas of mangrove wetlands, but these ecosystems
have suffered from both natural and anthropogenic disturbances in recent years following the
increase in population and consequent industrialization. It is thought that the increased input
of external nutrients and metals into the mangrove sediments from the adjacent areas might
cause significant variations in the composition and activity of different microbial communities,
especiallymethanogens. In order to better understand the anthropogenic and ecological impact
on the methanogenic population in the tropical mangrove, sediment samples were collected
from five tropical mangroves along the north and south coast of Singapore. These were Lim
Chu Kang (LCK), Pulau Semakau (PS), Sungei Changi (SC), Pasir Ris Park (PRP) and
St. John’s Island (SJ) (Fig 1). LCK is characterized by its strong agriculture activities; PS is the
site of a new landfill; PRP is the location of the first toxic algal bloom in Singapore, which
occurred in 2009, and it was shown to contain high levels of total nitrogen during our sampling
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in 2012; SC is near to Changi airport and is downstream of both PRP and an old landfill site
located at Sungei Punggol; and SJ, which is located far from any industrial or residential areas,
was considered to be a pristine location [32]. In this study, pyrosequencing of the functional
mcrA gene, which is a biomarker of methanogens, was applied to investigate the methanogenic
populations residing in the tropical mangrove sediments in these various geographical condi-
tions and subjected to different anthropogenic perturbations, and to elucidate the key environ-
mental impact factors.

Materials and Methods

Sample collection and biogeochemical analysis

In October 2012, mud samples were collected in triplicate from five mangrove locations along
the coastline of Singapore with research permit issued from the National Parks Board in Singa-
pore (Fig 1). At each location, approximately 50 g sediment at three depths (i.e., 1–2 cm (shal-
low), 10–11 cm (middle) and 20–21 cm (deep)), from the surface, were collected and placed in
15 ml Falcon tubes. They were kept on ice in the field, and then stored at -80°C prior to further
analysis.

At each sampling station, various in situ environmental parameters (e.g., location, tempera-
ture, salinity, and pH) were recorded during field sampling. In addition, the levels of both
nutrients (i.e., total phosphate (TP), total inorganic nitrogen (TIN, including NH4

+, NO3
- and

Fig 1. The five mangrove sampling stations located along the Singapore coastline. Fig 1 was modified from a free picture from

Wikipedia. Wikipedia has a free license "Permission is granted to copy, distribute and/or modify this document under the terms of the

GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant

Sections, no Front-Cover Texts, and no Back-Cover Texts. Subject to disclaimers".

doi:10.1371/journal.pone.0161065.g001

Methanogens in Tropical Mangroves

PLOS ONE | DOI:10.1371/journal.pone.0161065 September 29, 2016 3 / 18



NO2
-), and heavy metals (i.e., As, Ba, Co, Cr, Ga, Li, Ni and Pb) were measured, as described

previously [32]. The biogeochemical characteristics of the five locations are summarized in
Tables 1 and 2.

454 Pyrosequencing and bioinformatics analysis

Genomic DNA from three independent samples was extracted and pooled together (~250 mg)
as templates for amplification of the mcrA gene. Amplification was conducted with degenerate
ML primers using the PCR protocol described by Luton et al. [33]. In order to enable sample
multiplexing during sequencing, barcodes were incorporated between the adapter and forward
primer. Nuclease-free water was used as the negative control in each reaction. Triplicate PCRs
were performed for each sample and the amplicons were pooled together for subsequent purifi-
cation, amplicon library construction and pyrosequencing, as describedpreviously [32].

Table 1. The environmental parameters at the different locations used in this study§.

Locations pH Temp (˚C) Moisture (%) NO3
- (μg/g) NO2

- (μg/g) NH4
+ (μg/g) TIN (μg/g) TP (μg/g)

