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Background: Distinct tissue types are differentiated based on the surgeon’s knowledge
and subjective visible information, typically assisted with white-light intraoperative
imaging systems. Narrow-band imaging (NBI) assists in tissue identification and enables
automated classifiers, but many anatomical details moderate computational predictions
and cause bias. In particular, tissues’ light-source-dependent optical characteristics,
anatomical location, and potentially hazardous microstructural changes such as peeling
have been overlooked in previous literature.

Methods: Narrow-band images of five (n = 5) facial nerves (FNs) and internal carotid
arteries (ICAs) were captured from freshly frozen temporal bones. The FNs were split
into intracranial and intratemporal samples, and ICAs’ adventitia was peeled from the
distal end. Three-dimensional (3D) spectral data were captured by a custom-built liquid
crystal tunable filter (LCTF) spectral imaging (SI) system. We investigated the normal
variance between the samples and utilized descriptive and machine learning analysis on
the image stack hypercubes.

Results: Reflectance between intact and peeled arteries in lower-wavelength domains
between 400 and 576 nm was significantly different (p < 0.05). Proximal FN could be
differentiated from distal FN in a higher range, 490–720 nm (p < 0.001). ICA with intact
tunica differed from proximal FN nearly thorough the VIS range, 412–592 nm (p < 0.001)
and 664–720 nm (p < 0.05) as did its distal counterpart, 422–720 nm (p < 0.001). The
availed U-Net algorithm classified 90.93% of the pixels correctly in comparison to tissue
margins delineated by a specialist.

Conclusion: Selective NBI represents a promising method for assisting
tissue identification and computational segmentation of surgical microanatomy.
Further multidisciplinary research is required for its clinical applications and
intraoperative integration.

Keywords: microsurgery, neurosurgery, narrow-band imaging, machine learning, optimal bands, spectral imaging
analysis, anatomy, endoscopy
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INTRODUCTION

Along with cutting-edge handcraft, visual perception is
sine qua non-for surgical outcome. Precise delineation of
pathological margins is imperative, especially in intracranial
microsurgery, where errors may lead to severe neurological
deficits. Unfortunately, several pathologies extend beyond
the capabilities of the human visual system. To elucidate,
the evaluation of blood flow and aneurysmal lesions are
conventionally visualized with fluorescent colorants such
as indocyanine green (ICG). Mere visual information is
rudimentary also in oncological procedures as unquestionably
complicated anatomy is conjoined with diffuse infiltrations
into the healthy tissues. The tissues light interactions, such as
reflection and scattering, render them in various shades of pink
and red, thereby restraining the visual contrast available to the
operating surgeon (Jacques, 1996).

Although fluorescence-guided surgery (FGS) has been the
hallmark for neurosurgical optical imaging due to improvements
in tumor resection rates (Hadjipanayis et al., 2015), experimental
optical technologies such as diffuse reflectance spectroscopy
(DRS), Raman spectroscopy, and optical coherence tomography
have been implemented for neurosurgery in search of expanded
indications. Both the FGS and DRS require contrast agents.
FGS employs exogenous colorants, e.g., ICG, whereas in DRS,
the contrast molecule is endogenous such as NADPH, which
is involved with the metabolic pentose phosphate pathway.
Similarly, Raman spectroscopy provides contrast endogenously
by the inelastic scattering of photons interacting with tissue
(Richards-Kortum and Sevick-Muraca, 1996). Optical coherence
tomography uses back-reflected or backscattered light to
reconstruct tomographic images of tissues in millimeter depths
(Fujimoto et al., 2000). In clinical neurosurgery, these methods
have seemed most applicable for functional measurements or
delineation of tumors (Lin et al., 2001; Böhringer et al., 2009;
Lu et al., 2016). The intraoperative implementation of these
techniques requires complex visualization techniques and contact
handheld probes that may compromise dexterity.

