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Abstract: Nocturnal hypoglycemia (NH) is one of the most challenging events for multiple dose
insulin therapy (MDI) in people with type 1 diabetes (T1D). The goal of this study is to design a
method to reduce the incidence of NH in people with T1D under MDI therapy, providing a decision-
support system and improving confidence toward self-management of the disease considering the
dataset used by Bertachi et al. Different machine learning (ML) algorithms, data sources, optimization
metrics and mitigation measures to predict and avoid NH events have been studied. In addition, we
have designed population and personalized models and studied the generalizability of the models
and the influence of physical activity (PA) on them. Obtaining 30 g of rescue carbohydrates (CHO)
is the optimal value for preventing NH, so it can be asserted that this is the value with which the
time under 70 mg/dL decreases the most, with almost a 35% reduction, while increasing the time
in the target range by 1.3%. This study supports the feasibility of using ML techniques to address
the prediction of NH in patients with T1D under MDI therapy, using continuous glucose monitoring
(CGM) and a PA tracker. The results obtained prove that BG predictions can not only be critical in
achieving safer diabetes management, but also assist physicians and patients to make better and safer
decisions regarding insulin therapy and their day-to-day lives.

Keywords: hypoglycemia; machine learning; multiple daily injections; prediction model; support
vector machine; type 1 diabetes

1. Introduction

Type 1 diabetes (T1D) is a chronic condition resulting from the autoimmune destruc-
tion of insulin-producing β cells in the pancreas [1,2]. People suffering from this condition
are treated with lifelong intensive insulin therapies. While these treatments allow patients
to reduce the amount of blood glucose (BG), avoiding hyperglycemia [3–5] and reducing
complications [1,5], they are burdened by the common side effect of over-lowering glucose
which can drive the patient into hypoglycemia. Patients with T1D face the challenge of
reducing hyperglycemia without causing hypoglycemic events, keeping blood glucose
levels within a safe range [1,6–8]. Usually, the strongest variations in BG signals occur
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after meals and during the night [4,9,10], the latter variations being the main causes of
postprandial hypoglycemia or nocturnal hypoglycemia (NH) [11,12].

The risk of NH is associated with several risk factors, such as previous episodes of
hypoglycemia, low glycated hemoglobin (HbA1c), impaired hypoglycemia awareness,
and increasing duration of T1D [1,13]. Additionally, several circumstances favor the
development of NH such as excess/wrong dose of insulin, inadequate carbohydrate (CHO)
intake, alcohol consumption, and previous physical activity (PA) [1]. Consequences of
suffering an NH may include confusion, sweating, seizures, and even death [6,13]. These
adverse events reduce health-related quality of life and work performance. In addition,
the fear of suffering NHs is considered an important psychological factor which may
undermine resting periods [14]. Thus, NHs may cause poor sleep and so reduce the quality
of life of T1D patients [15].

In the last decade, efforts toward the development of an artificial pancreas, a closed-
loop glucose monitoring system using subcutaneous glucose sensing, continuous subcuta-
neous insulin infusion from a pump, and a control algorithm have enabled advances in
diabetes management, patient safety, and the prevention of glycemic events [6]. However,
the fact that the implementation of these technologies is not adaptable to all patients with
T1D, together with the high cost associated with this technology, prevents their generaliza-
tion [16–18]. Therefore, therapies based on multiple daily injections (MDI), the combination
of slow-acting insulin for basal coverage and rapid-acting insulin at mealtimes to control
postprandial blood glucose levels, are still the most widespread treatments for people
suffering from type 1 diabetes [16].

Technically, the incorporation of CGM into MDI generates a huge amount of useful
data [16] that can be used to improve diabetes management. Based on the latter, and
after the implementation of promising ML approaches to the continuous prediction of
BG values and NH in sensor-augmented insulin pump (SAP) therapy [9,12], information
from CGM and other sources have been used by ML algorithms to predict and prevent
postprandial hypoglycemia [9,19] for patients using sensor-augmented pump and MDI
therapies. Recently, ML algorithms have also been used to predict nocturnal hypoglycemia
for insulin pump users [17,20,21]. More recently, the feasibility of personalized models
to anticipate NH in 10 T1D patients was investigated. Patients underwent MDI therapy
and, alongside data from CGM, insulin, and carbs, physical activity was also taken into
account [1]. Results indicate that more than 70% of the NH events could be predicted and
eventually avoided.

In this paper, a method to reduce the occurrence of NH is presented, providing a
decision support system to people with T1D and improving self-confidence during the
management of the disease. To this end, several improvements have been made to make
the method useful in practice. First, the algorithms for predicting NH have been optimized
for a reduced number of features. Second, population models have been developed
and validated for a specific population. Third, the impact of PA functions on system
performance has been investigated and lastly eliminated from the set of functions, so that
prediction works using only information from CGM and MDI therapy, thus simplifying the
overall system. Finally, a strategy to reduce NH is proposed and validated “in silico”.

2. Materials and Methods
2.1. Patients and Dataset

The study database includes 10 patients that were monitored for 12 weeks. The clinical
trial was conducted at the Hospital Clinic de Barcelona and has been registered under the
identifier NCT03711656 at ClinicalTrials.gov (accessed 2 February 2022). Inclusion criteria
included being adult patients (over 18 years of age) with more than five years of diabetes
and MDI treatment, HbA1c between 6.5% and 9.5%, and more than 4 hypoglycemia
episodes per week. In addition, participation in the trial required basic knowledge to follow
the study instructions, including the use of a CGM, the ability to estimate CHO, and to have
a minimum of 4 blood glucose measurements per day. Exclusion criteria were pregnancy, a
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serious illness that could affect participation in the study, and any use of an experimental
drug or device 30 days prior. Monitoring was performed under free-living conditions at
home with a CGM and a physical activity monitor. Abbott FreeStyle Libre (Abbott Diabetes
Care, Alameda, CA, USA) was used as the CGM system to monitor interstitial glucose
concentration and a Fitbit Alta HR wristband (Fitbit, Inc., San Francisco, CA, USA) was
used to obtain PA information and sleep periods.

