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Activity Recognition Based on

Embedded Sensor Data Fusion for

the Internet of Healthcare Things.

Healthcare 2022, 10, 1084. https://

doi.org/10.3390/healthcare10061084

Academic Editors: Giner Alor-

Hernández, Jezreel Mejía-Miranda,

José Luis Sánchez-Cervantes and

Alejandro Rodríguez-González

Received: 24 May 2022

Accepted: 9 June 2022

Published: 10 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

healthcare

Article

Human Activity Recognition Based on Embedded Sensor Data
Fusion for the Internet of Healthcare Things

Mohamed E. Issa 1, Ahmed M. Helmi 1,2 , Mohammed A. A. Al-Qaness 3,4,* , Abdelghani Dahou 5,
Mohamed Abd Elaziz 6,7,8 and Robertas Damaševičius 9,*
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Abstract: Nowadays, the emerging information technologies in smart handheld devices are motivat-
ing the research community to make use of embedded sensors in such devices for healthcare purposes.
In particular, inertial measurement sensors such as accelerometers and gyroscopes embedded in
smartphones and smartwatches can provide sensory data fusion for human activities and gestures.
Thus, the concepts of the Internet of Healthcare Things (IoHT) paradigm can be applied to handle
such sensory data and maximize the benefits of collecting and analyzing them. The application
areas contain but are not restricted to the rehabilitation of elderly people, fall detection, smoking
control, sportive exercises, and monitoring of daily life activities. In this work, a public dataset
collected using two smartphones (in pocket and wrist positions) is considered for IoHT applications.
Three-dimensional inertia signals of thirteen timestamped human activities such as Walking, Walking
Upstairs, Walking Downstairs, Writing, Smoking, and others are registered. Here, an efficient human
activity recognition (HAR) model is presented based on efficient handcrafted features and Random
Forest as a classifier. Simulation results ensure the superiority of the applied model over others
introduced in the literature for the same dataset. Moreover, different approaches to evaluating such
models are considered, as well as implementation issues. The accuracy of the current model reaches
98.7% on average. The current model performance is also verified using the WISDM v1 dataset.

Keywords: Internet of Healthcare Things; human activity recognition; smart technologies for health-
care; m-Health; mobile devices; digital healthcare

1. Introduction
1.1. Motivation

Smart solutions for Internet of Healthcare Things (IoHT) [1], also known as Healthcare
Internet of Things [2], Internet of Medical Things [3], or Medical Internet of Things [4],
systems have extensively emerged since the Industry 4.0 revolution [5], making use of
digital devices, in particular wearable sensors and smart handheld devices. In the new
phase of the industrial revolution, termed Industry 5.0, collaborative interaction between
machines and people is coming back to the forefront [6]. Unlike aiming to find the best
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ways to connect devices together—in the first place—which was a goal of Industry 4.0, there
is great interest in moving toward personalization in Industry 5.0. This means that creative
thinking and smart usage of the entities of smart systems are expected to increase the
productivity and benefits of emerging IoT-based solutions [7]. The guidelines of Industry
5.0—under the umbrella of IoT—open up a new window to the development and enhance-
ment of existing smart IoHT systems, in particular, during present-day circumstances, such
as the spread of COVID-19, and ehealth and telehealth services can be provided without
in-person visits [8,9], while decision support provided by artificial intelligence methods
can facilitate doctors’ decisions [10]. Numerous applications are categorized under IoHT
applications. For example, indoor localization and IoT applications inside smart buildings
such as keeping social distances have been used since the COVID-19 pandemic began [11].
In addition, such applications are used for traditional tasks such as the monitoring of
daily life activity [5,12,13], fall detection [14] and assisted living [15–18], bad habits (such
as smoking) detection and control [19], monitoring of industrial workers’ activity [20],
monitoring the heart rate of vehicle drivers [21], using wearable sensors to monitor heart
activity [22,23], mHealth Apps for Self-Management [24], gait detection for people with
Parkinson’s disease [25,26], and many others.