LCK_S 6.69±0.07 27.4±0.0 30.53±1.84 62.11±1.51 2.38±0.04 1.40±0.25 65.89±1.72 36.69±5.80

LCK_M 6.35±0.12 27.3±0.0 40.79±2.24 65.57±3.98 2.45±0.15 0.41±0.08 68.42±4.19 7.49±0.00

LCK_D 6.40±0.10 27.0±0.0 41.37±4.01 63.22±2.29 2.43±0.09 0.78±0.03 66.42±2.39 -

PRP_S 7.31±0.07 26.5±0.0 30.21±1.76 56.15±0.12 2.32±0.03 0.78±0.02 59.25±0.15 74.39±6.81

PRP_D 8.61±0.09 27.2±0.0 24.26±0.18 58.03±0.12 2.42±0.02 1.26±0.01 65.05±3.34 10.58±1.33

PS_M 7.59±0.01 28.7±0.0 30.49±1.72 53.03±1.26 2.64±0.10 1.04±0.01 56.71±1.38 129.12±2.86

SC_S 7.27±0.03 25.0±0.0 14.75±0.44 56.46±1.69 2.47±0.07 1.20±0.02 60.13±1.73 -

SC_M 7.02±0.08 24.0±0.0 17.77±1.04 68.34±1.92 2.53±0.09 1.78±0.10 60.49±2.10 -

SC_D 6.37±0.23 21.0±0.0 16.18±0.37 50.56±1.85 2.55±0.18 0.41±0.03 53.52±2.03 -

SJ_S 7.00±0.08 27.8±0.0 23.24±0.86 48.01±1.98 2.33±0.10 1.00±0.02 51.35±2.06 57.44±12.42

SJ_M 7.05±0.01 28.2±0.0 24.52±0.24 52.57±0.49 2.55±0.05 1.66±0.08 56.78±0.58 20.30±7.66

SJ_D 7.10±0.02 28.3±0.0 22.18±4.16 46.61±1.50 2.41±0.08 0.31±0.12 49.33±1.70 42.83±0.00

Note:
§All the data in this table have been cited in Xia et al, under preparation.

doi:10.1371/journal.pone.0161065.t001

Table 2. The concentrations of the various metals at the different locations in this stud§.

Locations Cr Co Ni Ga Pb As Ba Li

LCK_S 8.91±0.41 0.27±0.13 2.28±0.12 5.98±0.32 6.41±1.35 28.19±3.27 6.75±0.62 16.86±0.52

LCK_M 12.78±0.07 0.50±0.50 3.36±0.37 7.10±0.39 9.98±0.53 48.19±10.78 4.43±0.18 20.19±0.79

LCK_D 13.46±1.26 1.89±0.26 4.16±0.50 7.81±0.09 12.82±0.22 78.56±12.68 3.85±0.62 22.52±0.25

PRP_S 6.78±0.49 4.08±0.40 4.55±0.54 7.41±0.06 14.00±0.93 5.25±0.35 68.22±0.82 4.69±0.21

PRP_D 3.91±0.28 4.29±0.11 3.91±0.10 6.54±0.12 10.09±0.33 2.37±0.83 55.86±3.40 2.90±0.24

PS_M 9.26±0.37 2.70±0.03 7.05±0.51 7.97±0.62 7.53±0.86 16.64±0.24 5.27±0.56 10.27±0.79

SC_S 49.08±1.45 37.08±0.57 46.71±0.56 10.98±0.43 433.87±14.45 36.95±0.68 88.69±4.32 10.81±0.86

SC_M 45.85±1.55 35.39±0.45 44.10±0.69 9.46±0.47 115.95±7.88 36.22±0.52 60.40±1.56 13.46±0.92

SC_D 49.26±1.37 35.19±0.51 44.71±0.44 10.46±0.75 79.29±2.41 37.90±1.19 60.40±1.78 17.23±0.10

SJ_S 10.46±1.33 1.58±0.39 4.07±0.69 5.92±0.37 9.26±0.26 1.78±0.19 14.62±1.26 4.74±0.02

SJ_M 5.96±0.16 1.23±0.01 3.49±0.18 4.11±0.38 15.16±1.70 2.26±0.63 4.93±0.37 3.08±0.18

SJ_D 5.26±0.05 0.78±0.02 2.93±0.28 3.90±0.69 14.03±2.41 1.94±0.34 6.19±1.39 3.11±0.30

Note
§All data in this table have been cited from Xia et al, under preparation; Unit of all metals (μg/g).