As a novel solution, narrow-band imaging (NBI) and
spectral imaging (SI) systems can enhance the contrast and aid
segmentation of different regions of interest (Panasyuk et al.,
2007). These techniques are more universally applicable and can
also enhance the other imaging systems, such as ICG-FGS in
the analysis of cerebral perfusion (Li et al., 2019). SI methods
are emerging in medicine, and novel applications include early
detection of tumor margins and mucosal changes and retinal
disease and the assessment of tissue perfusion (Mordant et al.,
2011; Gerstner et al., 2012; Zheludev et al., 2015; Holmer et al.,
2018). Along with their possible diagnostical advantages, SI
systems have useful properties for intraoperative use. In contrast
to most optical technologies, these systems are non-ionizing,
are non-invasive, and do not require an extrinsic colorant to
visualize important structures. The design of SI systems is
often flexible, and the captured data can be modified both
computationally and optically to highlight the regions of interest
(Levenson et al., 2012). The primary disadvantages of SI systems
are speed, high expense, and complexity, which arise from the

fact that the technique demands high-performance computers,
quick-to-react detectors, and storage for a significant amount
of multidimensional data (Landgrebe, 2002). Equipment and
the tissues themselves seem to cause significant variability in
spectral responses, and the observed differences are often minor,
e.g., close curves instead of sharp peaks, so careful calibration
of the SI systems is required (Li et al., 2013). Therefore, data
sciences are closely connected to SI, and machine learning
paradigms and data mining are important tools for research (Han
et al., 2011). Adding to uses in medical image analysis, artificial
neural networks are particularly viable for optic tissue margin
delineation in surgeries (Dong et al., 2017; Halicek et al., 2017).

A typical SI system is composed of a light source, optic lenses,
dispersive elements such as grating or a prism, and a detector
(Boldrini et al., 2012). These systems collect reflected light in a
way that every imaging pixel includes a selected spectrum for
that location. The acquired data cube results in three dimensions
(x, y, and λ), and in this way, both quantitative and locational
data are presented. The amount of information is exponential
compared to conventional cameras, and computational models
are used to manipulate the data in order to find feasible targets for
applications such as NBI. The light interactions depend heavily
on the molecular constituents, and consequently, the collected
spectral information forms a characteristic spectral signature
that is suitable for objective identification. Various biological
and pathological processes modify the cellular and molecular
states of the tissue, and thereby, a change in the spectra is
expected (Tuchin and Tuchin, 2007; Piña-Oviedo et al., 2017).
Overall, spectral analysis has been around for years, and it has
many successful applications in different fields of science such
as forensics, food quality analysis, and several industrial sectors
(Thumm et al., 2010; Edelman et al., 2012; Huang et al., 2014).

At present, preclinical-phase SI studies focus on histological
sections, animal models, or tissue phantoms. Adding to oncologic
resections, such studies have documented segmentation of
normal surgical anatomy (Akbari, 2009; Nouri et al., 2016).
Among surgical pathology identification, Akbari et al. (2010)
demonstrated the identification of intestinal ischemia on a
porcine model in surgical conditions. Neurosurgical use of
SI systems has been poorly documented, as intraoperative
integration in general. Few promising trials suggest that when
properly translated to the operation room, SI systems could
assist the delineation of brain tumors and increase the removal
efficacy (Piñeiro et al., 2017; Fabelo et al., 2018a,b). SI methods
have also been used to assess cerebral cortex oxygenation and
the hemodynamic responses (Pichette et al., 2016; Giannoni
et al., 2018). However, the number of publications addressing
microsurgical anatomical tissues’ optic characteristics is low. It
has been omitted how cranial location moderates the optical
properties and whether these features vary individually. Bartczak
et al. proposed and tested a portable system for on-site medical SI
(Hadjipanayis et al., 2015). In this study, the spectral properties
of ex vivo bone, dura mater, muscle, fat, and carotid artery
all exhibit a unique spectral signature. The authors considered
intraoperative requirements and highlighted that short capture
times are required for operation room conditions (Bartczak et al.,
2018). In particular, liquid crystal tunable filter (LCTF)-based
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systems appear clinically feasible since they do not require
mechanical filter adjustment and enable band selection (Gebhart
et al., 2005; Nouri et al., 2014).

Spectrally tunable light sources can provide better
illumination for the tissue’s visual analysis. Tuning may
help to optimize computational time, may simplify SI systems,
and, ultimately, may lead to better cost efficacy with less errors.
This technology may also be feasible for identification of tissue
layers or minuscule alterations in tissues, such as trauma or
plaque formation in arteries. Similarly, meningeal folding
and central nervous system myelinization present potential
examples of surgical anatomy identification. Of special interest
are tissues that vary by structure and location, such as cranial
nerves and arteries.