The implementation of IoHT systems starts with data acquisition, followed by a
preprocessing and feature-extraction phase, and finally arrives at the decision-making stage.
Most known approaches in the literature can be categorized as video-based, WiFi-based,
and sensory-based. Video-based human activity monitoring approaches may provide rich
information via videos and images for indoor activities when there are no ad hoc cameras
in outdoor environments such as walking tracks, parks, traditional malls, and swimming
pools. Conversely, both wearable sensors and smart handheld devices are very suitable for
the environment-invariant Human Activity Recognition (HAR) models. Another concern is
that maintaining the privacy of individuals is questionable in vision-based approaches [27],
while dealing with data fusion from sensors presents no such compromise. However,
WiFi-based recognition of activities of daily life [28–30] has the advantage of using the fixed
WiFi devices, but such approach has no applicability in outdoor environments.

A great interest is devoted to employing wearable sensors (e.g., accelerometer units),
embedded sensors in smart devices (e.g., accelerometer, gyroscope, and magnetometer),
and Kinect sensors [31] to develop HAR models [12,32]. Currently, smart devices such as
smartphones and smartwatches are receiving much attention in such IoHT applications
for obvious reasons [5]. On the other hand, a special-purpose real-time health monitoring
device may have concerns regarding the efficient implementation in terms of power con-
sumption [33]. When data acquisition is performed through many sensors and/or devices,
there is a need for a suitable IoT framework to be able to move to the preprocessing stage. In
preprocessing stage, the tri-axial activity signals registered by the sensors usually first need
noise filtration, then segmentation in window length that ranges from <1 to 30 s [5,34] with
more focus on reasonable small lengths (e.g., 2–10 s) in order to simulate real-time situations.
Furthermore, feature extraction can follow the traditional approach of handcrafting a set of
fine features selected in the time domain (mean, standard deviation, min, max, Pearson
coefficients, etc.) and the frequency domain (energy, entropy, FFT coefficients, etc.), or they
may follow the modern trend of deep learning networks [16,34]. In the latter approach,
features are implicitly extracted as the encodings of hidden layers of the network, while
outer layers such as fully connected layers together with softmax layer are responsible for
the decision-making (i.e., classification and recognition). Following the feature engineering
approach, the Random Forest (RF) algorithm [35], Multilayer Perceptron (MLP) [36] (one
variant of artificial neural networks), Support Vector Machines (SVMs) [37], and Naive
Bayes (NB) [38] are among the well-known shallow classifiers.

However, deep learning models perform well for many available human activity
datasets in the literature [34], but the RF algorithm, for example, performs better than a
single LSTM classifier for a specific dataset addressed in [16]. In addition, the recent studies
in [17,39–41] in IoT applications depend on shallow classifiers. Recently, hybrid ensemble
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approaches that make use of shallow classifiers in addition to deep convolutional layers
are significantly bullish [28].

The limitation of existing approaches concerning a dataset collected by two smart-
phone units (in pocket and wrist positions) of human activities and gestures introduced
by Shoaib et al. [42] motivates improving the state-of-the-art results. In this paper, an
interesting and challenging dataset of thirteen activities is addressed. Activities are divided
into two groups: the first group consists of hand gestures such as eating, smoking, drinking
coffee, typing, and writing, and the other group consists of biking, jogging, standing,
sitting, walking, walking upstairs, and walking downstairs. As a classification problem,
the whole dataset is handled at a time in the training and testing processes. Using a feature
set that is adequate to sensors’ positions on the human body, an impartial comparison
between the aforementioned shallow classifiers is conducted. The RF algorithm shows
outstanding performance compared to previous models in the literature according to both
subject-dependent and stratified k-fold cross-validation evaluation metrics. Furthermore,
for testing the model generalization, another dataset, namely WISDM v1 [43], is used to
examine the applied model performance.