doi:10.1371/journal.pone.0161065.t002

Methanogens in Tropical Mangroves

PLOS ONE | DOI:10.1371/journal.pone.0161065 September 29, 2016 4 / 18



Raw sequence data were processed using the microbial ecology community software program
Mothur [34]. Low quality sequences (with an average quality score< 25), short sequences
(< 350 bases in length), ambiguous base-containing sequences, homopolymer-containing
sequences (> 8 bases), chimeric sequences, and barcodes of the sequences were removed. The
trimmed sequences were de-noisedwith 0.01 sigma value to reduce possible effects of PCR bias,
after which the sequenceswere alignedwith the reference sequences of the mcrA gene from the
National Center for Biotechnology Information (NCBI; http://www.ncbi.nlm.nih.gov/). The
quality reads generated from the three samples, PRP_M, PS_S and PS_D, were less than 1000,
therefore, they were not included for the analysis to avoid bias. The remaining quality sequences
were then used to define the operational taxonomic units (OTU) with 97%, 89% and 79%
sequence similarity, as cutoff values to represent the species, genus and family levels, respectively
[35]. The OTUs that contain only one sequencewere removed. The richness estimator (Chao1),
diversity (Shannon-Weaver index,H'), and Good’s coverage were calculatedwith three cutoff val-
ues after sequence normalization. This resulted in an equal number of sequences for each sample
by randomly selectingwithin each sample according to the sample with the least number of
sequences. In addition, a rarefaction curvewas generated with a 97% sequence similarity as the
cutoff value. To identify the phylogenetic affiliation of the mcrA sequences, representative
sequences of the 50 most abundant OTUs (with 97% cutoff value) were used to search the nucle-
otide BLAST (BLASTn) webpage of the NCBI nucleotide sequence database (http://blast.ncbi.
nlm.nih.gov/Blast.cgi).The representative sequences of the top 50 OTUs, the selected reference
sequences and the environmental sequences of the mcrA gene from the NCBI database were used
to construct a neighbor-joining (NJ) tree using theMEGA 6.0 (molecular evolutionary genetics
analysis) software [36]. To evaluate the number of shared OTUs (with 97% cutoff)among sam-
ples, normalizedOTU data were also used for generating a Venn diagram using R [37].

Statistical analysis

To assess the dissimilarity among multiple groups, a newick-formatted tree was generated
using the tree.shared command in Mothur. In the same software, the Thetayc calculator was
used to determine the UPGMA (unweighted pair group method with arithmetic mean) cluster-
ing at genus level (with 89% cutoff value). In addition, a redundancy analysis (RDA) was per-
formed using CANOCOV4.5, to reveal relationships between the structure of the various
methanogenic communities (with 97% cutoff value) and environmental variables [38]. All the
data were root-square transformed and the effects of high collinearity among factors were
removed. Forward selectionwas used to determine the minimum set of environmental vari-
ables that might explain the largest amount of variance in the microbial community. The statis-
tical significance of an explanatory variable added in the course of forward selectionwas tested
with the Monte Carlo permutation test (999 permutations, p< 0.05). For all community ordi-
nation analyses, biplot scaling was used.

Accession number

All the mcrA sequences obtained from this study were deposited in the NCBI Sequence Read
Archive (SRA) under the accession number of SRP068266.

Results and Discussion

Sampling locations and diversity of methanogens

Of the five sampling locations selected, SJ was the least influenced by human activities.We
therefore used this pristine location on the southern coastline of Singapore as the background
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as we have done in a previous study [32]. SJ contained the lowest concentration of dissolved
inorganic nitrogen (DIN), when compared with the other locations. The old landfill site at PS
is also located on the southern coastline. This had a similar temperature as SJ, but exhibited
much higher levels of TP (Table 1). Sediment in LCK was acidic and had the highest content of
TIN as a result of strong agricultural activity. Relatively high concentrations of TIN (especially
NO3

-) and TP were also detected in PRP, where a toxic algal bloom had occurred near its mari-
time space in December 2009. SC is adjacent to Changi airport and had the highest content of
most of the heavy metals measured (i.e., Cr, Co, Ni, Ga, Pb, and Ba) (Table 2), but the lowest
temperature, moisture and conductivity (Table 1). In general, the surface sediment at SC
(SC_S) had the highest content of TP, but there was no obvious depth profile for the other
parameters listed in Table 1. With regards to the depth profiles in the other locations; in LCK,
all the metals except Ba, exhibited a depth-wise incremental increase; whereas in SJ, four met-
als, (i.e., Cr, Co, Ni and Ga), exhibited a depth-wise decrease (Table 2).

