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Simple Summary: Cancer, but also its treatment, can lead to a reprogramming of cellular metabolism.
These changes are observable in metabolite abundances, which can be unbiasedly measured via mass
spectrometry metabolomics. However, even when the metabolome changes strongly, a (mechanistic)
interpretation is difficult as metabolite levels do not necessarily directly correspond to pathway
activities. Here we measure the changes of the cellular metabolome in colorectal cancer cell lines
sensitive and resistant to the ruthenium-based drug BOLD-100/KP1339 and the platinum-based
drug oxaliplatin. We map these changes onto a cancer-specific genome-scale metabolic model,
which allows us not only to compute intracellular flux distributions, but also to disentangle drug-
specific effects from growth differences from differences in metabolic adaptations due to resistance.
Specifically, we find that resistance to BOLD-100/KP1339 induces more extensive reprogramming
than oxaliplatin, especially with respect to fatty acid and amino acid metabolism.

Abstract: Background: Mass spectrometry-based metabolomics approaches provide an immense
opportunity to enhance our understanding of the mechanisms that underpin the cellular reprogram-
ming of cancers. Accurate comparative metabolic profiling of heterogeneous conditions, however, is
still a challenge. Methods: Measuring both intracellular and extracellular metabolite concentrations,
we constrain four instances of a thermodynamic genome-scale metabolic model of the HCT116
colorectal carcinoma cell line to compare the metabolic flux profiles of cells that are either sensitive
or resistant to ruthenium- or platinum-based treatments with BOLD-100/KP1339 and oxaliplatin,
respectively. Results: Normalizing according to growth rate and normalizing resistant cells according
to their respective sensitive controls, we are able to dissect metabolic responses specific to the drug
and to the resistance states. We find the normalization steps to be crucial in the interpretation of
the metabolomics data and show that the metabolic reprogramming in resistant cells is limited to a
select number of pathways. Conclusions: Here, we elucidate the key importance of normalization
steps in the interpretation of metabolomics data, allowing us to uncover drug-specific metabolic
reprogramming during acquired metal-drug resistance.
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1. Background

A reprogramming of metabolism is a hallmark of multiple diseases, including cancer [1].
Changes in glucose, amino acid, lipid, and cholesterol metabolism, for example, have all
been associated with aberrant metabolic phenotypes observed in cancers [2]. Resulting
differences in metabolism between healthy and cancerous cells hold the potential for
selectively targeting cancerous cells through pharmacological and dietary interventions.
As such, understanding the extent to which metabolic reprogramming occurs in different
cancer cells is a fundamental requirement for better treatment options. However, not
only malignant transformation, but also therapy response on drug resistance acquisition
might be paralleled or even driven by metabolic changes in the malignant cells [3,4].
In case of acquired therapy resistance, dissection of the respective metabolic alterations
and mechanism on a larger scale are only at the beginning and have not found widespread
application yet.

In silico methods have the potential to integrate existing experimental data and to
generate new hypotheses about the underlying mechanisms associated with metabolic
reprogramming. Genome-scale metabolic models (GSMMs), which capture the known
biochemical reactions of a given system, have previously been applied in various cancer
studies [5,6], such as the investigation of metabolic heterogeneity [7] and have led to the
discovery of new drug targets and biomarkers [8–12]. There are, however, areas of cancer
research where GSMMs have not yet been applied due to a lack of available experimental
data. For example, GSMMs have not yet been used extensively to study acquired drug
resistance against different drug classes in different cancer cell types. Acquired therapy re-
sistance is considered a major obstacle for curative systemic cancer treatment at progressed
stages and also affects the success of anticancer metal drugs [13–16].

Metal-based drug treatments involving oxaliplatin are a standard therapy for colorec-
tal cancer, the third most commonly diagnosed cancer [17–20]. Drug resistance, however,
has been reported to develop in nearly all patients with colorectal cancer; even when using
modern targeted and immunotherapy options, chemotherapy remains a major part of the
colorectal cancer treatment regimen [14,15]. Platinum-based drugs are still prescribed in
different lines of systemic cancer treatment in diverse tumor types and patient cohorts [21].
Although platinum-based anticancer drugs like oxaliplatin are widely-used, intrinsic and
acquired resistances remain a crucial impediment in the treatment of colorectal cancer.

Acquired resistance against platinum drugs is thought to be mainly based on elevated
DNA-repair mechanisms, detoxification, evading apoptosis and autophagy [22]. However,
there is an increasing amount of evidence that metabolic alterations might play a pivotal
role as well [23]. The clinically-investigated ruthenium-based anticancer drug BOLD-
100/KP1339 has shown promising results with regard to colorectal cancer treatment [24].
BOLD-100/KP1339 (sodium trans-[tetrachloridobis (1H-indazole) ruthenate(III)]) is a pro-
drug [25] displaying preferential activation by reduction in the hypoxic milieu of solid
tumors and does not primarily target DNA [26] and metabolic alterations are expected
to be relevant. Unlike BOLD-100/KP1339, which is still under investigation for clinical
applications, oxaliplatin is an already widely-applied, clinical cancer treatment. As a result,
the body of literature addressing oxaliplatin resistance is notably larger than that of BOLD-
100/KP1339 resistance. Nonetheless, the extent to which metallodrug resistance results in
an altered metabolic profile remains poorly understood for both drug treatments and has
not yet been compared. As such, it is not yet known whether metabolic reprogramming
during resistance development against anticancer compounds with differenct metal centers
and activity parameters are comparable or drug-specific.

Metabolomics aims to directly measure metabolite abundance from a global and
unbiased perspective and has the potential to not only detect metabolic alterations but
to discover diagnostic and prognostic markers and to generate hypotheses that can be
validated with genetic experiments [27]. Recent progress in targeted and untargeted
metabolomics approaches have resulted in a wide-ranging toolkit for studying metabolic
phenotypes in terms of cellular concentrations. Mass spectrometry-based metabolomics
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approaches can be used for the metabolic profiling of drug-treatment responses in cancer
cell lines [28,29].

While metabolomics studies provide an effective interrogation window for the cellular
changes that occur in response to a change in conditions, they do not necessarily provide
mechanistic insights into the reprogramming of metabolism. Metabolite pools do not in-
form about pathway activity, ergo corresponding metabolic fluxes are sometimes measured.
Measuring metabolic fluxes, however, also suffers from several practical limitations. For
example, a prolonged time for peripheral pathways to reach isotopic steady-state, the fact
that simple linear pathways can only be investigated with non-stationary labelling or an
increased number of samples, and the complex data analyses required for nonstationary
labelling experiments often hinder a successful and comprehensive application of isotopic
labelling methods [30].

Recent trends in metabolomics have shown it is always possible to measure more
metabolites at more time points and to analyse the obtained results in combination with
other ‘omics data sets [31–34]. While multi-omics have allowed for the identification
of numerous regulatory mechanisms in cancer [35,36], their integration with fluxomics
is required to gain a holistic understanding of metabolic reprogramming. To under-
stand the mechanisms that underpin a potential reprogramming of metabolism dur-
ing resistance development, observed changes in metabolite concentrations need to be
placed in the context of changes in metabolic flux. GSMMs provide a platform for do-
ing so [37]. Multiple techniques for integrating omics data sets into GSMMs have been
developed [11,38–41]. While expression data sets are often used to generate system-specific
models [8,42], metabolomics and proteomics data sets are used to constrain the solution
space of the generated models [38,41].

Typically, constraint-based modelling (CBM) is employed to study GSMMs and to
explore metabolic phenotypes in the form of steady-state fluxes [43,44]. Flux balance
analysis (FBA), for example, uses linear optimization techniques to model the fluxome
of GSMMs [see Orth et al. [45] for a review]. FBA, however, can lead to the prediction
of thermodynamically infeasible flux solutions. Thermodynamic flux analysis (TFA) im-
poses additional constraints on stoichiometric models to ensure thermodynamically valid
fluxes and provides a framework for integrating metabolomics data into GSMMs [46,47];
extracellular metabolite data are used to constrain the directionality of exchange reactions
of the model and intracellular metabolite data can be used to constrain reactions in the
model. Both intra- and extracellular metabolite data have previously been integrated into
system-specific metabolic models to draw physiological conclusions about cancerous and
healthy cells [48–51].