1.2. Related Work

In the literature, numerous human activity datasets were collected from smartphones
and/or smartwatches, e.g., WISDM v1 and v2, UCI–HAR, and UniMiB SHAR; see the survey
by Demrozi et al. [44] for complete details. Shoaib et al. published a public dataset in [42]
using two smartphone units. Below, we shed light on some closely related studies that
addressed this dataset. In [42], a simple feature set of mean, standard deviation, median, min,
max, semi-quartile, and the sum of the first ten FFT coefficients were extracted from each
sensor stream, and the magnitude of its 3-dimensional signal was applied to the NB classifier.
Since the readings of the accelerometer, linear accelerometer, gyroscope, and magnetometer
sensors in both smartphones were registered, the focus in [42] was to evaluate the combination
of sensors and device positions on the body, besides determining the effect of the window
length from 2 to 30 s. The accelerometer and the gyroscope from both devices’ positions gave
the best performance. Baldominos et al. [45] performed a comparative study between different
machine learning techniques (deep and shallow). Readings of the four sensors mentioned
above were used. For shallow techniques, handcrafted features such as the mean and the
standard deviation of raw signals and skewness, kurtosis, and the lower and upper quartiles
of real coefficients of FFT of each dimension were obtained. The ensemble of randomized
decision trees (ET) outperformed both shallow classifiers such as RF, MLP, NB, and K-nearest
neighbors and convolutional neural networks (CNN). Alo et al. [46] examined two deep
learning models, namely deep-stacked autoencoders (DSAE) and deep belief neural networks
(DBNN). Only signals of the accelerometer are considered in both devices. Besides raw signals,
the magnitude vector and the vectors of pitch and roll angles are used for training the models.
The DSAE showed notable performance over both DBNN and the shallow classifiers (with the
time-domain features in [42]) such as SVM, NB, and linear discriminant analysis. There are
also deep learning models proposed for HAR using wearable sensors. For example, in [47], a
combination of long short-term memory (LSTM) and a conventional neural network (CNN)
was proposed to solve the HAR problem. In [48], a new HAR model was developed based
on convolutional and LSTM recurrent units. In [49], a new model called iSPLInception was
developed based on the Inception-ResNet framework from Google. It showed acceptable
performance using different HAR datasets. In [50], the authors studied the applications of
several deep learning methods. They found that the hybrid CNN-BiGRU showed the best
results. Among the aforementioned studies, stratified k-fold evaluation criteria were
applied by Shoaib et al. [42], while dataset samples were divided into train/test sets with
a subject-dependent measure in [45,46]. Moreover, there is a variance between the different
studies about the most suitable sensors for this task. Finally, there is some confusion about
the superiority of conventional machine learning approaches versus deep learning models
for this specific dataset.
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To solve such conflicts, this paper proposes an individual model that proves supe-
rior according to both evaluation criteria. In addition, an impartial comparison between
previous approaches and the current one has been performed.

1.3. Contribution of Current Work

• Presenting a light human-activity-recognition system using wearable sensors.
• Implementing a robust real-time model based on the Random Forest algorithm that

outperforms other known classifiers and deep learning models.
• Handling a complex dataset of thirteen different human activities and gestures and

improving the state-of-the-art results according to both subject-dependent and strati-
fied k-fold cross-validation measures and using a different dataset, namely WISDM
v1, for verifying model performance.

• Conducting sensitivity analysis for the applied model parameters (Random Forest
size and depth).

1.4. Paper Organization

This document is organized as follows: Section 2 introduces the applied IoHT system
framework. Section 3 presents the experimental results within the discussion. Section 4
handles the effect of important parameters on model performance. Section 5 provides
a comparison with previous related studies. A different dataset is used to verify model
performance in Section 6. The discussion of obtained results is given in Section 7. Section 8
includes conclusions, limitations, and future extensions of this work.

2. The Applied Approach
2.1. Dataset

Table 1 presents the generic information of dataset addressed here. Activity signals
were recorded at a frequency of 50 Hz from the accelerometer, linear accelerometer, gyro-
scope, and magnetometer sensors of two Samsung Galaxy S2 smartphones. One device
was put in the right pocket, and the other was placed on the right wrist. Ten subjects were
asked to perform thirteen activities following a protocol; see Table 2 for the duration of each
activity performed for each subject. This data set comprises six activities involving hand
gestures, namely eating, smoking, drinking coffee, typing, and writing, and seven activities
involving full-body motions, namely biking, jogging, standing, sitting, walking, walking
upstairs, and walking downstairs. The total number of observations was 1,170,000. Activity
signals were successfully registered, and there were no missing values. More details about
the settings of collecting activities can be reviewed in [42].

Table 1. Dataset collection configuration.

Parameter Information

# Subjects 10
# Activities 13

Total # Observations 1,170,000
Missing values NO

Device Two Samsung Galaxy S2 smartphones
Position on Body Right pocket and right wrist

Sensors Accelerometer, Linear Accelerometer, Gyroscope and Magnetometer
Frequency 50 Hz
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Table 2. Dataset activities.