In our study, we determine the most significant wavelength
ranges to identify internal carotid artery (ICA) and facial nerve
(FN) samples subtle features based on anatomical location and
iatrogenic damage. It is of interest to characterize whether these
subtle features associated to optically defined changes in terms of
variance and visible range reflectance. The results from this study
could be used to modify spectral sensors according to optimal
bands and reliable calibration, which are key factors for adopting
new SI systems to neurosurgery. Optimized identification of
neurovascular pathologies, such arterial wall remodeling in
unruptured aneurysms or due to manipulation, could improve
surgical outcomes and ease the recovery of patients, leading to
increased patient satisfaction.

Our current work aims the following:

I To assess the spectral images’ discriminatory power and
determine the most significant wavelength ranges for
identification between ICA and FN samples.

II Report the adequacy of VIS (visible light) SI-based machine
learning paradigm for tissue classification.

MATERIALS AND METHODS

Tissue Preparation
This study was carried out in accordance with the
recommendations of the Ethics Committee, Hospital
District of Northern Savo. The protocol was approved by
the Hospital District of Northern Savo. The study had
approval for use of cadaveric tissue (Valvira decision no.
9202/06.01.03.01/2013) and fulfilled the Helsinki Declaration for
ethical use of human material.

We studied the optic spectra of five (n = 5) ex vivo ICA
and FN tissue samples extracted from freshly frozen cadaveric
temporal bones, which were selected from the Kuopio University
Hospital Department of Clinical Pathology supply. Both tissues
carry a complex segmental anatomy and are key elements in
microsurgery of the temporal bone (Gibo et al., 1981; Salame
et al., 2002). After defrosting the samples, an ENT specialist,
Iso-Mustajärvi (Fujimoto et al., 2000; Lin et al., 2001) extracted
the distal and proximal part of the FN and cervical and petrous
part of the ICA from the chosen samples. The extraction was
performed by using common microsurgical instruments and

high-speed drill under an operating microscope. Following the
sample extraction, tissue-specific anomalies were documented.

The ICAs were cut skew, and the outermost layer, tunica
adventitia, was removed carefully distally but left intact on the far
side. The FN was collected from intracranial and intratemporal
parts of the temporal bone in order to investigate differences
especially caused by the epineurium, the outermost layer of
connective tissue surrounding peripheral nerves, which protects
the nerve and is presumed to increase after it enters the facial
canal (Salame et al., 2002).

Both the peeled and normal samples of ICA and proximal and
distal parts of FN were attached to a dark cardboard to control
background reflectance. Each cardboard included ICA peeled,
ICA normal, FN proximal, and FN distal samples, and the set
was identified by a color (black, blue, red, white, and yellow,
respectively). After fixing, the samples were covered with gauze
swabs moistened with isotonic saline to prevent drying.

The fixed tissue samples were annotated according to the
prepared margins by using the VGG Image Annotator 2.0.5.
software (Dutta and Zisserman, 2019).

System Description and Design
The reflectance data were gathered and analyzed within
annotated margins presented in Figure 1A. The utilized system
consisted of a stage for the fixed specimen, a monochrome CMOS
camera (Thorlabs 3240CP-M, Thorlabs, Inc.) providing high-
resolution images (1,280 × 1,024 pixels), a broadband halogen
lamp and fiber (Thorlabs OSL2, Thorlabs, Inc.), and an LCTF
(VariSpec VIS-20, CRi, Inc.) tuning the light source. The tuning
range of the filter was 400–720 nm.

The single-output fiber bundle (Thorlabs OSL2FB, Thorlabs,
Inc.) was used to guide the light to the entrance port of the
LCTF device. The light from the fiber was collimated by using
the collimating package (Thorlabs OSL2COL, Thorlabs, Inc.),
filtered, and focused into a microscope ring illuminator (Thorlabs
FRI61F50, Thorlabs, Inc.). The ring illuminator provides a
uniform, 360◦, shadow-free illumination area. The c-mount lens
(Tamron Co., Ltd) and manual linear translation stage were used
to zoom and position the camera. The synchronization of the
LCTF device and the camera was implemented in custom C++
scripts and allowed for an automatic image sequence acquisition.

The setup was completely enclosed into a mobile electronics
cart (Knürr EliMobil). Light-engaging material was used
inside for suppression of stray light beams. In addition,
a light-absorbing cloth was used to cover the cart to
prevent the surrounding light pollution from distorting
the measurement. The experimental setup, including image
calibration and schematics, has been thoroughly described by
Bartczak et al. (2018).