Pyrosequencing generated on average 3,742 quality reads per sample (Table 3), after the low
quality reads were filtered out according to the criteria described in the Materials and Methods.
At the species level (97%), the highest and lowest numbers of OTUs were found in PRP and
SC, respectively (Table 3). In the locations affected by anthropogenic activities (i.e., LCK, PRP,
SC), a higher diversity of methanogens was observed in the shallow layer than in the deep
layer. This is in agreement with previous reports, which showed that a higher methanogenic
diversity occurs in the shallow layers of sediments [19,29], possibly as a result of organic
enrichment in the surface sediment. In contrast, in the pristine SJ, the highest diversity and
number of OTUs along with the lowest concentrations of inorganic nitrogen were found in the
deepest layer (SJ_D). When compared with the pristine SJ, the diversity was higher in both
LCK and PRP, which contained higher nutrient levels, and it was lower in SC, which was con-
taminated with high levels of heavy metals (Table 3). Our results therefore showed that the
diversity of methanogens was significantly different among the different locations, and we sug-
gest that the differences observed along the vertical profiles might be explained by the in situ
substrate composition and anaerobic conditions in the tropical mangroves. The diversity of
our samples was generally higher than those in subtropical [27] and tropical [24] mangrove
sediments, although the subtropical study was also investigated by 454 pyrosequencing. The

Table 3. The sequencing statistics and diversity estimates for the samples collected from the different locations in this study.

Locations High Quality Reads Average Length (bp) 97% 89% 79%

OTU Chao H’ Coverage OTU Chao H’ Coverage OTU Chao H’ Coverage

LCK_S 4,613 464 255 534.3 3.5 0.96 116 245.00 2.0 0.98 60 176.6 1.0 0.99

LCK_M 4,527 463 342 903.6 4.0 0.94 148 339.90 2.6 0.97 76 113.6 1.5 0.99

LCK_D 4,502 465 237 705.1 3.3 0.95 123 379.80 1.7 0.97 68 214.4 0.9 0.99

PRP_S 2,706 464 378 1291.4 3.6 0.89 176 402.10 2.4 0.96 93 210.2 1.3 0.98

PRP_D 2,563 463 348 1590.9 3.4 0.89 156 359.30 2.3 0.96 88 181.0 1.6 0.98

PS_M 3,672 466 239 989.1 2.1 0.93 100 293.50 0.8 0.97 49 314.0 0.6 0.99

SC_S 4,238 457 161 693.1 2.7 0.96 87 200.30 1.9 0.98 55 129.4 1.8 0.99

SC_M 4,108 467 56 156.6 0.4 0.98 31 140.30 0.2 0.99 19 32.8 0.2 1.00

SC_D 4,429 443 122 374.8 1.7 0.97 49 147.20 1.1 0.99 29 43.2 1.0 1.00

SJ_S 2,428 463 217 1245.2 2.7 0.93 101 409.30 1.0 0.97 58 191.2 0.8 0.98

SJ_M 3,542 465 245 798.0 2.7 0.93 94 224.60 0.9 0.98 48 67.5 0.7 0.99

SJ_D 3,576 466 272 1264.5 3.0 0.92 110 425.40 1.0 0.97 65 475.0 0.7 0.98

Note: 97%, 89% and 79% cutoff values were applied for the respective species, genus and family levels [30].

doi:10.1371/journal.pone.0161065.t003
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coverage at the species level was more than 89%, which is consistent with the tendency of rare-
faction curves (Fig 2). This indicates that sufficient sampling efforts were applied in this study
to allow for the adequate assessment of the microbial community composition in each sample.

Phylogeny of methanogens

The spatial distribution of the five most abundant OTUs based on the total reads obtained, was
highly variable among the different samples (Fig 3). OTU1 was the most abundant, and showed
close affiliationwith Methanolobus profundi. It was found in all the samples except SC and it
accounted for high proportions in the middle depths of PS and SJ. M. profundi is a member of
the mesophilic methylotrophic Methanosarcinaceae family and it has previously been isolated
from deep subsurface sediments [39]. OTU2, 3 and 4 were all identified as Methanococcoides
methylutens but with different similarity levels (Fig 3). The highest proportion of OTU2 (87%
similarity) was found in SC_M, whereas no OTU3 (95% similarity) or OTU4 (94% similarity)
were found in this station. M. methylutens has been reported to be an important methanogenic
methylotroph in tropical mangrove sediments [23], where it utilizes trimethylamine, diethyla-
mine, monomethylamine, and methanol as substrates for growth and methanogenesis [40].
The capability of methylotrophic methanogens to utilize noncompetitive substrates such as
methanol, mono-, di- and trimethyl-amines, which are not easily used by sulfate reducing bac-
teria (SRB) [41], helps the two to co-exist in anoxic sediments. As OTU1-4 are all methylo-
trophic methanogens, this indicates that the substrates are available as well as the major role
played by the methane production pathway in the tropical mangrove sediments.