In this work, we integrate experimentally determined absolute concentrations of
intracellular metabolites and medium-based metabolites and growth rates of the colorectal
cancer cell-line HCT116 into a cell-line specific, thermodynamic, genome-scale metabolic
model (GSMM). We consider two different models of acquired resistance in colon cancer:
oxaliplatin resistant (OxR) and BOLD-100/KP1339 resistant (RuR) HCT116 cells as well as
their sensitive controls to generate four model instances. To identify metabolic differences
between resistant and sensitive cells, we normalize the calculated flux values by their
representative growth rates. As oxaliplatin and BOLD-100 are prepared in different solvents
(water versus dimethylsulfoxid (DMSO)), OxR and RuR cells were grown in the same
media, but RuR and its respective control were exposed to a low DMSO background
equivalent to the drugs’ stock solution solvent. To account for metabolic differences that
are the results of a difference in solvent, we further normalized the results obtained for the
resistant cells by their sensitive controls. Eliminating both differences in growth rate and
solvent background, we are able to draw drug-specific conclusions about the metabolic
changes that occur upon resistance. As a result, we are able to identify specific changes
in flux that are the direct result of an acquired resistance to either oxaliplatin or BOLD-
100/KP1339 treatment.
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2. Materials and Methods
2.1. Cell Culture

HCT116 colon cancer cells were generously provided by Dr. Vogelstein from John
Hopkins University, Baltimore. Cells were cultured in McCoy’s medium (Sigma Aldrich,
Burlington, MA, USA) supplemented with 10% fetal calf serum (FCS; PAA, Linz, Austria)
and 2 mM glutamine (Sigma Aldrich). Cells were selected for acquired drug resistance
over several months via exposure to increasing concentrations of oxaliplatin or BOLD-
100/KP1339 followed by drug-free recovery phases. Finally, the oxaliplatin-resistant
HCT116 (OxR) cells were selected with 5 µM of oxaliplatin [52,53] for 24 h and BOLD-
100/KP1339-resistant (RuR) cells with 200 µM of BOLD-100/KP1339 for 72 h in two-week-
intervals. All cultures were grown under standard cell culture conditions and checked for
Mycoplasma contamination.

2.2. Cell Viability Assay

Cells were seeded at densities of 3.5 × 104 cells/well in 96-well microtiter plates
and allowed to adhere overnight. Cells were exposed to indicated concentrations of the
respective drugs for 72 h. Cell viability was determined using the 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (EZ4U, Biomedica, Vienna, Austria)
following the manufacturer’s recommendations.

2.3. Metabolomics Experiment

HCT116 cells, HCT116 cells with acquired oxaliplatin resistance, and HCT116 cells
with acquired BOLD-100/KP1339 resistance were seeded (N = 6 for each respectively)
as 2 × 105 cells/well in 12-well plate format in 1 mL McCoy’s medium (Sigma Aldrich)
supplemented with 2 mM glutamine and 10% FCS. After overnight growth, wells were
supplemented with 1 mL fresh medium each. HCT116 with acquired BOLD-100/KP1339 re-
sistance and its sensitive control contained the same medium with 0.5% dimethyl sulfoxide
(DMSO) used as BOLD-100 solvent. Twenty-four hours after supplementing with addi-
tional medium, cells were still not confluent. At this point, the medium was removed and
cells were washed three times with 2 mL PBS (37 °C) and snap frozen with liquid nitrogen.

2.4. Metabolomics Sample Preparation

The samples were randomized at the stages of the experiment including seeding,
sample preparation and extraction as well as LC-MS measurement sequence. Extraction
and measurement of the metabolites were based on a protocol described elsewhere [54].
Briefly, the protocol comprised cell scraping and extraction with 180 µL cold 80% methanol
containing 5 mM N-ethylmaleimide (dissolved in 10 mM ammonium-formate at pH 7) with
20 µL fully 13C-labeled internal standard, ISOtopic solutions (Vienna, Austria). After a
centrifugation step (14,000 rcf, 4 °C, 10 min) cell extracts were directly measured with
high-resolution OrbiTrap mass spectrometer.

2.5. LC-MS Analysis of Metabolites

The quantification of metabolites was based on Schwaiger et al. [55] and the LC-MS
gradient was adapted and shortened to suit metabolites as described elsewhere [56]. Full
mass scan data was acquired both in positive and negative ion mode.

2.6. LC-MS Analysis of Coenzymes

The analysis of free coenzyme A (CoA), acetyl-coenzyme A, palmitoyl-coenzyme A,
malonyl-coenzyme (A below LOD) was carried out in an additional measurement series
of the same samples and on the same instrumental setup but with a dedicated LC-MS
method. The same separation was used with the same gradient and eluents, but flushing of
the column started at 6 min instead of 7 min, shortening the total measurement time from
15 min to 14 min. The OrbiTrap MS settings were changed with regard to the mass range
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to 750–1100 m/z, the capillary temperature was lowered from 280 °C to 200 °C to reduce
in-source fragmentation and the S-lense RF-level was increased from 30 to 60.

2.7. Determination of Total Protein Content

The applied extraction and centrifugation resulted in a pellet containing the high-
molecular fraction and non-polar metabolites. This pellet was dissolved in 0.2 M NaOH
overnight, diluted 1:10 in the same NaOH solution and determined for total protein content
with the Thermo Micro BCA kit, according to manufacturer’s instructions.

2.8. Data Analysis of Metabolomics Measurement

Targeted analysis of the data was done with Skyline 20.2 (available at https://skyline.
ms/project/home/software/Skyline/begin.view, accessed on 12 August 2021) extracting
the [M-H]− and [M+H]+ ions with 5 ppm mass tolerance. The absolute concentrations
relied on the external calibration with internal standardization. The compounds were
standardized compound-specifically where possible and class-specifically when the U13C
equivalent was not reliably available or by U13C-glutamate if neither of the aforementioned
were available.

Metabolites with technical repeatability (relative standard deviation) above 30% were
removed from the dataset. This was based on the repeated injection and measurement of a
pooled quality control sample. Furthermore, metabolites which had mean concentration
below the determined lowest limit of quantification (LOQ) according to the validation of
the LC-MS method described in [55] were removed.

Datasets were combined by joining the metabolite data acquired in both positive and
negative mode, as well as coenzyme data in the negative acquisition mode. A further
calibration was measured in positive mode for several carnitines (propionyl-carnitine, O-
acetyl-carnitine, propionyl-carnitine, palmitoyl-carnitine) with the method for metabolites,
since these compounds were not contained in our original calibration mixture. Also the
calibration row for coenzymes was prepared freshly in this mixture to avoid degradation by
storage. The external calibration of the different coenzymes (coenzyme A, acetyl coenzyme
A, malonyl coenzyme A, palmitoyl coenzyme A) was measured in negative mode. For
every primary thiol in the dataset (coenzyme-A, glutathione, cysteine, etc.) its N-ethyl
maleimide adduct was used for quantification after it was made sure that the conversion
was quantitative.

2.9. Measurement of Extracellular Metabolite Concentrations

105 HCT116 cells as well as HCT116 cells with acquired oxaliplatin resistance and
HCT116 cells with BOLD-100/KP1339 resistance were seeded (N = 4 for each respectively)
into 12-well plate (StarLab) with 2 mL McCoy’s 5A medium (Sigma-Aldrich) containing
10% FCS (BioWest) and 4 mM glutamine. Also in the case of the sensitive HCT116 cells
and the BOLD-100/KP1339-resistant cells the experiment was run with and without 0.5%
DMSO. 100 µL were collected from the starting medium at the beginning of the experiment,
and directly from the wells 24 h, 48 h and 72 h after seeding. Also, a cell free experiment
was run to determine the contribution of abiotic glutamine decay.

2.10. Determination of Dry-Weight for the Cell Lines

The cell dry weight measurements of HCT116 sensitive (Sen), oxaliplatin-resistant
(OxR) and BOLD-100/KP1339-resistant (RuR) cells were carried out (N = 4 for each
respectively) as described by Széliová et al. [57].

2.11. HCT116-Specific Genome-Scale Metabolic Model

Robinson et al. [58] provide the latest consensus GSMM of human metabolism called
Human1. The authors used Human1 to generate cell-line specific models using gene essen-
tiality data from previous CRISPR knockout screens [59]. Using the tINIT algorithm [42]
and RNA-Seq data from HCT116 colorectal carcinoma cells they select reactions from

https://skyline.ms/project/home/software/Skyline/begin.view
https://skyline.ms/project/home/software/Skyline/begin.view
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Human1 associated with moderately and highly expressed genes to build a cell-line spe-
cific model for HCT116. We obtained the model from the authors, removed the enzyme
constraints and added a further seven exchange reactions to the model to account for the
excretion or uptake of cis-aconitate, fumarate, isocitrate, malate, sarcosine, succinate and
xanthine that we observed in our measured time-course of the medium composition. We
use this updated model for all our analyses presented here. The model is available at
https://github.com/HAHerrmann/Hct116_DrugRes/blob/master/Models/Colon_C
ombined.xml (accessed on 12 August 2021).