The complete imaging consisted of successive grayscale
(monochrome) frames obtained while tuning a peak wavelength
of the LCTF across its spectral range (400–720 nm) with
increments of 2 nm. The exposure times were adjusted to
compensate the differences in the system sensitivity. Identical
exposure times were used to acquire white and dark references,
needed for spectral reflectance as described before. Complete
scanning across all filters resulted in 161 two-dimensional
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FIGURE 1 | (A) Example of a grayscale image for spectral bands at 555 nm
used for annotations of measured ex vivo tissues made by an ENT specialist.
Manually classified area from tissues (Jacques, 1996; Richards-Kortum and
Sevick-Muraca, 1996; Fujimoto et al., 2000; Hadjipanayis et al., 2015) was
used as a ground truth. (B) Automatic segmentation results for corresponding
example obtained via the combination of U-Net convolutional neural network
and preselected optimal spectral bands. Color of the borders corresponds to
tissue types: red, ICA normal; blue, ICA peeled; orange, FN distal; and green,
FN proximal. Of the pixels 90.93% were classified correctly. Grainy white parts
of the image represent noise. Abbreviations: ICA, internal carotid artery; FN,
facial nerve.

grayscale images that were employed to construct a three-
dimensional (3D) spectral image cube. We collected four distinct
tissue types from five different specimens, giving a total of
20 samples. Each sample was batched and analyzed from four
different spots from over 161 wavelength bands, and this resulted
in a total of 3,220 (4 × 5 × 4 × 161) bands to analyze. We chose
the most optimal spectral bands for tissue identification and
segmentation by using the statistical and computational methods
described below.

Statistical and Computational Methods
To achieve comparable illustrations of the optical behavior of
different tissues, we normalized every spectrum by dividing the
spectral data vector by its maximum values. Normality of the
wavelength distributions was tested with the Shapiro–Wilk test.
Mann–Whitney U-test was used to assess the differences of
spectral reflectance between the batched images of the tissues
because the assumption of normality was not fulfilled for every
comparison. Statistical analyses were performed using SPSS 25.0
for Windows (IBM R© SPSS R© Statistics).

First, we attempted to identify optimal wavelengths for specific
tissues. We utilized band reduction for identifying and discarding
wavelengths that hinder image segmentation. The bands with
the highest similarity coefficients were excluded to increase the
visibility of spectral differences and to reduce the dimensionality
of the data. Then both affinity and dissimilarity coefficients were
considered for optimal band selection. The GDA-SS algorithm
was used for the affinity measurements (Feng et al., 2017),
and pairwise distance was applied to assess divergence (He and
Niyogi, 2004). As this technique is sensitive to noise and outliers,
we discarded one sample of ICA illustrating plaque formation.
An image denoising technique, the Savitzky–Golay filter, was
utilized to help the performance. Statistical tests report the
similarity of distributions, while pairwise distances compared the
spectra wavelength to wavelength, so it will highlight which bands
indicate the difference better. Finally, this information was passed
on to machine learning algorithms, as discussed below.

U-Net is convolutional neural network developed by
Ronneberger et al. (2015) for the purpose of having a faster
and more precise image segmentation. The convolutional
architecture of U-Net was created with biomedical image
segmentation problems in mind (Ronneberger et al., 2015). It
consists of two paths. The first path is the contraction path (or
the encoder). This layer is a traditional stack of convolutional
and max pooling layers, and it is used to capture the context in
the image. The second path is the symmetric expanding path
(or the decoder). It only contains convolutional layers and no
dense layers, which allows the path to accept images of any given
size. This path is used for detection and localization. The U-Net
was trained with the images of a dataset using a determined
number of epochs. Multiple epochs are necessary because U-Net
uses gradient descent for learning optimization (Kirk, 2014). To
present the performance of the algorithm on our dataset, we use
the Jaccard index IoU score. It indicates the overall accuracy and
is calculated as the intersection of the segmented areas between
the ground truth and the prediction over the union of both
areas. Consequently, the ratio of incorrectly classified pixels per
total classified pixels is depicted by the Jaccard loss function. To
create a segmented image, the U-Net algorithm was trained with
the obtained images and tested on an image different from the
training dataset. The segmentation using the U-Net was carried
out via Python using PyCharm Community Edition 2018. The
spectral analysis was executed using MATLAB R2018a.