OTU5 was identified as Methanobacterium bryantii mrtA with low similarity (86%), and it
was present with high abundance only in SC_D (47.52%). M. bryantii is a hydrogenotrophic
methanogen, which utilizes H2 as the sole energy substrate, and NH4

+ as the essential nitrogen
source [42]. The mcrA gene is unique to all methanogens [43], however, for members of the
Methanobacteriales and Methanococcales orders, mrtA encoding an isoenzyme of mcrA is

Fig 2. Rarefaction curves for the mcrA gene sequences obtained by amplicon pyrosequencing from samples collected from the five locations in

Singapore with 97% sequence similarity as the cutoff value.

doi:10.1371/journal.pone.0161065.g002
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carried additionally [44]. The degenerateML primers that were used in this study might facili-
tate the detection of a wide range of mcrA genes in environmental samples, but they might also
amplify the methanobacterialmrtA gene [33]. Therefore, the assessment of the methanogenic
community composition and abundance in environmental samples should be interpreted care-
fully, if based on the relative mcrA/mrtA gene frequencies using the ML primers exclusively.
Isolating pure cultures and incorporating primers specific to the mrtA gene [35], would help to
determine if the mcrA and mrtA sequences originate from the same species or not.

Methanogens are phylogenetically and ecologically diverse Euryarchaeota. Phylogenetic
trees based on the mcrA gene constructed using neighbor-joining (NJ) and maximum-likeli-
hoodmethods have a congruent tree topology. We showed that the 50 most abundant OTUs at
the species level in the NJ tree fell into six clades (Fig 4), including four methanogenic clades
and two methanotrophic clades. In the Methanosarcinales clade, all 18 OTUs were closely
related to Methanosarcina, Methanococcoides, Methanolubus and Methanohalophilus; in the
Methanomicrobiales clade, four OTUs were affiliated with Methanoculleus and Methanogen-
ium; in the Methanobacteriales clade, 12 OTUs were clustered with Methanobacterium and
Methanococcus; and the remaining six OTUs were grouped with methanogenic sequences
from soil. Two groups of anaerobic methanotrophic archaea, (i.e., ANME-1(a,b) (3 OTUs) and
ANME-2a(e) (7 OTUs)), were also revealed, becausemcrA is a phylogenetically conserved
gene in both the methanogenic and methanotrophic archaea [43]. These two subgroups have
different niche preferences; subgroup ANME-1 usually dominates in sulfate-depleted sedi-
ments and forms a discrete phylogenetic group; whereas subgroup ANME-2 dominates in

Fig 3. Identity and distribution of the five most abundant OTUs (with 97% sequence similarity as the cutoff value) among all

the samples collected from the five locations in Singapore.

doi:10.1371/journal.pone.0161065.g003
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shallow sediments containing relatively higher sulfate concentrations, and is closely related to
Methanosarcinales [45]. Methanotrophs might eliminate methane fluxes from sediments into
the overlying water column and atmosphere, and are critical for regulating the global carbon
fluxes.

Community composition of methanogens

In total, four orders of methanogens were identified from all the samples, including hydrogeno-
trophic Methanobacteriales, Methanococcales, Methanomicrobiales and potentially acetoclas-
tic/methylotrophic Methanosarcinales (Fig 5). Methanosarcinales predominated in almost all
our samples; this is in contrasting to the fact that Methanomicrobacteriales and Methanomicro-
biales were found as major methanogenic groups in the tropical mangroves in India [24] and
Brazil [25]. In addition, no Methanococcales was detected in a recent study on a subtropical
mangrove in Asia [27]. These different reports highlighted the highly diverse methanogenic
communities in our sampling sites. Although Methanoculleus, Methanogenium of the Metha-
nomicrobiales and Methanohalophilus of the Methanosarcinales were also detected in our
study, each accounted for less than 2% of the total community. They were therefore grouped
together and defined as a minor group. Methanobacteriales, Methanococcales and Methanomi-
crobiales produce methane via the reduction of CO2 with hydrogen gas (i.e., hydrogenotrophic
methanogenesis) [46]. Only one genus was found for each hydrogenotrophic order. Methano-
bacteriales were present in all the samples, and some sequences were classified as