Growth rates (Figure S1) and exchange rates (Figure S2) were fitted as described
in Széliová et al. [60]. In short, we fitted an exponential model to estimate the initial
concentration, X0, and the growth rate, µ. The fitted growth rate and the initial biomass,
B0, were then used to calculate the specific exchange rates for all of the measured medium-
based metabolites across all time points, i.e., 0, 24, 48, and 72 h. B0 was calculated from
the fitted X0 and the experimentally determined dry mass per cell (Figure S3). The fitting
was done in Python (Version 3.7.9) using the optimize function in scipy (Version 1.5.2)
with parameters soft_l1 for the loss function and f_scale = 0.3 for outlier detection. The
propagated error of the growth rate measurement (Figure S1) and the dry mass per cell
(Figure S3) was calculated and used to set upper and lower bounds. The obtained growth
and exchange rates were used to constrain the respective import and export reactions
of the model. Flux constraints were set such that the applied upper and lower bounds
accounted for the relative standard error or the propagated error of the measurement. We
further constrained the directionality of uptake and excretion rates of 50 metabolites, using
HCT116 cell line specific data obtained by Jain et al. [61]. The “blood pool” reactions were
removed from the model because we did not consider in vivo conditions. Instead, we
allowed for an unconstrained influx of stearate, palmitate, oleate, linolenate, linoleate, and
arachidonate. These fatty acids have previously been shown to make up the majority of
lipids present in fetal calf serum [62,63] which was used as a growth medium supplement.

All applied model constraints are based on data obtained during the exponential
growth phase and as such, all model results are specific to this growth phase.

2.12. Thermodynamic Metabolic Modeling

The pyTFA package [47], https://github.com/EPFL-LCSB/pytfa, accessed on 12
August 2021, formulates thermodynamic flux analysis (TFA) of GSMM as a mixed-integer
linear programming problem that incorporates metabolite concentrations as thermody-
namic constraints into a traditional flux balance analysis (FBA) model. Masid et al. [49]
have recently constructed an extensive thermodynamic database containing the thermo-
dynamic information for compounds, reactions and compartments in human metabolism;
this includes the Gibbs free energy formation of compounds and the associated error esti-
mation, the pH, ionic strength and membrane potentials. Using Biopython (Version 1.78)
we annotated the GSMM with SEED identifiers which allowed us to match the information
in the GSMM to the thermodynamic database of Masid et al. [49]. Absolute metabolite
concentrations were normalized according to total protein content. Normalized values
were used to constrain condition-dependent GSMM instances. Between 61 and 68 metabo-
lites were experimentally constrained in each model instance. Where no experimental
data was available, metabolite concentrations were set to the default range of 10−12 to
0.1 mol per total protein. This allowed us to achieve a thermodynamic coverage of 89% of
the compounds and to estimate the Gibb’s free energy for 20% of the reactions. Using a
parsimonious FBA (pFBA) that maximizes a linear objective while minimizing the total sum
of fluxes [64], we calculated the minimum total sum of fluxes and set this as an additional
constraint to our linear model prior to performing a Flux Variability Analysis (FVA) on the
thermodynamic model, here referred to as TFVA. TFVA applies the same constraints as
TFA but instead of returning a single feasible solution, the lowest and highest possible flux
value for each reaction is returned [65]. Because pFBA does not necessarily return a unique
solution when two alternative pathways with the same total sum of fluxes exist, we chose

https://github.com/HAHerrmann/Hct116_DrugRes/blob/master/Models/Colon_Combined.xml
https://github.com/HAHerrmann/Hct116_DrugRes/blob/master/Models/Colon_Combined.xml
https://github.com/HAHerrmann/Hct116_DrugRes/blob/master/Models/Colon_Combined.xml
https://github.com/EPFL-LCSB/pytfa
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to implement a parsimonious TFVA (pTFVA) to compare different model instances to one
another. Upon parallelizing the existing TFVA implementation in pyTFA for an improved
run time, we ran a pTFVA for different instances of the HCT116 cell-lines specific GSMM.
Flux analyses were done in Python (Version 3.7.9) using cobrapy (Version 0.19.0) [66].

2.13. Data Processing and Flux Normalization

We constrained four different instances of the HCT116 model: oxaliplatin-resistant
cells (OxR) and their sensitive parental counterpart (HCT116) and BOLD-100/KP1339-
resistant cells (RuR) and their sensitive parental counterpart in a DMSO-based medium
(HCT116-DMSO). Model instances were constrained using the condition-specific exchange
fluxes (Figure S1) and growth rate (Figure S2). All blocked reactions were removed
using the find_blocked_reactions in cobrapy (Version 0.19.0) with default parameters,
resulting in a model with 4530 reactions and 4492 degrees of freedom. Upon calculating
flux values for each model instance using pTFVA as described, we divided each set of
flux values by the outgoing flux to biomass production of that model instance, effectively
normalizing for difference in growth. We checked for reactions for which both the upper
and the lower bound differed by at least 15%. Furthermore, we feature-scaled all flux
values to lie between 0 and 1 and divided the flux values obtained in the drug-resistant
instances by the corresponding flux values obtained for their respective controls. Having
thus normalized for differences in the medium composition, we were able to compare
the flux profiles of the two metallodrug resistances to another, again checking for which
reactions both the upper and lower bounds differed by at least 15%.

3. Results
3.1. Differences in Metabolite Concentrations May Not Correlate to Changes in Flux

To investigate the metabolic changes associated with metallo-resistance in colorectal
cancer, we compared the metabolic profiles of resistant and sensitive cells. Using the
HCT116 colorectal cancer cell line, cells with resistance to either oxaliplatin (OxR) or
BOLD-100/KP1339 (RuR) were compared to their sensitive counterparts. The two acquired
resistence models are largely independent of one another: while OxR cells show moderate
cross-resistance for the ruthenium-based drug, RuR cells display no cross-resistance and
remain sensitive to oxaliplatin treatment (Figure S5). This implies a difference in the
molecular basis of resistance between the two models. OxR cells and their parental sensitive
counterparts were grown in a standard medium, while RuR cells and their parental sensitive
counterparts were grown in the same medium but with a low solvent-background (DMSO)
as outlined in the Materials and Methods. Relative differences in the cellular metabolite
concentrations of sensitive versus resistant cells highlight the extent to which the acquired
metallodrug resistance results in an altered metabolome (Figure 1). We observe that
some responses, such as an increase in palmitoylcarnitine and a decrease in lactate upon
resistance, are shared across the two metallo-resistance phenotypes. Nevertheless, many of
the metabolic changes associated with resistance are drug-specific. Pyruvate and carnitine
concentrations, for example, are higher in RuR cells but lower in OxR cells when compared
to their sensitive counterparts. Palmitoyl-CoA, on the other hand, is lower in RuR cells and
higher in OxR cells when compared to their parental sensitive counterparts (Figure 1).
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Figure 1. Observed changes in metabolite concentrations upon acquired resistance. Oxaliplatin (OxR) and BOLD-
100/KP1339 (RuR) resistance models are compared to their sensitive counterparts. Relative differences in the measured
metabolite concentrations of resistant and sensitive cells are shown. A positive relative difference (red) indicates a higher
metabolite concentration in the resistant as compared to the parental sensitive model, whereas a negative relative difference
(blue) indicates a lower metabolite concentration in the resistant than in the sensitive counterpart. Relative differences were
calculated from using the mean values of six replicates. Only those metabolites for which we observed an absolute relative
change greater than 15% between sensitive and resistant, in at least one of the two conditions, are shown. The following ab-
breviations were used: ADP—adenosine diphosphate, AMP—adenosine monophosphate, CMP—cytidine monophosphate,
CTP—cytidine triphosphate, GMP—guanosine monophosphate, IMP—inosine monophosphate, NAD—nicotinamide
adenine dinucleotide , UDP—uridine diphosphate, UMP—uridine monophosphate, UTP—uridine triphosphate, CoA—
coenzyme A, dATP—deoxyadenosine triphosphate, dCMP—deoxycytidine monophosphate.

