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EDITORIAL

Neutrophil Extracellular Traps as Prognostic 
Markers in COVID-19
A Welcome Piece to the Puzzle

Anna S. Ondracek , Irene M. Lang

The article by Ng et al1 is highlighting the presence 
of circulating neutrophil extracellular traps (NETs) in 
coronavirus disease 2019 (COVID-19) and their role 

as prognostic indicator. The initial description of NETs in 
plasma of severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2) infected patients in April 20202 has 
focused interest in neutrophil function and NET forma-
tion in this condition. Severe COVID-19 cases are put-
ting pressure on health care systems and particularly on 
intensive care units with median lengths of intensive care 
unit stay ranging from 6 to 12 days in studies conducted 
in China and 4 to 19 days in studies outside of China.3 
But which features make NETs determinants of clinical 
outcome and do we actually have sufficient data to sup-
port a specific role in COVID-19?

See accompanying article on page 988

The concept of NETosis was introduced in 20044 as 
release of extracellular DNA traps by neutrophils, com-
posed of decondensed chromatin and granule proteins. 
NETosis-inducing agents (Figure) are bacteria, fungi, 
protozoa, viruses, platelets, cytokines, and nitric oxide 
donors. NET formation is a form of cell death47 involv-
ing the translocation of elastase and myeloperoxidase 
from primary granules to the nucleus where they cleave 
histones after hypercitrullination catalyzed by PAD-4 
(peptidylarginine deiminase 4), leading to chromatin 
decondensation.48 Although NET generation has been 

described initially as an antimicrobial mechanism, recent 
data suggest that NETs contribute to lung injury,30,49 vas-
cular thrombosis,50 and multiple other conditions (Figure).

Circulating surrogate markers of NETs in plasma are 
complexes of DNA and myeloperoxidase,2,9,17,51–53 citrul-
linated histone H3,2,51,53 cell-free DNA,2,51,53 and neutro-
phil elastase.51 The data of Ng1 are based on a relatively 
large patient number including 5-month follow-up sam-
ples compared with previous studies. However, for the 
assessment of outcomes, robust statistical methodology 
will be needed, with multivariate analyses of large sample 
sets corrected for confounders, such as age and cardio-
vascular risk factors.

Drastic changes in blood neutrophils can originate 
from mobilization of neutrophils from the marginated pool 
of the lung via CXCR4 (C-X-C motif chemokine receptor 
4)–CXCL12 (C-X-C motif chemokine ligand 12) inter-
actions leading to a spill-over of the pulmonary inflam-
matory process to the systemic circulation.54 Authors’ 
observation that circulating NETs markers correlate 
with markers of inflammation and endothelial damage in 
COVID-191 emphasize the relevance of the virus for the 
vasculature, and centers the causes for patients’ demise 
on the microvascular thrombosis aspect of the infec-
tion.50 Although SARS-CoV-2–derived mRNA may not 
be detectable in blood during active infection,55 the virus 
is able to directly infect activated neutrophils via surface 
ACE-2 (angiotensin-converting enzyme 2).17 Authors 
demonstrate derangement of the endothelial activation/
damage marker VWF (von Willebrand factor) and its pro-
tease, ADAMTS13 (a disintegrin and metalloproteinase 
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with thrombospondin motifs 13),1 which is an elegant 
suggestion of endothelial injury and potential micro-
thrombosis that is in proportion with markers of NETs. 
Mechanisms on how virus/various-length-pieces of 
circulating DNA exert ADAMTS-13 suppression are 
unknown.

The lung retains primed neutrophils, a protective 
mechanism shown to be impaired in acute respiratory 
distress syndrome.56 NETs released by SARS-CoV-
2–activated neutrophils promote lung epithelial cell death 
in vitro17 and neutrophil infiltration. Interstitial NETs and 
intravascular thrombi are characteristic features of acute 
respiratory distress syndrome lungs in lethal COVID-19 
cases.17,57–59 NETs were found in airways together with 
fibrin occluding alveoli and bronchioles.57 NETs trigger 
coagulation60 and foster fibrin deposition in the airways 
compromising pulmonary ventilation and gas diffusion 
capacity. In accordance, Ng et al1 show that higher cir-
culating NETs levels are associated with the need for 
respiratory support and with mortality, which confirms 
smaller studies.9 By contrast, other reports indicated that 
ventilator-dependent patients exhibited higher concen-
trations of cell-free DNA2,51 which signifies general cell 
death and is not specific for neutrophils.

Establishing causality between NETs burden and poor 
outcome highlights an urgent need for representative 
models of SARS-CoV-2 infection. So far, ferrets and 
hamsters are reported to come closest to humans, con-
sidering virus replication, clinical signs, pneumonia, trans-
mission, immunology, and demographics.61 However, all 
available models to date seem to lack formation of NETs 
and lung thrombosis,62 suggesting that they do not serve 
to study severe SARS-CoV-2 infection.

Circulating deoxyribonucleases (DNase) may be 
another important puzzle piece in COVID-19. Deoxyribo-
nucleases 1 and 1L3 are naturally regulating the amount 
of circulating extracellular chromatin, and intact endoge-
nous plasma DNase activity is essential for homeostasis 
and survival.63 No data on DNase activity in patients have 
been published, leaving us puzzled about its association 
with disease severity and potential effects on circulating 
NETs markers. For the full picture, authors should ana-
lyze DNase activity in their samples.

Directly targeting NETs by deoxyribonucleases has 
been proposed as a therapeutic approach in COVID-19, 
even before the first data on circulating NETs markers 
had been published.59 Eight trials are currently registered 
on ClinicalTrials.gov to test the effect of NETs degrada-
tion, whereby 6 are recruiting patients with respiratory 
failure/acute respiratory distress syndrome. Design and 
outcome of these studies will likely impact our view 
on the role of NETs in SARS-CoV-2 pathophysiology. 
There are still many hurdles to take. What if there exists 
a significant component of immune-mediated, virus-
independent immunopathology as a primary mechanism 
in severe disease, do NETs still play a role? Immunose-
nescence of neutrophils is only partially understood, but 
inaccurate chemotaxis and reduced pathogen clearance 
are expected to result in increased tissue damage.64 
These observations could affect treatment success and 
effectiveness and might require prospective stratification 
of analyses. In addition, dynamics of degradation and for-
mation of cleavage products are likely to differ between 
compounds and routes of administration. Inflammatory 
responses of monocytes to chromatin depend on frag-
mentation into mononucleosomes and dinucleosomes, 

Figure. Neutrophil extracellular traps (NETs) shed from activated neutrophils (neutrophil body in gray, nucleus and NETs in 
purple, schematic drawing), and NETs-driven diseases.
ARDS indicates acute respiratory distress syndrome; COPD, chronic obstructive pulmonary disease; and COVID-19, coronavirus disease 2019.
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which are histones still wrapped in DNA.31 The complex-
ity of synergistic signaling by citrullinated nucleosomes 
goes beyond the cytotoxicity of circulating naked his-
tones.31 Authors’ observation that elevated circulating 
NETs markers are prognostic indicators for outcomes in 
patients with COVID-191 is a simple and welcome puzzle 
piece in a tricky setting.
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