Activity Abbreviation Duration (min)

Biking BK 3
Having Coffee CO 5

Walking Downstairs DS 3
Eating ET 5

Jogging JO 3
Sitting ST 3

Smoking SM 5
Standing SN 3

Giving a Talk TK 5
Typing TP 5

Walking Upstairs UP 3
Walking WK 3
Writing WR 5

2.2. Sensory Data Processing

The applied model makes use of the readings of accelerometer and gyroscope sensors,
where the acceleration and angular velocity of body limbs are sufficient for characterizing
the activities performed. This point of view coincides with the well-known study of Anguita
et al. [51]. Figure 1 clarifies the sensors’ positions on the human body in order to acquire
activity signals. Figure 2 shows the signal separation into body and gravity components
using the Butterworth filter. Figure 3 presents the IoHT framework applied here. When
applying the model, it is suggested to connect devices through Bluetooth technology. Then,
the processing takes place at one central point (i.e., smartphone) as shown in Figure 3.

Figure 1. Activity signal acquisition from handheld smart devices.
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Figure 2. Accelerometer signal separation into body and gravity components using the Butterworth
filter with a corner frequency of 20 Hz.
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Figure 3. The composition of the applied IoHT system.

Activity Signal Preprocessing. According to previous studies, e.g., [51–53], it is preferred
separate body and gravity components of accelerometer signals using, for example, a fourth-
order Butterworth low-pass filter with a corner frequency of 20 Hz to filter out the body-
acceleration component, since signals were collected at 50 Hz–. For real-time considerations,
signals were segmented using a window length of 2.56 s (i.e., 128 data points) with an overlap
of 50% [51]. Figure 2 presents an illustrating example of acceleration signal separation for the
walking activity in a time interval of 2.56 s. Thus, there is a fusion of six time-series signals:
body acceleration, gravity acceleration, and gyroscope readings of both devices.

Feature Representation. The features for smartphone-based activity signals (with the
numerical participation in the feature vector in parenthesis) are listed as follows:

• (F1-12) Mean and standard deviation (STD) of each of the acceleration signal (AS) and
its jerk signal (JS)

• (F13-24) Autoregressive (AR) model coefficients for AS
• (F25) Signal magnitude area (SMA)
• (F26) Tilt angle (TA)
• (F27-30) Roll angle (RA) Equation (1): mean, STD, entropy of JS, and power
• (F31) Angle of x-component of AS Equation (2)
• (F32-34) Entropy of JS
• (F35-37) Power of AS

Roll angle = arctan(−BAz,−BAy) (1)

where BAy and BAz are body acceleration in y and z dimensions, respectively.

Angle of x-component of AS = real
(

arccos
(

max
(

min
( Bx · Gm

||Bx|| ∗ ||Gm||
, 1
)

,−1
)))

(2)

where the only real part of the resulting quantity is used; Bx and Gm are body acceleration
in the x-axis and the mean of gravity component in 3D, respectively; and the denominator
represents the multiplication of the 2-norm of each vector. For the rest of the features, the
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readers can review [51]. Such a feature set is sensitive to body kinematics (e.g., wrist and leg
motion in action). Thus, the 3D signals of each of the four operating sensors are represented
by 37 features. Furthermore, combining the extracted features results in a 222-dimensional
feature vector where the separation of body and gravity components of the accelerometer
is performed.

Scaling and Normalization. The numerical values of the feature vector have a great
variance in magnitude; e.g., SMA can reach a value that is a few hundred times that of
the power of AS and the STD of acceleration JS. In order to eliminate the negative effect
on the classification task, scaling is performed in terms of the segment length (slen). The
coefficients of the AR model, TA, mean, and STD of AS, mean of JS, mean of RA, and power
of RA are scaled by

√
slen, while the angle of the x-component of AS is scaled by slen, and

finally the scaling factor slen2 is applied for SMA. The rest of the features are used without
scaling. This treatment is heuristically examined. After that, the whole feature vector is
normalized in [0, 1] as illustrated in Figure 3.