With the aim of investigating whether the observed changes in cellular metabolite
concentrations (Figure 1) translate to changes in metabolic flux, we integrated experimen-
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tally determined growth rates (Figure S1), intracellular metabolite concentrations (Figure 1)
and exchange rates (Figure S2) in a genome-scale metabolic model (GSMM) of HCT116.
We constrained four instances of the GSMM: an oxaliplatin-resistant (OxR) and a parental
sensitive counterpart (sensitive), a BOLD-100/KP1339-resistant (RuR) and a parental sen-
sitive counterpart for the DMSO-containing medium (sensitive-DMSO). Measuring 110
metabolite concentrations and 37 exchange fluxes, we constrained the solution space of a
model with 6479 metabolites and 6716 reactions. Growth rates were used to constrain the
biomass production of each model instance. Resistant cells grow slower than sensitive cells
and OxR cells grow even slower than RuR cells (Figure S1). Exchange rates (Figure S2) were
determined from time-course measurements of the medium composition and were applied
as flux bounds on the corresponding import and export reactions of the model. Intracellu-
lar metabolite concentrations were applied as constraints using the pyTFA package [47].
Using a parsimonious thermodynamic flux variability analysis (pTFVA), as outlined in the
Materials and Methods, we calculated flux solutions for each of the four model instances,
each of which was constrained with the corresponding experimental data. By incorporating
the growth and exchange rates as well as the intracellular metabolite concentrations into a
GSMM, we were able to calculate possible changes in metabolic fluxes. Metabolic rates,
rather than concentrations, could then be normalized according to the cellular growth
rate observed under those conditions. We compared the four sets of flux solutions against
one another, both before and after normalizing all flux values by the respective growth rate
(Figure 2). Growth rate normalization was implemented by dividing all of the calculated flux
values by the experimentally measured growth rate used to constrain that model instance.

The maximum relative standard error observed across the metabolite measurements
was less than 15%. Thus, when integrating the data into the GSMM and comparing flux
differences between condition-specific instances of the model, we used a cutoff of 15%
to determine whether fluxes were significantly different across conditions. Comparing
resistant cells to sensitive cells, we identify pathways with the most prominent changes
in flux upon acquired resistance (Figure 2). Differences in flux observed prior to growth
standardization directly correspond to predictions of in vivo fluxes. Differences in flux
observed post growth standardization are no longer predictions of in vivo fluxes, but
are predictions of flux differences that are assumed to be the direct result of a metabolic
reprogramming upon acquired resistance rather than changes in growth rate.

Initially, the oxidative phosphorylation pathway shows the highest amount of flux
changes in response to OxR. Upon growth normalizing, however, it is RuR that shows
a higher number of flux changes in this pathway. Furthermore, what initially appears
to be significant differences in flux through the cholesterol and lipid metabolism, largely
disappears upon growth normalization. Changes in the subsystem reactive oxygen species
(ROS) detoxification seem minimal prior to growth normalization; the normalized results,
however, indicate significant changes in flux with regards to detoxification. While the
number of reactions that appear to be affected in starch and sugar and tricarboxylic acid
(TCA) metabolism appears to be drug resistance-specific prior to growth normalization,
this effect disappears upon growth normalization. The comparison of non-normalized and
growth-normalized results in Figure 2 emphasizes that observed changes in metabolite
concentrations are not necessarily indicative of cellular changes in flux. It further highlights
that flux results must be growth normalized in order to distinguish a resistance model
effect from a growth effect when comparing the metabolic profiles of resistant and sensi-
tive cells. Changes in the pentose phosphate pathway (PPP), oxidative phosphorylation,
glycolysis/gluconeogenesis, TCA, nucleotide, ROS and fatty acid pathways, for example,
appear to be a direct result of acquired resistance when comparing OxR and RuR to their
parental sensitive counterparts (Figure 2).
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Figure 2. Metabolic fluxes in resistant versus sensitive models before and after growth rate normal-
ization. Both intracellular and extracellular metabolite constraints were applied to generate four
instances of the HCT-specific GSMM [oxaliplatin (OxR) and BOLD-100/KP1339 (RuR) and their
parental sensitive counterparts (sensitive and sensitive-DMSO, respectively)] as described in the
Section 2. A parsimonious thermodynamic flux variability analysis (pTFVA) was done on each model
instance. Flux values of the resistant instances were compared to their respective controls. Metabolic
reactions that had an absolute relative difference greater than 15% in both the highest possible and
the lowest possible flux value were considered to be different. The proportion of reactions that show
a difference in flux between the OxR and sensitive condition [OxR before growth rate normalization
(GRN); red bars] and the RuR and sensitive conditions (RuR before GRN; orange bars) are shown
for each subsystem (pre-defined pathways in the GSMM). All flux values were then normalized
according to the corresponding growth rate of that condition (Figure S1) and were again checked for
a relative difference between OxR (OxR after GRN; black bars) and RuR (RuR after GRN; gray bars)
and their sensitive controls. Subsystems for which no relative changes in flux between resistant and
sensitive instances were observed were omitted from the figure for clarity.



Cancers 2021, 13, 4130 11 of 22

3.2. Metallodrug Resistance Is Linked to Changes in Energy Metabolism

Integrating metabolite measurements into GSMMs allows for growth rate normaliza-
tion of the calculated fluxes which in turn allows for a direct flux comparison between
resistant and sensitive cells. The reprogramming of energy metabolism to support cell
growth and proliferation is a major hallmark of cancer [1] and has previously been linked
to the emergence of acquired drug resistance [3]. To further investigate the role of a re-
programming of energy metabolism upon acquired metallodrug resistance, we used the
four instances of the HCT116 model (OxR, sensitive, RuR, sensitive-DMSO) to specifically
assess differences in flux in pathways related to energy metabolism.

In the growth conditions considered here, glucose acts as the primary carbon source (Fig-
ure S2). Glucose is catabolized to pyruvate, generating two ATP during glycolysis. Pyruvate
can then be transported into the mitochondria and converted to acetyl-CoA which then enters
the TCA cycle or, in what is known as the Warburg effect in cancer cells [67], pyruvate can be
converted to lactate. Acetyl-CoA can also be generated from fatty acid oxidation and sometimes
amino acid catabolism (see [68] for a review). Fluxes corresponding to these three well-established
energy pathways of colorectal cells along with the oxygen consumption are shown for each cell
type in Figure 3. While glutaminolysis is another common means by which cancer cells support
the Warburg effect [69], we did not measure high glutamine uptake rates in the considered growth
conditions. In fact, our determined glucose and glutamine uptake rates are in the same orders of
magnitude as previously determined for HCT116 cell lines grown in fetal bovine serum [61].

Figure 3. Comparison of fluxes through key energy metabolism reactions for ruthenium- and
oxaliplatin-based resistant cells after growth rate normalization. Growth normalized flux values
through (a) the oxygen uptake reaction—HMR_9048, (b) the ATP synthase reaction—HMR_6916,
(c) the lactate secretion reaction—HMR_9135, and (d) the fatty acid influx—sum of m01362s_FAx,
m02387s_FAx, m02389s_FAx, m02646s_FAx, m02674s_FAx, m02938s_FAx, across the four model
instances (sensitive, Sen—blue bars; sensitive in a DMSO-containing medium, Sen-DMSO—gray
bars; oxaliplatin-resistant, OxR—red bards; BOLD-100/KP1339, RuR—yellow bars) are shown. Fatty
acid influx is the combined influx of stearate, palmitate, oleate, linolenate, linoleate, arachidonate.
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We observe that OxR cells convert less pyruvate into lactate, but in turn consume a
higher relative amount of fatty acids compared to their parental sensitive cells. RuR cells,
however, show a high glycolytic flux and a high oxygen consumption as well as higher
fatty acid consumption than their sensitive counterparts (Figure 3). Notably, the flux values
shown in Figure 3 are growth normalized and may therefore not directly correspond to what
would be observed in a traditional oxygen consumption rate (OCR) versus extracellular
acidification rate (ECAR) experiment [70]. When comparing experimentally determined
OCR and ECAR measurements to the non-normalized model results, we find a close
agreement with regard to the differences in glycolysis and respiration between sensitive
and resistant cells (Figures S4 and S6); thus further validating the set model constraints.

With the four instances of the HCT116-specific GSMMs, further conditions encountered in
the tumor environment can be simulated. Simulating the effect of hypoxic growth conditions,
we first set the oxygen influx for each model instance to the minimum possible value and then
observe the minimum required fatty acid influx as we iteratively increase the oxygen influx,
thus plotting the growth normalized production envelope of oxygen versus minimum fatty
acid influx for each of the four conditions (Figure 4). While RuR cells appear to have a lower
tolerance for hypoxic conditions, they also have a higher fatty acid requirement under those
conditions when compared to the sensitive simulations (Figure 4c,d). While the same difference
can be observed between OxR and sensitive simulations, it is less pronounced (Figure 4a,b).

Figure 4. Simulating minimum fatty acid uptake requirement in response to various oxygen uptake
constraints. Oxygen influx constraints were applied to each of the model instances (a) sensitive, (b)
oxaliplatin-resistant, (c) sensitive in DMSO-containing medium, and (d) BOLD-100/KP1339-resistant.
Using a parsimonious thermodynamic flux variability analysis (pTFVA; see Methods and Materials
for details) the minimum possible fatty acid uptake was calculated for each oxygen constraint as
shown. Fatty acid influx is the combined influx (black line) of stearate (orange), palmitate (cyan),
oleate (dark purple), linolenate (yellow), linoleate (green), arachidonate (light purple).