RESULTS

Each of the four types of tissue sample annotations and
corresponding spectral signatures are provided in Figure 2.
We observed a few distinct anomalies: overlapping of the ICA
tunica adventitia in removal and notable atherosclerotic plaque
formation were clearly visible in the spectra of ICA tissues. These
abnormalities effected the reflectance curve either by distorting
the shape (plaque) or altering reflectance levels (overlap).
Proximal FN sample 1 appeared discolored during the extraction,
which was likely due to unknown degenerative processes. The
anomalies suggest identifiable changes in tissue-specific spectra;
however, the phenomenon requires further studies.
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FIGURE 2 | Normalized spectral signatures of studied tissue types and a mention of sample-specific anomalies. Graph corresponding colors (black, blue, red, white,
and yellow) are used to identify the set of samples. Each set constitutes ICA peeled, ICA normal, FN distal, and FN proximal samples. (A) ICA normal samples.
Tunica adventitia overlaps on yellow samples with lower reflectance. (B) ICA peeled samples. Plaque formation on black samples with notably higher reflectance
values. (C) FN proximal samples. Unknown discoloration on black samples with a flat curve. (D) FN distal samples. Abbreviations: ICA, internal carotid artery; FN,
facial nerve.

The Mann–Whitney U-test was used for all statistical
analyses as the assumption of normality was not fulfilled for
every tissue. The ICA with intact tunica could be reliably
differentiated from samples with peeled tunica on lower (400–
474 nm) and middle (532–556 and 572–576 nm) wavelength
bands (p < 0.05). Proximal FN could be differentiated from
the distal part in the lower (408–416 nm) and medium
to high (490–720 nm) wavelength bands (p < 0.05 and
p < 0.001, respectively). The proximal of the FN was also
compared to the normal ICA, indicating significant differences
throughout 412–592 and 664–720 nm (p < 0.001 and p < 0.05,
respectively). A similar comparison with the distal part of FN
illustrated significant differences nearly throughout the screened
wavelengths (422–720 nm, p < 0.001). The complete Mann–
Whitney test results with respective test parameters are presented
in Table 1. Similarly, the spectral pairwise comparisons indicated
the strongest separatory capabilities on blue to green and red
wavelength regions.

Illustrations of the mean differences between ICA and FN
groups are plotted with 95% confidence interval error bars in

Figure 3, which also describes the significant wavelength regions
that were confirmed statistically. In all, the error bars indicate
minor data spread around the group means.

The U-Net algorithm was trained on 68 of the 161 bands
in the image, in less than 20 min on a laptop with 16 GB of
RAM. Generating the predicted classification took around 12 s
on the same machine. The IoU score and Jaccard loss function
indicated that overall accuracy increased rapidly up to 25 epochs
but flattened above 80 epochs and that further increase did not
improve segmentation significantly. At the end of the training,
the accuracy reached 90.93% and the loss around 10%. Figure 1B
shows the output of the carried segmentation in the context
of imaged tissues.

DISCUSSION

We have assessed the spectral behavior of ICA and FN in
the visible wavelength domain. It is indicated that the applied
LCTF spectral system allows for classification of neurovascular
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TABLE 1 | Significant wavelength ranges and reflectance characteristics of
the tissue groups.

ICA
normal–ICA

peeled

FN
proximal–FN

distal

FN
proximal–ICA

normal

FN
distal–ICA

normal

Mann–
Whitney
test ranges

1: 400–474 nm
2: 532–556 nm
3: 572–576 nm

1: 408–416 nm
2: 490–720 nm

1: 412–592 nm
2: 664–720 nm

1:
422–720 nm

p-value p1 < 0.05
p2 < 0.05
p3 < 0.05

p1 < 0.05
p2 < 0.001

p1 < 0.001
p2 < 0.0

p1 < 0.001

Medians A
0.179

B
0.194

C
0.214

D
0.290

Percentiles
and IQR

A
Q1 = 0.130
Q3 = 0.250
IQR = 0.120

B
Q1 = 0.153
Q3 = 0.235
IQR = 0.082

C
Q1 = 0.184
Q3 = 0.271
IQR = 0.087

D
Q1 = 0.235
Q3 = 0.348
IQR = 0.113

Normality
of ranges

A
406–720 nm

B
406–500 nm

C
408–436 nm

D
408–720 nm

(A) ICA normal, (B) ICA peeled, (C) FN proximal, and (D) FN distal. Abbreviations:
ICA, internal carotid artery; FN, facial nerve; IQR, interquartile range.