Classification Layer. Commonly applied classification algorithms in human-activity-
recognition tasks are referred to here as RF, MLP, SVM, adn NB. RF [35] is a voting-based
classifier where a decision tree is created for each sample inside a random subset of features.
Then, the decision is taken for the sake of the class that is the most voted for. Thus, the
most important parameters of the RF classifier are the number of decision trees and the
maximum depth of the tree. MLP [36] contains interconnected processing units called
neurons in one or more layers. Each neuron is characterized by its activation function,
that is, a function of the weights of the preceding layer. The training algorithm, which is
responsible for finding the best weights, plays a vital role in the network performance. In
addition, the number of layers, number of neurons, and type of activation function are the
most important parameters for the MLP. SVM [37] depends on finding the best hyperplanes
that achieve the maximal margin between the nearest examples in high-dimensional spaces
of two different classes. For a multiclass problem, n ∗ (n− 1)/2 binary SVM models are
generated to distinguish n classes. NB [38] is a simple classifier that makes use of Bayes’
rule to determine the class with the highest posterior probability.

3. Experimental Results and Analysis
3.1. Setup

Well-known machine learning (ML) classifiers in the IoT area, namely RF, MLP, SVM,
and NB, are examined in an impartial comparison in order to clarify the most suitable one
for this specific application. Since subject-dependent evaluation is usually easier than k-fold
cross-validation in human-activity-recognition applications [54], the outstanding classifier
according to the first mentioned criteria is examined in the later one. ML algorithms are
referred to under the Scikit-learn framework in Python. Table 3 illustrates the parameters
of each classifier during the experiments conducted here.

Table 3. Classifiers settings and parameter values.

Classifier Function Call Settings and Parameters

RF RandomForestClassifier() # estimators = 200, max. depth = 25, min. samples split = 2

MLP MLPClassifier()
solver: quasi-Newton method, # hidden neurons = 75,

activation function: tanh, max. # iterations = 1000, momentum = 0.9,
initial learning rate is 0.01, validation ratio = 15%

SVM svm.SVC() kernel: radial basis function, polynomial degree is 3

NB GaussianNB() µ and σ parameters of Gaussian distribution are estimated
using maximum likelihood

Performance of the examined ML algorithms is evaluated according to four metrics,
namely the classification accuracy (Equation (3)); the F1-measure, which is the average of
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precision and recall of classification; (Equations (4) and (5)); execution time; and size on
the disk.

Accuracy =
TP

TP + TN + FP + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

where TP represents the true-positive, TN is the true-negative, FP is the false-positive and
FN is the false-negative classification rate. The best settings for each classifier are used
in experiments after examining various training options. Experiments run on a computer
machine with 10 GB RAM and 2.60 GHz i5 CPU.

3.2. Subject-Dependent Evaluation

The samples of each class are randomly separated, with 70% in the training and
validation set and 30% in the testing set. The test samples are never introduced training
any of examined classifiers, but samples of the same subject may appear in both training
and testing sets. For impartial comparison, the simulation procedure was repeated by
10 independent runs, where each time, the same training/testing data are provided to each
classifier. The average classification rates for activity recognition are presented in Figure 4.

Figure 4. Average F-measure scores of the activities: Bike (BK), Coffee (CO), Downstairs (DW), Eat
(ET), Jog (JO), Sit (ST), Smoke (SM), Stand (SN), Talk (TK), Type (TY), Upstairs (UP), Walk (WK) and
Write (WR). Compared classifiers are evaluated under subject-dependent criteria.

Figure 4 shows the average classification rates for different activities per classifier. RF has
the highest rate for each activity. Biking, eating, jogging, sitting, typing, and writing activities
are successfully recognized with a rate > 99%. The activities walking downstairs, walking
upstairs, and smoking are the least recognized by the RF classifier with a rate slightly less
than 98%. Such behavior can be justified by reading the confusion matrix shown in Figure 5.
On average, eight examples of walking downstairs were misclassified as walking upstairs,
and vice versa for 11 examples of walking upstairs. Another notable conflict occurred for
nine examples between smoking and giving a talk. It was noticed that conflicts occurred
between very close activities, which is likely expected in such applications. However, the
overall performance of the current model (employed sensors + preprocessing + features +
classifier) is accepted, and it can be further improved by providing more training examples.
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Figure 5. Confusion matrix for the RF classifier under subject-dependent evaluation criteria.