We then set a minimum possible fatty acid influx and iteratively increased the total
fatty acid influx to the model while calculating the minimum required oxygen influx
(Figure 4). We repeated this calculation for various biomass constraints and note that
there is an optimal fatty acid influx for minimizing the total oxygen required. In fact, this



Cancers 2021, 13, 4130 13 of 22

optimal value corresponds directly to the fatty acid uptake rates observed in Figure 3d
and is in accordance with the parsimonious thermodynamic flux variability analysis which
minimizes the total sum of fluxes (see Section 2 for details).

Crucially, while a direct comparison between resistant and sensitive cells for each
drug respectively can be made, we cannot make a direct comparison between the two drug
resistance models (Figures 1–5). Because RuR cells were grown in a DMSO-containing
medium whereas OxR cells were not, we cannot, at this stage, distinguish a resistance
model-specific effect from a solvent background-induced effect.

Figure 5. Simulating minimum oxygen requirement in response to various fatty acid uptake and
biomass constraints. Fatty acid influx constraints were applied to each of the model instances (a)
sensitive—blue lines, (b) oxaliplatin-resistant—red lines, (c) sensitive in DMSO-containing medium—
black lines, and (d) BOLD-100/KP1339-resistant—yellow lines. Using a parsimonious flux variability
analysis (pTFVA; see Methods and Materials for details) the minimum possible oxygen uptake was
calculated for each fatty acid constraint. The calculations were performed for various growth rate
constraints ranging from 5 to 15 h−1, as indicated by the fading lines. Fatty acid influx constraints
were applied as the combined influx of stearate, palmitate, oleate, linolenate, linoleate, arachidonate.

3.3. Growth Rate and Medium Normalization Allows for a Direct Comparison of Fluxes of Cells
Grown Across Heterogeneous Conditions

In order to be able to compare the metabolic profiles of the two metallodrug resistance
phenotypes directly, we finally normalized the flux results obtained from the metallo-
resistant model instances against their respective parental sensitive counterparts (see
Section 2 for further details). By dividing growth rate normalized and feature-scaled flux
values calculated for the resistant models by those calculated for the respective sensitive
models, we add a further normalization step. This normalization step eliminates observed
differences in flux values that are the result of differences due to the presence of DMSO-
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background. Because the parental sensitive counterparts were grown in the same medium
as their resistant counterparts, we can assume that shared differences in flux between
sensitive and resistant cells are the result of differences caused by DMSO. As such, this
normalization step allows us to directly compare the two acquired resistances, OxR and
RuR, to one another even though RuR, unlike OxR, was grown in a medium with low
solvent (DMSO) background. The comparison of OxR and RuR (Figure 6) cells highlights
an upregulation of fluxes associated with amino acid and fatty acid metabolism in RuR.
OxR cells, on the other hand, show an upregulation in glycolysis and starch and sugar
metabolism when compared to RuR cells (Figure 6b).

Figure 6. Predicted differences in the metabolic fluxes of ruthenium- and oxaliplatin-based resis-
tances after growth rate and medium normalization. Both intracellular and extracellular metabolite
constraints were applied to generate four instances of the HCT-specific GSMMs (oxaliplatin (OxR)
and BOLD-100/KP1339 (RuR) and their sensitive parental counterparts (WT and WT-DMSO, respec-
tively)) as described in the Materials and Methods. A parsimonious thermodynamic flux variability
analysis (pTFVA) was done on each model instance. Each set of flux values was divided by the
corresponding flux through biomass (Figure S1), thus normalizing for differences in growth. Flux
values were then feature-scaled to lie between 0 and 1 and the flux values obtained in the drug-
resistant instances were divided by the flux values of the corresponding control instances, thus
normalizing for difference in medium composition. (a) The relative changes in flux between OxR and
RuR instances were calculated and the total number of reactions that showed an absolute relative
difference greater than 15% in relative upper and lower flux values were counted for each subsystem.
The proportion of reactions that are significantly different in each subsystem is shown as black bars.
Subsystems for which no relative changes in flux between the two resistant instances were observed
were omitted from the figure for clarity. (b) Percentage of reactions in a subsystem which were
identified as significantly different out of all reactions that were identified as significantly different
between the two conditions are shown as a pie chart. Subsystems for which the total flux values were
higher in OxR are shown in red. Subsystems for which total flux values were higher in the RuR are
shown in orange. The subsystems transport reactions were omitted from this analysis as together
they make up over 95% of the significantly different reactions.
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Notably, when comparing the OxR and RuR model instances to their respective
parental HCT116 drug-sensitive counterparts, prior to growth normalization, we identified
1039 (OxR) and 1180 (RuR) fluxes that were significantly different. Upon growth normal-
ization, these numbers reduced to 743 (OxR) and 883 (RuR), highlighting that hundreds of
differences observed in the non-normalized results are simply the result of a difference in
growth rate. The OxR versus RuR comparison upon growth-media DMSO-background
normalization highlighted 670 different reactions, suggesting that another 73 of reactions
were initially observed as significantly different because of presence of 0.5% DMSO.

4. Discussion

Genome-scale metabolic models (GSMMs) provide a platform for integrating omics
data sets and for analysing them in the context of metabolic fluxes. As we have shown,
GSMMs can be constrained using both extracellular and intracellular metabolite concen-
trations to study metallodrug resistance in colon cancer. Approximately one-hundred
metabolite constraints were applied to study the effect of changes in their concentrations
in thousands of reactions. Colorectal-specific GSMMs have previously been constructed
[12,48,58,71] but have not yet been applied to study metallo-drug resistance specifically.
Here, we compared metabolic flux alterations in HCT116 cell models with acquired
oxaliplatin- (OxR) vs. BOLD-100/KP1339 resistance (RuR) relative to parental, drug-
sensitive HCT116 cells grown in the respective growth media without or with 0.5% DMSO.

In this study, we investigated various pathways in silico including glycolysis, the
tricarboxylic acid cycle, fatty acid and amino acid metabolism, beta-oxidation, the pentose
phosphate pathway. A comprehensive stable isotope resolved metabolic flux analysis
considering such a diverse set of pathways would require the application of multiple
different positionally labelled isotopic tracers [27,72]. In addition to economic factors,
practical challenges may also play a role in experimental design. The application of
palmitate to study beta-oxidation, for example, requires the conjugation of fatty acid free
bovine serum albumin [73]. Moreover, it usually has high background contamination from
plastic materials [74]. Finally, stable isotope labeling in living organisms is even more
complex from a data evaluation perspective [75]. Thus, a purely experimental study that
provides a holistic analysis of metabolic reprogramming in cancer is currently infeasible.

There is no simple relationship between changes in metabolite concentrations and
changes in flux [76]. This notion also applies to acquired resistance in the HCT116 colorectal
cancer cell line. We have shown that observed differences in metabolite concentrations
between resistant and sensitive conditions may not necessarily reflect a drug resistance-
specific response but may instead arise as a result of differences in growth rate or solvent
conditions. If we want to compare changes in metabolic flux of cells grown in heterogeneous
conditions, data needs to be normalized in order for valid comparisons to be made. Here
we have outlined a procedure for this kind of normalization based on thermodynamic
genome-scale metabolic modelling of the HCT116 cell line.

Accurate comparative profiling of metabolic changes observed across heterogenous
conditions remains a challenge. Differences in growth rates and impact of solvent necessi-
ties will result in observed differences in metabolite concentrations but are not causal to a
reprogramming of metabolism [77]. Considering cellular fluxes as the metabolic phenotype
through the use of GSMMs has the advantage that fluxes, unlike concentrations, can easily
be normalized with regard to other rate measurements, such as growth rate or exchange
rates (e.g., [78–80]).

As a prerequisite to produce accurate, quantitative metabolomics data [77], we normal-
ized the metabolite amounts to total protein content, calculating absolute concentrations
based on internal standardization. Even though this approach is superior to relative quan-
tification and is able to compensate for technical variation of the sample preparation and
differences in extracted biomass, it does not account for biological processes like growth or
environmental factors such as differences in medium composition.
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Integrating the metabolite data as part of a thermodynamic flux analysis allows us to
normalize the calculated reaction rates by the growth rate observed under the correspond-
ing conditions. We showed that growth-normalization reduces the number of reactions
that are different between resistant and sensitive model instances and changes some of the
conclusions about altered metabolic pathways entirely. Growth normalization is therefore
a critical step when looking for drug-specific metabolic phenotypes. A second limitation to
studying non-normalized metabolite concentrations is that data obtained from heteroge-
neous conditions cannot be directly compared. Using the growth normalized flux results we
further normalized each resistant model against its sensitive counterpart which was grown in
an identical medium and solvent composition. Hence, we were able to do a direct comparison
between the two metallo-resistances and to identify drug resistance-specific responses.