structures and their characteristics in ex vivo conditions.
Consequently, we can bring forth the spectra for the predefined
tissues and find the significant wavelengths for differentiating
between tissues. Similarly, we were able to differentiate within
tissues’ microstructural changes related to anatomical location
and iatrogenic conditions—which are associated to tissue
manipulation during surgical approaches.

Both low (400–490 nm) and high (585–720 nm) regions of the
VIS spectrum appear as the most significant intervals for ex vivo
artery and nerve features, whereas the middle (490–585 nm)
seems less informative from a computational perspective. As to
the ICA-vs.-FN comparison, the whole VIS range demonstrated
robust capability to differentiate between the two. However,
wavelengths close to the SI system’s calibration limits (400 and
720 nm) may be prone to bias, so the low–middle (450–585)
wavelengths seemed most feasible for applications focusing on
ICA. When FN is investigated, the most feasible wavelengths were
focused on longer VIS wavelengths, namely, above 644 nm. We
did not compare these samples to any other tissues in this study;
however, the medium-to-high spectral region has been found
most relevant earlier in ex vivo temporal bone and soft tissue
studies (Bartczak et al., 2018; Wisotzky et al., 2018).

In earlier studies, connective tissue has revealed great
variability; this may result from different connective tissue
types or biological processes (Wisotzky et al., 2018). In our
study, the optic spectra of the well-defined neuroanatomical
tissue samples demonstrated modest normal variance at most.
Reflectance values of ICA normal samples demonstrated a
median of 0.179 [interquartile range (IQR) = 0.250–0.130], ICA
peeled 0.194 (0.235–0.153), FN proximal 0.214 (0.271–0.184),
and FN distal 0.290 (0.348–0.235). Most importantly, excluding
the samples with anomalies, the graphs presented a uniform
shape between individuals. These findings suggest that ICA and
FN tissues’ VIS range features could be individually extrapolated
from narrow-band illuminations. As the SI system calibration
is a critical and time-consuming step for optimizing visual

output, this individual consistency is a noteworthy phenomenon
for improving performance on personalized optic visualization
systems. Larger sample size studies could be used for creation
of multispectral sensor fabrication where number and type of
optical properties of the filter would correspond to some of the
significant bands. This could result in much better segmentation
or recognition when comparing with conventional methods
(RGB). As another advantage, reduced number of filters could
deliver real-time imaging and segmentation.

Wisotzky et al. developed a band-pass filter wheel-based
hyperspectral camera setup to monitor the different optical
behaviors of tissue types in vivo under white light. They evaluated
the artery, vein, bone, muscle, fat, connective tissue, parotid
gland, and nerve from six (n = 6) different patients, and
HS data were acquired in three different surgical procedures:
mastoidectomy, parotidectomy, and neck dissection (Wisotzky
et al., 2018). The acquired results showed that the behavior of
the normalized reflection intensity for the analyzed tissue type
remains the same for different measurements and individuals in
the analyzed spectrum from 400 to 700 nm. Consistent to our
findings, their results showed individual trends for each tissue
type, which allows precise identification during the operation.

Preserving ICA and FN along with their anatomical
passageways are important sites for temporal and neurovascular
microsurgery. As presented in Table 1, peeling of ICA objectively
alters the reflective properties of the arterial walls with most
significant ex vivo differences at low band regions. Identification
of arterial wall breaches with optimized illumination could, for
example, improve the ability to predict imminent complications
such as vasospasm, which indicates treatment with antispasmodic
agents such as papaverine. On an in vivo setting, blood perfusion
will likely dominate arterial spectral features; however, our
observations on low band (blue) differences seem nevertheless
promising as the reflective properties of blood concentrate
on the higher bands (red) and up to near-infrared (NIR)
levels (Bosschaart et al., 2014). In our study, we also observed
anomalies, namely, the effect of atherosclerotic plaque on
the artery spectra, which had a clearly different signature.
Hence, the amount and type of surrounding tissue results
in varying reflectance values and requires further analysis.
With a larger sample size, histopathological analysis would
be a relevant method to investigate the outliers such as the
ICA samples affected by macroscopic atherosclerotic plaque.
Optimized illumination of FN can assist its early detection in
subtemporal and intraosseal surgery (Coker et al., 1987) and
help avoid iatrogenic damage. For middle and posterior fossa
skull base surgery, the early detection of intracranial nerves
such as FN offers similar support for patient safety, especially
on complicated conditions involving adhering lesions such as
tumor infiltrations, blood, and gliosis. We observed that the optic
spectrum of FN is moderated by its microanatomical location,
and although lacking histological confirmation, we hypothesize
that the difference is due to peripheral nerve myelination in
comparison to its intracranial counterparts.