Fig 4. Neighbor-joining phylogenetic tree illustrating the 50 most abundant OTUs (with 97% sequence similarity as the cutoff value) among all

the samples collected from the five locations in Singapore. A bootstrap value greater than 50% is shown (calculated 1,000 times). The color scale

indicates the OTU distribution in the different locations.

doi:10.1371/journal.pone.0161065.g004
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Methanobacterium mrtA. Methanoplanus, a genus of the Methanomicrobiales, was absent
from PS and SJ. In general, hydrogenotrophic methanogens accounted for less than 10% in all
our samples, except at SC_S. This indicates that hydrogenotrophic methanogenesis is not an
important pathway for methane production in the tropical mangrove sediments we studied.

In our study, the Methanosarcinales comprised of Methanococcoides, Methanolobus and
Methanosarcina, which all belong to the Methanosarcinaceae family. This is a highly diversified
group in terms of the substrates used for methane production; they are capable of growing on
acetate, methanol, methylamines and H2/CO2 [47], and they play a primary role in the conver-
sion of acetate to methane. In SJ and PS, methanogens of the genus Methanolobus were pre-
dominant, but in PRP Methanolobus was exceeded by Methanococcoides; and in LCK, both
were major groups. In SC, Methanosarcina accounted for 35.25% in SC_S, whereas SC_Mwas
exclusively composed of Methanococcoides (Fig 5). Methanolobus and Methanococcoides are
methylotrophic methanogens, which grow entirely on methylated compounds for their nutri-
ent source [40]. Methanosarcina are the only knownmethanogens that produce methane using
all three metabolic pathways (i.e., the hydrogenotrophic, acetoclastic and methylotrophic path-
ways), and they are also known to tolerate oxygenated conditions [48]. In SC, there was a
decline in the number of potential acetoclastic/methylotrophicmethanogens in favor of hydro-
genotrophic methanogens along the vertical profile; and at the deepest level of SC (SC_D), the
hydrogenotrophic Methanobacteriales (93.07%) were predominant and no Methanosarcinales
were present. It is well known that the availability of substrate (as well as other environmental
parameters) may result in the selective proliferation of some methanogenic groups, and this
eventually determines the composition of the communities that form. The variation in the
methanogenic groups that exist along the vertical profile in SCmight be due to the distinct
physio-chemical characteristics of the sediments at the different depths. It is not surprising to
find hydrogenotrophic methanogens in the deepest layer in SC (SC_D). This is because they
compete with SRB for substrates in the shallow layers but this competition doesn’t exist in the
deeper sulfate-depleted sediments. In contrast, methylotrophic methanogens avoid direct

Fig 5. Community composition of methanogens at the genus level for samples collected from the five locations in Singapore. Phylogenetic groups

accounting for less than 2% of the total community in each location were treated together as a minor group.

doi:10.1371/journal.pone.0161065.g005
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competition with SRB and so they are known to survive in marine sediments and in the shal-
lower sediments in estuaries [49,50]. All the samples, except those obtained from SC_D, were
predominated by the methylotrophic Methanococcoides and Methanolobus, suggesting that
methane production in the mangrove sediments occurred via methylotrophic pathways. In
addition, the overall predominance of Methanosarcinales along the vertical depth profile in our
study might be attributed to their tolerance to the low levels of oxygen [47].

Methanogens utilizing different substrates for methanogenesis have been reported to coexist
in various anaerobic marine [20,51,52] and freshwater [29,53] sediments. Therefore, it is not
surprising to find the co-existence of hydrogenotrophic, acetogenotrophic and methylotrophic
methanogens in the tropical mangrove sediments in our study. Our findings support the wide
distribution of these various methanogens under anaerobic conditions, and also reflect the
high diversity of the microbial community and the consequent major metabolic processes,
which are likely to contribute to the total methane production in the tropical mangrove sedi-
ments. Our study clearly shows that the methylotrophic/acetogenotrophicmethanogens pre-
vailed over their hydrogenotrophic counterparts in almost all the samples except SC. This
suggests that the methylotrophic methanogens were widespread and could adapt to fluctuating
geochemical environments because of their ability to use noncompetitive substrates. The
hydrogenotrophic and acetogenotrophic methanogenesis pathways are the most common
pathways in soils, and the former usually has a lower production rate than the latter [54].
Therefore, the prevailing numbers of methylotrophic/acetogenotrophic methanogens implies a
highmethane production in the tropical mangrove sediments, although the in situ methane
production rate was not measured. In addition, the methylotrophic Methanococcoides and
Methanolobus are major groups in the Methanosarcinales order, whereas Methanosarcina is
less dominant. Methanosarcina are known to be predominate at high acetate concentrations
[47], therefore, its low abundance in our samples indicates a relatively low acetate level in the
mangrove sediments we were investigating.