Table 4 provides a summary of comparing different ML algorithms, as well as im-
portant implementation issues. On average, the accuracy (and F-measure) of RF reaches
98.72%, which exceeds the accuracy of each of SVM, MLP, and NB by 1.3%, 1.27%, and
11.1%, respectively. MLP takes a notably long training time of 90.41 s, while NB training
occurred quickly at less than one second, and RF needed about 29.3 s to announce its
decisions. RF occupies about 22.68 MB of the disk, which is the largest size, while NB needs
only 0.046 MB space. To improve the readability of comparative results of all classifiers,
Figure 6 presents an illustrative radar plot.

M Acc. (%)

Std Acc.

M F-m (%)

Std F-m

Tr. Time (sec)

Size (MB)

RF SVM MLP NB

Figure 6. Radar plot for compared classifiers according to mean and standard deviation of accuracy
(M Acc (%)) and (Std Acc), respectively; mean and standard deviation of F-measure (M F-m (%)) and
(Std F-m), respectively; raining time in sec. (Tr. Time (sec)); and Size on disk in MB (Size (MB)).

3.3. Stratified k-Fold Cross-Validation

In the experimental settings of collecting this dataset, a controlled protocol was per-
formed by each of the 10 participants. Each participating subject performed the same set
of activities within the same permitted time duration. Thus, by chance, for this particu-
lar dataset, 10-fold cross-validation implicitly involved the stratified 10-fold validation
followed in Shoaib et al. [42]. Moreover, the common evaluation criterion for human
activity recognition models, i.e., leave-one-subject-out, can also be applied via the 10-fold
cross-validation for this particular dataset. The latter measure criteria are of interest where
the dataset provides subject-independent evaluation, and hence it examines the model’s
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of generalization ability for newly introduced data. The average accuracy of the applied
RF-based model here is equal to 92.54%.

Table 4. Performance of compared classifiers for subject-dependent evaluation.

Accuracy F-Measure Training Time
(sec)

Size on Disk
(MB)

RF Mean 98.72 Mean 98.72 29.3 22.683Std 0.1015 Std 0.1015

SVM Mean 97.43 Mean 97.42 19.69 13.593Std 0.2279 Std 0.2398

MLP Mean 97.47 Mean 97.49 90.41 0.143Std 0.3837 Std 0.3736

NB Mean 88.82 Mean 88.87 1 0.046Std 0.3693 Std 0.3677

4. Sensitivity Analysis for Model Parameters

The performance of the RF algorithm is tremendously sensitive to both the number of
decision trees (known as RF size) and the longest path from a tree head to the leaves (known
as RF depth). For RF depth ≥ 15, with a suitable RF size ≥ 50, the applied RF-based model
can provide notable recognition performance under subject-dependent evaluation measure;
see Figure 7a. Moreover, increasing the RF size up to 400 trees has a slight improvement
in the model accuracy. Conversely, under 10-fold cross-validation evaluation, the model
accuracy grows by 1% when increasing both RF size and RF depth from (50, 10) to (15, 200);
see Figure 7b. Moreover, increasing the RF size to 400, for example, will not enhance the
model accuracy as much as the notable increment in processing time in this case. From
Figure 7, we can conclude that with an RF depth between 15 and 25 and an RF size equal to
200, an efficient recognition model can be implemented for these kinds of IoHT systems
that make use of sensory data from smartphones.

10 15 20 25 30 35 40
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Figure 7. Model performance for different values of both forest size (50, 100, 200, 400) and forest
depth (15, 20, 25, 30, 40) for (a) subject-dependent and (b) 10-fold cross validation criteria.
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5. Comparison with Previous Studies

Different studies in the literature have addressed this dataset according to different
evaluation measures. Table 5 provides the previous best recognition rates according to
subject-dependent evaluation. Baldominos et al. [45] have tested shallow techniques
against the deep CNN model. Only raw signals are used in 60 s segments. The ensemble of
randomized decision trees (ET), with a set of handcrafted features, provides an average
overall accuracy of 95.3%, while the accuracy of the CNN-based approach decreases to
85%. Stacked autoencoders provided better results than deep belief networks, where the
accuracy reached 97.13% according to Alo et al. [46]. In a later study, besides raw activity
signals, the magnitude vector and the vectors of pitch and roll angles were provided to
deep networks in segments with a length of 2 s.

Table 5. Recognition rates of each activity for different models under subject-dependent validation
criteria. ET: ensemble of randomized trees, FC: fully connected layer, AE: autoencoders, and DBN:
deep belief networks.