Degenerative processes occur in human tissue both with
and without blood supply, in addition to alterations in water
and collagen concentrations. Hence, the optical properties are
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FIGURE 3 | Confidence interval (95%) error bars comparing artery and nerve groups. The highest mean difference is illustrated in the lower and middle wavelength
ranges (400–590 nm) between ICA samples and middle to high ranges (490–720 nm) for FN samples. Abbreviations: CI, confidence interval; ICA, internal carotid
artery; FN, facial nerve.

expected to change especially between cadaveric ex vivo and
in vivo blood-perfused samples. This change in optic features
should be considered a limitation when translating our ex vivo
results to live tissue.

The potential clinical advantages of different SI and NBI
solutions provide a window for thoroughly describing healthy
and pathologic tissues’ optic signatures. As demonstrated
previously, combining SI and classification algorithms has
successfully enhanced segmentation of tissues in different
surgical trials. Recently, Fabelo et al. (2018b) captured spectral
images from the brain surface and conducted an automated
analysis that resulted in accurate identification of glioma
borders (n = 5) compared by margins delineated by specialists.
The authors also propose collection and documentation of
spectral database for research and imaging system development
purposes. As presented here, computationally credible automatic
segmentation of microneuroanatomical tissues was established,
suggesting potential applications also in the microsurgical
environment. The presented image segmentation by using
the U-Net algorithm yielded over 90% overall accuracy for
the obtained images. These findings provide perspective to

applying SI technology to tissue-specific microsurgical research
as automated tissue segmentation is still in its infancy. In
our study, tuned spectral image cubes were used to train
U-Net to differentiate between microsurgical tissue samples.
After the system was trained, the performance of the U-Net
visual segmentation was accurate and appeared fast enough
for intraoperative settings. The determined most significant
bands were used together with the U-Net and point out the
importance of optimizing the number and type of the spectral
bands for high-accuracy automatic segmentation. During near-
real-time application, the immersive spectral data will benefit
from calibration assistance with automated analyses such as
U-Net, which turned out to be reliable and fast in our setting.
However, the acceptable threshold for error should be determined
by each utilizing expert case-specifically.

CONCLUSION

This study indicates that SI systems are feasible for augmenting
identification of delicate neuroanatomical tissues and their
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substructures. Our NBI screening protocol introduces insight
for further development of advanced optic imaging systems
focusing on identification of characteristic structures such
as intracranial arteries and cranial nerves. Such systems
may help conserve normal anatomy by assisting in their
early detection and potentially help identify and counteract
complications due to microstructural trauma caused by tissue
manipulation during skull base surgeries. We observed that
optical properties of medical samples link to the type of
tissues’ anatomical locations and condition. These observations
set a requirement for an extensive anatomical spectral library
of healthy tissues. Future considerations include studies of
different intracranial tissues, larger sample sizes, and samples
with circulation. In addition, hyperspectral bands such as
ultraviolet and NIR wavelengths need to be included to the optic
screening protocols.

Evidently, one of the principal limitations in the development
of intraoperative SI systems is the lack of overt, tissue-
specific spectral data. The creation of an internationally
available spectral database of different surgical pathologies is
an international and multidisciplinary objective, as previously
suggested by Fabelo et al. Future studies at the Eastern
Finland Microsurgery Center are working toward this long-
term goal. Intraoperative spectral video application that
fulfills ergonomic and sterility requirements of operation
rooms is also under future development in the center.
Decidedly, the expertise in computational field is vital
for the blossoming of intraoperative SI. In the future,
multidisciplinary research is essential for successful integration
to the operating room workflow.
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