In our previous study on diazotrophs, we recovered various SRB including Desulfobotulus,
Desulfarculus, Desulfonatronum and Desulfovibrio, from the mangrove rhizospheres in the
same sampling locations we used for this study. We found that they were more abundant in the
pristine location at SJ (~40%) than in the most polluted location at SC (~4%) [32]. Their pres-
ence indicates not only the potential for bioremediation and the resiliency of the ecosystem to
anthropogenic impact, but their coexistencewith methanogens in different niches is very likely
supported by different substrates. Methanogenesis and sulfate reduction are the terminal steps
in the diagenesis of organic carbon [55], and both processes compete for some common sub-
strates, such as hydrogen and acetate. Indeed, in most anaerobic environments, methanogen-
esis and sulfate reduction are thought to be controlled largely by the amount of available sulfate
[56], such that they are usually predominant in low-sulfate freshwater habitats and in sulfate-
replete marine environments, respectively. The preference of methanogens for methylated C-1
compounds over hydrogen in marine environments reflects the competition that occurs with
SRB. The latter are capable of utilizing hydrogen more efficiently, whereas they are usually
unable to use the uncompetitive compounds as substrates [41]. In our previous study, however,
SRB were not examined along the depth profile, and so it is not possible to compare the spatial
distribution and competition of these two anaerobic groups in each location along the vertical
profile with varied substrate composition and concentration. Future investigations using
group-specific primers together with the chemistry analysis of sediments at various depths and
in different locations would help to elucidate the niche specification of these two groups in
tropical mangrove sediments.
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Spatial variation of the methanogens

Venn diagrams were plotted to show the similarities in terms of the overlap of OTUs (at a 97%
cutoff value) from the different depths among the five sampling locations (Fig 6). Only one
common OTU was shared by all the four surface samples (Fig 6A), whereas samples from the
middle and deepest locations had no OTUs in common (Fig 6B and 6C). In the surface sam-
ples, the common OTU was identified as being Methanosarcina spelaei MC-15 (93% similar-
ity). This is a novel species that has previously been isolated from floating biofilm on a
sulphurous subsurface lake in Movile Cave (Mangalia, Romania), and it exhibits autotrophical
growth with H2/CO2, acetate and methanol as well as mono-, di-, tri-methylamine [57]. LCK
and PRP shared the highest number of OTUs at the surface (26 OTUs) and deepest (20 OTUs)
layers; whereas at the middle depth, PS and SJ had the highest number of shared OTUs (62
OTUs). SC always had fewer OTUs in common with the other sampling sites. In terms of spe-
cific unique OTUs, the highest numbers were found at the surface in LCK, PRP and SC, and in
the deepest layer at SJ.

UPGMA clustering based on the total OTUs at the genus level (89% cutoff value) demon-
strated a clear shift in the methanogenic community among the different geographic locations.
SJ was clustered with PS, but they were both distinct from the other sampling locations (Fig 7).
This is in line with the predominance of Methanolobus. Samples from different depths in LCK
and PRP were grouped together although with relatively low similarities, as indicated by the
long branches. These two locations contained Methanolobus and Methanococcoides, but at dif-
ferent proportions. All the above locations were only distantly related to SC, where the three
depths were predominated by different methanogenic groups (Fig 5).