Reference Input Signals Segment Length (s) Feature Extraction Classifier Accuracy (%)

Baldominos et al. [45] Raw signals 60 Handcrafted ET 95.3

Baldominos et al. [45] Raw signals 60 CNN hidden layers FC layer 85

Alo et al. [46]
Raw signals,

magnitude vector,
pitch and roll vectors

2 Sparse AE layers FC layer 97.13

Alo et al. [46]
Raw signals,

magnitude vector,
pitch and roll vectors

2 DBN hidden layers DBN output layer 91.57

Current model Raw signals 2.56 Handcrafted RF 98.7

The proposed DL model was able to outperform the conventional classifiers such as
support vector machines (SVM), Naive Bayes (NB), and linear discriminant analysis (LDA);
however, the RF classifier was not included in this comparison. The current RF-based
model presents the best recognition results among related studies. However, samples of
the same person may appear in both the training and testing sets, but the experimental
findings are still useful for seeking good models since registered data points occurred at
different timestamps.

Moreover, the current model improves the recognition rates obtained by Shoaib et al. [42].
Table 6 shows the rates of each activity when stratified 10-fold cross-validation criteria are
applied. Numerical values of Shoaib et al.’s model were computed from the confusion
matrix in Figure 2c in [42]. The applied classifier was NB, but features were extracted
from segments with a length of 5 s, and only accelerometer and gyroscope signals were
used. Because of the suitable feature set used within the current model, the activities that
directly depend on hand movement are well-recognized. The improvements in the rates of
activities are as follows: having coffee (0.83 to 0.92), eating (0.89 to 0.99), smoking (0.82 to
0.95), giving a talk (0.86 to 0.97), typing (0.95 to 0.98), writing (0.89 to 0.97). For the other
activities, the current model performs worse than or equal to Shoaib et al.’s model. In
conclusion, the average overall accuracy is improved by 1.4%.

Table 6. Recognition rates of each activity for different models under 10-fold cross validation criteria.

Ref. BK CO DW ET JO ST SM SN TK TY UP WK WR Accuracy (%)

Shoaib et al. [42] 0.99 0.83 0.98 0.89 1 0.90 0.82 0.92 0.86 0.95 0.96 0.85 0.89 91.2
Current model 0.99 0.92 0.91 0.99 0.99 0.76 0.95 0.94 0.97 0.98 0.83 0.80 0.97 92.54
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6. Applied Model Performance for WISDM Dataset

In this section, the validation of the applied framework is extended to the WISDM
dataset [43]. It is one of the most addressed datasets in the HAR literature. WISDM v1
contains a total of 1,098,207 examples of activities that have been collected by 29 subjects.
Six activities, namely walking (37.2%), jogging (29.2%), upstairs (12.0%), downstairs (10.2%),
sitting (6.4%), and standing (5%), were registered via a smartphone in the front pants pocket
(see Figure 1) of each subject. Walking and jogging activities were the most represented
in this dataset. Activity signals were registered using the embedded accelerometer of the
smartphone at a 20 Hz sampling rate. In the experimental settings, a window size of 10 s
(according to the original study [43]) with 50% overlapping was applied to raw signals. The
proposed feature set was generated for each activity segment, where the feature vector was
74 dimensions; since only the accelerometer signals are available, the RF classifier is called.
Using the best settings, e.g., RF size and depth (200, 25), gave acceptable classification rates
for this dataset. For 10-fold cross-validation criteria, the applied model gave an average
accuracy of 94%, while for the subject-dependent evaluation (i.e., 70% training and 30%
testing), the average accuracy reached 98.56%. This model performance regarding this
dataset is comparable to many recent related studies in the literature, as summarized in
Table 7.

Among the compared studies that appear in Table 7, using a window of 5 s for segments
in [55] is more challenging than using longer segments, but a deep learning model was able
to achieve 94.2% accuracy under 10-fold cross-validation. Moreover, an accuracy value of
98.85% was obtained in [56], but applying 95% overlapping when doing segmentation, and
this is questionable in such a HAR study (i.e., overlapping usually ranges from 0 to 50%).
In addition, for a 70%/30% split, using a more efficient RF such as (50, 20) gives an average
accuracy of 98.34%, which is still close to the best performance obtained. However, under
10-fold cross-validation, using an RF with (50, 20) does not degrade the accuracy by more
than 0.02%.