A limitation to our approach is that we first normalized our flux results to differences
in growth rate and then normalized each resistant model against its respective counterpart.
This means that we are unable to capture emergent properties that result from both differ-
ences in growth rate and solvent impact; we assume that a combined effect of the two is
minimal. Furthermore our flux analyses assume metabolism to be in steady-state, such that
intracellular concentrations are constant. Nonetheless, we have clearly demonstrated that
a growth and medium/solvent normalization is non-trivial as it allows for comparisons
across heterogeneous conditions. We expect this method to be of wider applicability in
studies where the effects of medium compositions, such as the availability of carbon sources
to a cell, are of interest.

Time-dependent changes of metabolite profiles have previously been considered [81,82],
but are not typically integrated at a genome-scale level. Measuring metabolite concentra-
tions alongside cell counts at various time points and quantifying the relative metabolite
abundance per cell using linear regression, Dubuis et al. [81] account for deviations from
steady-state. The method was then further developed, using intermediates of fatty acid
metabolism and other metabolites to account for differences in cell size [82]. While the
difference in cell size can be interpreted as a proxy of growth rate, it cannot be assumed
that the observed changes in metabolite concentrations directly translate to differences in
metabolic activity, i.e., fluxes. Metabolic responses associated with an acquired metallo-
drug resistance in cancer have not yet been studied extensively using constraint-based flux
analyses [39,83,84]. The use of GSMMs to integrate metabolomics data to study cellular
fluxes, however, provides multiple new opportunities in this field.

Defense mechanisms and acquired resistance are well known phenomena when ap-
plying metal-based drugs as anticancer agents. Reduced efficacy due to acquired resistance
remains a major challenge in systemic anticancer therapy. The complexity is increasingly
recognized, as the contribution of epigenetic and metabolic effects will be uncovered. Drug-
specific and tumor tissue specific mechanisms have been described, and more recently
the tumor microenvironment has come into focus [85]. Accordingly, response profiling
with metabolomics analysis can be a powerful tool for investigating drugs and drug candi-
dates [28,29] and dissecting emerging resistance [86]. Currently, only a handful of studies
consider metallodrugs applied to cancers with metabolomics [87–89], and even fewer
investigate acquired metallodrug resistance [53].

In this work, we consider an in vitro study of colon cancer. Gastrointestinal cancer cell
lines, including colorectal cancer cell line HCT116 activate beta-oxidation as a response to
oxaliplatin treatment and conversely become more sensitive to oxaliplatin upon inhibition
of fatty acid catabolism [23]. A seminal study in the field integrates both metabolomics and
transcriptomics and finds that, within 59 NCI60 cell lines, the metabolic basis of platinum-
sensitivity can largely be attributed to energy metabolism (TCA cycle, glutaminolysis,
pyruvate metabolism), lipoprotein uptake, and nucleotide synthesis [90]. The results from
our in silico analysis are in line with these findings, also highlighting the importance of
energy metabolism (OXPHOS, glycolysis, TCA).

Figure 6 highlights the relevance of fatty acid metabolism, as fluxes from this sub-
system contribute to 12.5% of all observed differences (excluding all transport reactions)
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between the RuR and OxR, showing elevated fluxes in RuR. This supports existing evi-
dence of beta-oxidation activation in response to metallodrug treatment [23]. Interestingly,
for the majority of observed flux differences between OxR and RuR, flux values are higher
in the RuR, implying a higher metabolic activity in this phenotype, independently of
differences in growth rate. OxR, however, does exhibit elevated activity in the glycol-
ysis/glyconeogenesis and pentose phosphate pathways. Thus, our comparison of the
growth rate- and medium-normalized reaction rates supports the notion that an acquired
resistance to the two metallodrugs is marked by differences in their metabolic phenotype
with an overall higher metabolic activity in the RuR system.

The high metabolic plasticity of cancer cells enables efficient detoxification and protec-
tion strategies [85]. Normalization of the flux values by growth rate substantially reduces
the observed differences (Figure 2) in most of the investigated pathways. In contrast,
both the pentose phosphate pathway and ROS detoxification subsystem, which includes
glutathione-synthesis, were emphasized to the same extent in both the OxR and RuR
resistance models upon growth standardization. This supports the notion that metal-
lodrugs interfere with cellular redox homeostasis and stimulate a readiness to counter
reactive oxygen species (also by synthesizing NADPH via the pentose phosphate pathway)
which has previously been described to conjugate glutathione to platinum complexes with
glutathione-S-transferase [91].

Despite shared commonalities like the production of ROS, it is expected that RuR
and OxR models display different metabolic phenotypes, because of known differences in
their modes of action [26,92,93]. Oxaliplatin, for example, is primarily a DNA targeting
drug, whereas BOLD-100/KP1339 has recently been found to have a prodrug nature and is
capable of causing ER-stress and the downregulation of GRP78, encoding an endoplasmic
reticulum chaperone protein, which has been linked to malignancy [94]. It is widely
accepted that DNA repair mechanisms play a crucial role in resistance to oxaliplatin [95].
It is important to note that, using GSMM, we have here focused solely on metabolic changes
to compare metabolic reprogramming of the two acquired resistances but cannot exclude
further regulatory events.

The comparison of fluxes through key energy metabolism reactions (Figure 3) shows
that both acquired resistances are defined by lowered glycolytic flux than their sensitive
parental cells, although this is less pronounced with RuR. Growth normalization does
not affect this observation (Figure S4). The same cannot be said about the fatty acid
beta-oxidation, where upon growth standardization the acquired resistance models both
show a higher fatty acid requirement than their sensitive controls (Figure 3d; Figure S4d).
Additionally, upon growth normalization OxR has lower and RuR higher respiration rates
than corresponding sensitive counterparts (Figure 3a). The calculated rates correspond well
to the experimentally determined results with a Seahorse assay (Figure S6). As expected
the experimentally determined and non-normalized in vitro results align more closely with
the non-normalized flux values modelled in silico.

Drastic changes in oxygen and fatty acid availability are known stress conditions in a
tumor microenvironment, and are assumed to be managed with metabolic adaptations [4].
Lipid dependency, for example, is more pronounced under hypoxic conditions and relies
on the uptake of extracellular fatty acids [73,96,97]. We thus used the condition-specific
instances of our constrained GSMM to further inspect the relationship between hypoxia and
fatty acid uptake. We found that the composition of fatty acids taken up changes in response
to oxygen limitation (Figure 4). Under normoxic conditions linolenate can act as the sole
fatty acid source. As oxygen limitation becomes more pronounced, linoleate, arachidonate,
oleate, stearate and finally palmitate are also required. RuR cells require less fatty acids under
oxygen limitation compared to their sensitive counterpart (Figure 4c,d); while the same is
true for OxR, the observed difference is notably less pronounced (Figure 4a,b).

Additionally, the investigation of minimum oxygen requirement at various fatty acid
influxes (Figure 5) revealed that the optimal fatty acid composition, which has the lowest
oxygen demand, is the same across growth rates. Overall, OxR has the lowest oxygen
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requirement, which suggests that if sufficient fatty acids are available, OxR will be the most
resilient of the investigated models against hypoxia (Figure 5).