Multivariate analysis was also performed to show the relationship between the methano-
genic community structures (based on the total OTUs at the species level) recovered from the
different locations and the associated abiotic factors (Fig 8). A minimum set of abiotic data,
determined by the forward selection after removing factors with high collinearity, were
included in the RDA analysis. The first two main axes together explain the respective 49.5%
(Fig 8A) and 51.3% (Fig 8B) overall variance. Both biplots show that samples from the different
depths in SC were located in the upper left panel and were separated from the other samples on
Axis 2. Samples from SJ and PS were close to each other in the lower right panel and were dis-
tantly located from the other locations on Axis 1. Significance tests of Monte Carlo permuta-
tions indicated that temperature, and concentrations of NO3

-, Co and Ni explainedmost of the

Fig 6. Venn diagrams representing the overlap of OTUs (with 97% sequence similarity as the cutoff value) for (a) surface (_S), (b) middle (_M), and (c) deep

(_D) samples collected from the five locations in Singapore.

doi:10.1371/journal.pone.0161065.g006
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Fig 7. UPGMA clustering of the methanogenic community structures for samples collected from the five locations in Singapore based

on total OTUs at the genus level (89% sequence similarity as the cutoff value). Data were square root transformed and the Bray-Curtis

similarity was used for clustering analysis.

doi:10.1371/journal.pone.0161065.g007

Fig 8. A redundancy analysis (RDA) biplot based on total OTUs (97% sequence similarity as the cutoff value) for samples collected from five locations with

(a) environmental parameters and (b) metals as explanatory variables. *p < 0.05.

doi:10.1371/journal.pone.0161065.g008
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spatial variations in the methanogenic communities. A negative correlation was found between
NO3

- and Axis 1 (r = -0.71) and between temperature and Axis 2 (r = -0.82) (Fig 8A), whereas
Ni and Co were both positively associated with Axis 2 with similar correlation coefficients
(r = 0.86) (Fig 8B). Temperature has been identified as a key factor in the control of methano-
genic activity and community composition in sediments [58]. In wetlands at higher latitude, an
increase in temperature has been shown to stimulate the growth of methanogens and induce a
shift from purely acetoclastic to a combination of acetoclastic and hydrogenotrophic methano-
genesis [59]. In our study, the temperature difference along the vertical profile in SC was more
obvious than in the other locations, possibly because of the packed texture and lower moisture
content of the SC sediments. The distinct temperature discrepancies at the different depths in
SCmight at least partially explain the clear shift in the types of methanogens with potentially
different methanogenic activities. Co and Ni are required for methane-producing reactions via
an increase in coenzyme F430 and corrinoids [60]; and they are particular important for
enzymes catalyzing the methylotrophic pathway [61]. In the multivariate analysis, SC was dis-
tributed in the direction of Co and Ni, which is consistent with the highest concentrations of
these elements being detected at this location. NO3

- inhibits methane production by affecting
the turnover of both methanogenic precursors (i.e., H2 and acetate) and oxidants (sulfate, Fe
(III)), and subsequently activating the dinitrifiers, and the sulfate- and iron-reducing bacteria
to outcompete the methanogens [62]. LCK had the highest concentration of NO3

- as a result of
the nitrogen fertilizers applied during agricultural activities; however, due to a lack of real-time
quantitative data, we are not sure if the abundance of methanogens at this station was signifi-
cantly lower than that at other stations with lower concentrations of NO3

-.

Conclusions

Mangrove sediments are important sources of methane production. Therefore, a thorough investi-
gation of the composition of themethanogens residing indifferent depths of mangrove sediments
is crucial for understanding the globalmethane fluxes that occur in the mangrove ecosystems and
their contributions to global warming. In this study, by pyrosequencing of the mcrA gene, we iden-
tified a combination of hydrogenotrophic, acetoclastic and methylotrophic methanogens. The pre-
dominance of methylotrophic Methanosarcinales at each station reflected the high potential for
methane production, possibly with low acetate and highmethylated C-1 compounds as the avail-
able substrates. The diversity of methanogenic communities at the locations affected by anthropo-
genic activities was significantly different from that in the pristine SJ. In addition, a decline in the
number of potential acetoclastic/methylotrophicmethanogens in favor of hydrogenotrophic
methanogens was observedalong the vertical profile in SC, which was heavily contaminated by
heavymetals. UPGMA analysis demonstrated that spatial variations of the methanogenic commu-
nities among the different locations were more distinct than those along the vertical profiles at
each location. The overall heterogeneity of the methanogenic communities residing in the tropical
mangrove sediments could be largely explained by the effect of temperature, as well as the concen-
trations of NO3

-, Co and Ni. However, whether the anaerobic methanogens present in the shal-
lower layers of sediments (which are potentially oxygenated) are actively involved inmethane
production or not is still not clear. To further our understanding of the function and activity of
methanogens in mangrove sediments, a more detailed survey of the activemembers and the differ-
ent substrates they utilize, as well as their associatedmethane-production rate is required.
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