Summing up, the applied framework shows good performance for the WISDM v1
dataset under different evaluation criteria, while usually, only one of them is used in
previous related studies. This model behavior reflects the robustness and suitability of both
the feature set and the classifier algorithm for real-time HAR applications.

Table 7. Applied model results for WISDM dataset. MLP: multi-layer perceptron. LR: logistic
regression. Stat. Feat.: statistical features. Att. M.: attention mechanism. R. B.: residual block. LSTM:
Long short-term memory.

Evaluation Reference Segment
Length (s)

Feature
Extraction Classifier Accuracy (%)

10-fold
cross

validation

Kwapisz et al. [43] 10 Handcrafted MLP 91.7

Garcia-Ceja et al. [55] 5 CNN FC layer 94.2

Catal et al. [57] 10 Handcrafted
Ensemble of

(LR, MLP, j48) 91.62

Ignatov [58] 10 CNN + Stat.
Feat. FC layer 93.32

Current model 10 Handcrafted RF 94

Gao et al. [56] 10 CNN + Att. M. FC layer 98.85

70%/30%
split

Suwannarat et al. [59] 8 CNN FC layer 95

Abdel-Basset et al. [60] 10
CNN + R. B.

+ LSTM + Att. M. MLP 98.90

Zhang et al. [61] 11.2 CNN FC layers 96.4

Zhang et al. [62] 10 CNN + Att. FC layer 96.4

Current model 10 Handcrafted RF 98.56
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7. Discussion

The applied framework introduces one example of an IoHT system that is examined
using two datasets with different settings. Shoaib’s dataset contains thirteen activities
gathered by 10 subjects at a sampling rate of 50 Hz, while WISDM v1 has six activities
collected by 29 subjects at a sampling rate of 20 Hz. Such a variety of activity signal
resources constitutes a strong test for any proposed HAR model. Applying the different
common evaluation criteria of HAR models in the same study is highly recommended to
ensure its superiority. Later observation is missing in most studies in the literature.

More evidence is needed for the use of the dense production of deep learning models
in the HAR field. Such models have thousands of parameters learned during training
(tremendous computational load). However, they should at least outperform the conven-
tional shallow approaches. Classical handcrafted features are meaningful and interoperable
to a great extent, while the interpretation of most deep models, in particular in the HAR
field, is still in its infancy.

In [46], the applied DL model required the help of extra inputs such as magnitude and
pitch and roll signals, together with the raw 3D acceleration signals, in order to improve
the performance. One the other hand, features extracted implicitly from DL models may
need refinement via feature selection approaches in order to eliminate illusive features of
classifiers. Recent studies such as [63] and others have emphasized the role of applying
feature selection with DL models. On the other hand, the RF algorithm performs feature
selection as one of the steps performed to achieve its classification result. One important
observation is the degradation of accuracy when moving from the subject-dependent to 10-
fold cross-validation criteria. For the WISDM v1 dataset, the misclassification is relatively
high between upstairs and downstairs in comparison to other activities, in addition to
the difficulty when applying 10-fold cross-validation (i.e., different subjects are used for
training and testing). The later result has also been reported by different previous models
such as [43,55,60], which cn probably be attributed to the sensor position on subjects’ bodies.
A similar notation also holds for Shoaib’s dataset, where in Figure 5, the confusion matrix
shows that the majority of false predictions take place between the activities of walking
upstairs and walking downstairs .

8. Conclusions and Future Trends

In this work, an efficient model for an IoHT system is introduced through a set of care-
fully handcrafted features and a shallow classifier such as Random Forest for the dataset of
Shoaib et al. [42]. Participants used to collect this dataset followed a specific protocol, which
may be called a controlled environment. Similarly to related studies, using accelerometers
and gyroscope sensors in smartphones is convenient for such applications. Moreover,
inducing features (e.g., statistics of the roll angle vector and the angle of the x–component
of body acceleration with a gravity vector) that depend on body kinematics (e.g., wrist and
leg motion) improve the model performance. The presented model provides state-of-the-art
results under both subject-dependent and 10-fold cross-validation criteria. Moreover, the
current model performance was verified by another dataset, namely WISDM v1 [43] under
both aforementioned evaluation criteria.
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