5. Conclusions

There are different ways to capture the metabolic phenotype of a cell. Metabolic profil-
ing via metabolomics provides an interrogation window of the intracellular concentrations
at a given point in time. Extracellular concentrations measured over time provide insight to
the cellular uptake and excretion rates of cells. Together they can be integrated to constrain
the solution space of a genome-scale metabolic model. The calculated flux values can
then be normalized according to growth rates and environmental conditions, allowing for
drug resistance specific metabolic responses to be identified across heterogenous condi-
tions. We find the outlined normalization steps to be crucial in the interpretation of the
results and show that metabolic reprogramming is more extensive in BOLD-100/KP1339
resistant cells than in oxaliplatin resistant cells. We identify pathways, such as fatty acid
and amino acid metabolism, to be upregulated in response to a resistance acquired to
a ruthenium-based drug when compared to a platinum-based drug. All in all, genome-
scale metabolic modelling provides a valuable platform for putting observed changes in
metabolite concentrations in the context of metabolic fluxes.
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90/cancers13164130/s1, Figure S1: Experimentally determined exchanged fluxes used to constrain
the HCT116-specific genome-scale metabolic model, Figure S2: Observed differences in growth
rate between drug treatments and their sensitive controls, Figure S3: Cell dry weight of wild-type
and resistant cells, Figure S4: Comparison of fluxes through key energy metabolism reactions for
ruthenium- and oxaliplatin-based resistances before growth rate normalization, Figure S5: Investiga-
tion of cross-resistance of the resistance model HCT116 with acquired BOLD-100/KP1339-resistance
towards oxaliplatin and cross-resistance of HCT116 with acquired oxaliplatin-resistance towards
BOLD-100/KP1339, Figure S6: Mito Stress test measuring the metabolic parameters OCR and ECAR
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58. Robinson, J.L.; Kocabaş, P.; Wang, H.; Cholley, P.E.; Cook, D.; Nilsson, A.; Anton, M.; Ferreira, R.; Domenzain, I.; Billa, V.; et al.
An atlas of human metabolism. Sci. Signal. 2020, 13, eaaz1482. [CrossRef]

59. Hart, T.; Chandrashekhar, M.; Aregger, M.; Steinhart, Z.; Brown, K.R.; MacLeod, G.; Mis, M.; Zimmermann, M.; Fradet-Turcotte,
A.; Sun, S.; et al. High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities. Cell 2015,
163, 1515–1526. [CrossRef] [PubMed]

60. Széliová, D.; Ruckerbauer, D.E.; Galleguillos, S.N.; Petersen, L.B.; Natter, K.; Hanscho, M.; Troyer, C.; Causon, T.; Schoeny, H.;
Christensen, H.B.; et al. What CHO is made of: Variations in the biomass composition of Chinese hamster ovary cell lines. Metab.
Eng. 2020, 61, 288–300. [CrossRef]

61. Jain, M.; Nilsson, R.; Sharma, S.; Madhusudhan, N.; Kitami, T.; Souza, A.L.; Kafri, R.; Kirschner, M.W.; Clish, C.B.; Mootha, V.K.
Metabolite Profiling Identifies a Key Role for Glycine in Rapid Cancer Cell Proliferation. Science 2012, 336, 1040–1044. [CrossRef]

62. Else, P.L. The highly unnatural fatty acid profile of cells in culture. Prog. Lipid Res. 2020, 77, 101017. [CrossRef]
63. Gregory, M.K.; King, H.W.; Bain, P.A.; Gibson, R.A.; Tocher, D.R.; Schuller, K.A. Development of a Fish Cell Culture Model to

Investigate the Impact of Fish Oil Replacement on Lipid Peroxidation. Lipids 2011, 46, 753–764. [CrossRef]
64. Lewis, N.E.; Hixson, K.K.; Conrad, T.M.; Lerman, J.A.; Charusanti, P.; Polpitiya, A.D.; Adkins, J.N.; Schramm, G.; Purvine, S.O.;

Lopez-Ferrer, D.; et al. Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models.
Mol. Syst. Biol. 2010, 6, 390. [CrossRef]

65. Gudmundsson, S.; Thiele, I. Computationally efficient flux variability analysis. BMC Bioinform. 2010, 11, 489. [CrossRef]
[PubMed]

66. Ebrahim, A.; Lerman, J.A.; Palsson, B.O.; Hyduke, D.R. COBRApy: Constraints-based reconstruction and analysis for python.
BMC Syst. Biol. 2013, 7, 74. [CrossRef]

67. Warburg, O. Über den Stoffwechsel der Carcinomzelle. Naturwissenschaften 1924, 12, 1131–1137. [CrossRef]
68. Brown, R.E.; Short, S.P.; Williams, C.S. Colorectal Cancer and Metabolism. Curr. Color. Cancer Rep. 2018, 14, 226–241. [CrossRef]
69. Li, T.; Le, A. Glutamine Metabolism in Cancer. In The Heterogeneity of Cancer Metabolism; Le, A., Ed.; Advances in Experimental

Medicine and Biology; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 13–32. [CrossRef]
70. Wu, M.; Neilson, A.; Swift, A.L.; Moran, R.; Tamagnine, J.; Parslow, D.; Armistead, S.; Lemire, K.; Orrell, J.; Teich, J.; et al.

Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced
glycolysis dependency in human tumor cells. Am. J. Physiol. Cell Physiol. 2007, 292, C125–C136. [CrossRef] [PubMed]

71. Uhlen, M.; Zhang, C.; Lee, S.; Sjöstedt, E.; Fagerberg, L.; Bidkhori, G.; Benfeitas, R.; Arif, M.; Liu, Z.; Edfors, F.; et al. A pathology
atlas of the human cancer transcriptome. Science 2017, 357, 6352. [CrossRef] [PubMed]

72. Balcells, C.; Foguet, C.; Tarragó-Celada, J.; de Atauri, P.; Marin, S.; Cascante, M. Tracing metabolic fluxes using mass spectrometry:
Stable isotope-resolved metabolomics in health and disease. TrAC Trends Anal. Chem. 2019, 120, 115371. [CrossRef]

73. Yao, C.H.; Fowle-Grider, R.; Mahieu, N.G.; Liu, G.Y.; Chen, Y.J.; Wang, R.; Singh, M.; Potter, G.S.; Gross, R.W.; Schaefer, J.; et al.
Exogenous Fatty Acids Are the Preferred Source of Membrane Lipids in Proliferating Fibroblasts. Cell Chem. Biol. 2016,
23, 483–493. [CrossRef] [PubMed]

74. Yao, C.H.; Liu, G.Y.; Yang, K.; Gross, R.W.; Patti, G.J. Inaccurate quantitation of palmitate in metabolomics and isotope tracer
studies due to plastics. Metabolomics 2016, 12, 143. [CrossRef]

75. Hasenour, C.M.; Rahim, M.; Young, J.D. In Vivo Estimates of Liver Metabolic Flux Assessed by 13C-Propionate and 13C-Lactate
Are Impacted by Tracer Recycling and Equilibrium Assumptions. Cell Rep. 2020, 32, 107986. [CrossRef] [PubMed]

76. Williams, T.C.R.; Miguet, L.; Masakapalli, S.K.; Kruger, N.J.; Sweetlove, L.J.; Ratcliffe, R.G. Metabolic Network Fluxes in
Heterotrophic Arabidopsis Cells: Stability of the Flux Distribution under Different Oxygenation Conditions. Plant Physiol. 2008,
148, 704–718. [CrossRef] [PubMed]

77. Wu, Y.; Li, L. Sample normalization methods in quantitative metabolomics. J. Chromatogr. A 2016, 1430, 80–95. [CrossRef]
78. Chan, S.; Cai, J.; Wang, L.; Simons-Senftle, M.; Maranas, C. Standardizing biomass reactions and ensuring complete mass balance

in genome-scale metabolic models. Bioinformatics 2017, 33, 3603–3609. [CrossRef] [PubMed]
79. Pereira, R.; Nielsen, J.; Rochaa, I. Improving the flux distributions simulated with genome-scale metabolic models of Saccha-

romyces cerevisiae. Metab. Eng. Commun. 2016, 3, 153–163. [CrossRef] [PubMed]
80. Yuan, H.; Cheung, M.; Hilbers, P.; van Riel, N. Flux balance analysis of plant metabolism: The effect of biomass composition and

model structure on model predictions. Front. Plant Sci. 2016, 7, 537. [CrossRef]
81. Dubuis, S.; Ortmayr, K.; Zampieri, M. A framework for large-scale metabolome drug profiling links coenzyme A metabolism to

the toxicity of anti-cancer drug dichloroacetate. Commun. Biol. 2018, 1, 101. [CrossRef]
82. Ortmayr, K.; Dubuis, S.; Zampieri, M. Metabolic profiling of cancer cells reveals genome-wide crosstalk between transcriptional

regulators and metabolism. Nat. Commun. 2019, 10, 1841. [CrossRef]

http://dx.doi.org/10.15252/msb.20199247
http://dx.doi.org/10.1007/978-1-0716-0159-4_7
http://dx.doi.org/10.1126/scisignal.aaz1482
http://dx.doi.org/10.1016/j.cell.2015.11.015
http://www.ncbi.nlm.nih.gov/pubmed/26627737
http://dx.doi.org/10.1016/j.ymben.2020.06.002
http://dx.doi.org/10.1126/science.1218595
http://dx.doi.org/10.1016/j.plipres.2019.101017
http://dx.doi.org/10.1007/s11745-011-3558-9
http://dx.doi.org/10.1038/msb.2010.47
http://dx.doi.org/10.1186/1471-2105-11-489
http://www.ncbi.nlm.nih.gov/pubmed/20920235
http://dx.doi.org/10.1186/1752-0509-7-74
http://dx.doi.org/10.1007/BF01504608
http://dx.doi.org/10.1007/s11888-018-0420-y
http://dx.doi.org/10.1007/978-3-319-77736-8_2
http://dx.doi.org/10.1152/ajpcell.00247.2006
http://www.ncbi.nlm.nih.gov/pubmed/16971499
http://dx.doi.org/10.1126/science.aan2507
http://www.ncbi.nlm.nih.gov/pubmed/28818916
http://dx.doi.org/10.1016/j.trac.2018.12.025
http://dx.doi.org/10.1016/j.chembiol.2016.03.007
http://www.ncbi.nlm.nih.gov/pubmed/27049668
http://dx.doi.org/10.1007/s11306-016-1081-y
http://dx.doi.org/10.1016/j.celrep.2020.107986
http://www.ncbi.nlm.nih.gov/pubmed/32755580
http://dx.doi.org/10.1104/pp.108.125195
http://www.ncbi.nlm.nih.gov/pubmed/18667721
http://dx.doi.org/10.1016/j.chroma.2015.12.007
http://dx.doi.org/10.1093/bioinformatics/btx453
http://www.ncbi.nlm.nih.gov/pubmed/29036557
http://dx.doi.org/10.1016/j.meteno.2016.05.002
http://www.ncbi.nlm.nih.gov/pubmed/29468121
http://dx.doi.org/10.3389/fpls.2016.00537
http://dx.doi.org/10.1038/s42003-018-0111-x
http://dx.doi.org/10.1038/s41467-019-09695-9


Cancers 2021, 13, 4130 22 of 22

83. Nam, H.; Campodonico, M.; Bordbar, A.; Hyduke, D.; Kim, S.; Zielinski, D.; Palsson, B. A Systems Approach to Predict
Oncometabolites via Context-Specific Genome-Scale Metabolic Networks. PLoS Comput. Biol. 2014, 10, e1003837. [CrossRef]

84. Turanli, B.; Zhang, C.; Kim, W.; Benfeitas, R.; Uhlen, M.; Arga, K.; Mardinoglu, A. Discovery of therapeutic agents for prostate
cancer using genome-scale metabolic modeling and drug repositioning. EBioMedicine 2019, 42, 386–396. [CrossRef]

85. McGuirk, S.; Audet-Delage, Y.; St-Pierre, J. Metabolic Fitness and Plasticity in Cancer Progression. Trends Cancer 2020, 6, 49–61.
[CrossRef] [PubMed]

86. Lee, S.; Jang, W.J.; Choi, B.; Joo, S.H.; Jeong, C.H. Comparative metabolomic analysis of HPAC cells following the acquisition of
erlotinib resistance. Oncol. Lett. 2017, 13, 3437–3444. [CrossRef] [PubMed]

87. Fan, T.W.M.; El-Amouri, S.S.; Macedo, J.K.A.; Wang, Q.J.; Song, H.; Cassel, T.; Lane, A.N. Stable Isotope-Resolved Metabolomics
Shows Metabolic Resistance to Anti-Cancer Selenite in 3D Spheroids versus 2D Cell Cultures. Metabolites 2018, 8, 40. [CrossRef]
[PubMed]

88. Ricci, F.; Brunelli, L.; Affatato, R.; Chilà, R.; Verza, M.; Indraccolo, S.; Falcetta, F.; Fratelli, M.; Fruscio, R.; Pastorelli, R.;
et al. Overcoming platinum-acquired resistance in ovarian cancer patient-derived xenografts. Ther. Adv. Med Oncol. 2019,
11, 1758835919839543. [CrossRef]

89. Rusz, M.; Rampler, E.; Keppler, B.K.; Jakupec, M.A.; Koellensperger, G. Single Spheroid Metabolomics: Optimizing Sample
Preparation of Three-Dimensional Multicellular Tumor Spheroids. Metabolites 2019, 9, 304. [CrossRef]

90. Cavill, R.; Kamburov, A.; Ellis, J.K.; Athersuch, T.J.; Blagrove, M.S.C.; Herwig, R.; Ebbels, T.M.D.; Keun, H.C. Consensus-
Phenotype Integration of Transcriptomic and Metabolomic Data Implies a Role for Metabolism in the Chemosensitivity of
Tumour Cells. PLoS Comput. Biol. 2011, 7, e1001113. [CrossRef]

91. Jungwirth, U.; Kowol, C.R.; Keppler, B.K.; Hartinger, C.G.; Berger, W.; Heffeter, P. Anticancer Activity of Metal Complexes:
Involvement of Redox Processes. Antioxid. Redox Signal. 2011, 15, 1085–1127. [CrossRef]

92. Gibson, D. The mechanism of action of platinum anticancer agents—What do we really know about it? Dalton Trans. 2009, 48,
10681–10689. [CrossRef] [PubMed]

93. Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer 2007, 7, 573–584. [CrossRef]
94. Lizardo, M.M.; Morrow, J.J.; Miller, T.E.; Hong, E.S.; Ren, L.; Mendoza, A.; Halsey, C.H.; Scacheri, P.C.; Helman, L.J.; Khanna, C.

Upregulation of Glucose-Regulated Protein 78 in Metastatic Cancer Cells Is Necessary for Lung Metastasis Progression. Neoplasia
2016, 18, 699–710. [CrossRef] [PubMed]

95. Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: Role of ATP–dependent transporters. Nat. Rev. Cancer 2002,
2, 48–58. [CrossRef]

96. Drury, J.; Rychahou, P.G.; He, D.; Jafari, N.; Wang, C.; Lee, E.Y.; Weiss, H.L.; Evers, B.M.; Zaytseva, Y.Y. Inhibition of Fatty
Acid Synthase Upregulates Expression of CD36 to Sustain Proliferation of Colorectal Cancer Cells. Front. Oncol. 2020, 10, 1185.
[CrossRef] [PubMed]

97. Valli, A.; Rodriguez, M.; Moutsianas, L.; Fischer, R.; Fedele, V.; Huang, H.L.; Stiphout, R.V.; Jones, D.; Mccarthy, M.; Vinaxia, M.;
et al. Hypoxia induces a lipogenic cancer cell phenotype via HIF1α-dependent and -independent pathways. Oncotarget 2014,
6, 1920–1941. [CrossRef]

98. Haug, K.; Cochrane, K.; Nainala, V.C.; Williams, M.; Chang, J.; Jayaseelan, K.V.; O’Donovan, C. MetaboLights: A resource
evolving in response to the needs of its scientific community. Nucleic Acids Res. 2020, 48, D440–D444. [CrossRef] [PubMed]

http://dx.doi.org/10.1371/journal.pcbi.1003837
http://dx.doi.org/10.1016/j.ebiom.2019.03.009
http://dx.doi.org/10.1016/j.trecan.2019.11.009
http://www.ncbi.nlm.nih.gov/pubmed/31952781
http://dx.doi.org/10.3892/ol.2017.5940
http://www.ncbi.nlm.nih.gov/pubmed/28529573
http://dx.doi.org/10.3390/metabo8030040
http://www.ncbi.nlm.nih.gov/pubmed/29996515
http://dx.doi.org/10.1177/1758835919839543
http://dx.doi.org/10.3390/metabo9120304
http://dx.doi.org/10.1371/journal.pcbi.1001113
http://dx.doi.org/10.1089/ars.2010.3663
http://dx.doi.org/10.1039/b918871c
http://www.ncbi.nlm.nih.gov/pubmed/20023895
http://dx.doi.org/10.1038/nrc2167
http://dx.doi.org/10.1016/j.neo.2016.09.001
http://www.ncbi.nlm.nih.gov/pubmed/27973325
http://dx.doi.org/10.1038/nrc706
http://dx.doi.org/10.3389/fonc.2020.01185
http://www.ncbi.nlm.nih.gov/pubmed/32850342
http://dx.doi.org/10.18632/oncotarget.3058
http://dx.doi.org/10.1093/nar/gkz1019
http://www.ncbi.nlm.nih.gov/pubmed/31691833

	Background
	Materials and Methods
	Cell Culture
	Cell Viability Assay
	Metabolomics Experiment
	Metabolomics Sample Preparation
	LC-MS Analysis of Metabolites
	LC-MS Analysis of Coenzymes
	Determination of Total Protein Content
	Data Analysis of Metabolomics Measurement
	Measurement of Extracellular Metabolite Concentrations
	Determination of Dry-Weight for the Cell Lines
	HCT116-Specific Genome-Scale Metabolic Model
	Thermodynamic Metabolic Modeling
	Data Processing and Flux Normalization

	Results
	Differences in Metabolite Concentrations May Not Correlate to Changes in Flux
	Metallodrug Resistance Is Linked to Changes in Energy Metabolism
	Growth Rate and Medium Normalization Allows for a Direct Comparison of Fluxes of Cells Grown Across Heterogeneous Conditions

	Discussion
	Conclusions
	References