2.2. Data Processing and Feature Engineering

The development of prediction models has followed an approach similar to that devel-
oped by Bertachi et al. [1,2]. ML techniques were applied to a pool of instances extracted
from the collected data. Figure 1 illustrates the overall preparation process for obtaining
these sets of instances. The variables collected from the CGM system were interstitial
glucose concentrations, meal estimations, insulin bolus doses, and self-monitoring blood
glucose measurements, while the variables collected by the wristband were heart rate
signal, steps performed, estimation of calories burned, and sleeping period. All of these
variables were collected with their respective timestamps. The data retrieved from the
CGM and wristband database systems were integrated and cleaned.
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Figure 1. Methodology applied to prepare the raw data for machine learning.

Next, we applied a feature engineering phase, which encompasses tasks to provide
additional value to the dataset: imputation of missing values, feature extraction, and
feature selection. We performed a simple procedure of imputation of missing data, one
in which linear interpolation was applied to those gaps in the CGM measurements that
were equal to or shorter than 120 min. After that, we applied three physiological models
to the data to obtain semi-continuous representation features of the effects of fast-acting
insulin doses, estimated carbohydrates, and detected steps. First, we applied the bolus on
board (BOB) model [11] that estimates the amount of insulin active in the body. Second,
the CHO on board (COB) model [12] was applied in all the records of ingested meals. The
COB, conceptually similar to BOB, represents the amount of CHO consumed that still
has not appeared in plasma. Third, the activity onboard (AOB) model [19] represents the
accumulated effects of PA in the body. Finally, a process to select the minimum number of
features was undertaken in order to improve the model performance and its computational
cost and execution time.

The 29 time-domain features extracted from the 6 h of data prior to the start of the
patient’s sleep period and proposed by Bertachi et al. [1] were reduced to the 17 features
without a significant loss of performance:

1. CGM [t]: BG value from CGM device at the time of prediction (t).
2. CGM mean [t, t − 60]: mean interstitial glucose measurements of the last hour.
3. CGM mean [t − 60, t − 120]: mean interstitial glucose measurements between one

hour and two hours before sleeping period.
4. CGM mean [t − 120, t − 180]: mean interstitial glucose measurements between two

hours and three hours before sleeping period.
5. CGM mean [t − 180, t − 240]: mean interstitial glucose measurements between three

hours and four hours before sleeping period.
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6. CGM mean [t − 240, t − 300]: mean interstitial glucose measurements between four
hours and five hours before sleeping period.

7. CGM mean [t − 300, t − 360]: mean interstitial glucose measurements between five
hours and six hours before sleeping period.

8. ∆BG [t, t − 30]: BG variability of the last half-hour.
9. ∆BG [t, t − 60]: BG variability of the last hour.
10. BOB: estimated active insulin in the body.
11. COB: estimated CHO in plasma.
12. AUC70: the total area of blood glucose levels below 70 mg/dL on the blood glucose

curve of CGM during the last 6 h.
13. LBGI [t − 300, t − 360]: the low blood glucose index risk of BG variation during the

last 6 h.
14. HBGI [t − 300, t − 360]: the high blood glucose index risk of BG variation during the

last 6 h.
15. Rate of Change [t, t − 30]: the BG values variation during the last 30 min before

sleeping period.
16. AOB: the accumulated effects of PA at bedtime.
17. Steps: daily steps number.

The labeling of the instances included the 6 h after the onset of the sleep period and
considered three consecutive interstitial glucose values below 3.9 mmol/L (70 mg/dL) as an
episode of hypoglycemia. Therefore, instances with these values were labeled as Class 1 (night
with hypoglycemia) and in any other case were assigned Class 0 (night without hypoglycemia).

2.3. Performance Metrics

This study has used multiple metrics based on the confusion matrix to evaluate the
performance of the methodology implemented. The positive (P) and negative (N) labels
refer to the predicted outcome, while the true (T) and false (F) labels refer to the actual
outcome. Table 1 presents the main metrics employed, defining sensitivity (SE), specificity
(SP), Matthews correlation coefficient (MCC), F1 score, and Gmean. The MCC, F1score
and Gmean were all calculated through the corresponding formulas expressed in Table 1.
All of them were considered as each of them uses the results of the confusion matrix in
a different way. While the F1 score ignores the count of true negatives, the MCC kindly
extends its care to all four entries of the confusion matrix, while Gmean takes into account
both previous metrics. In addition, the area under the curve (AUC) of the ROC curve is
used throughout the study.

Table 1. Equations of the performance metrics evaluated.

Performance Metrics

SE = TP
TP+FN MCC = 2 ∗ TP∗TN−FP∗FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)

SP = TN
TN+FP F1score = 2∗TP

2TP+FP+FN

Gmean =
√

1
SE∗SP

2.4. Algorithm Selection

The application of ML techniques for diabetes management has been largely ex-
plored [16]. Different initiatives have tried to establish a ranking between different ap-
proaches and there are noteworthy events like “BG Prediction Challenge” [22] that aims
to compare the performance and appropriateness of the algorithms presented within an
identical framework. However, there is not a conclusive answer on whether there is any
algorithm, or set of them, that obtains a better overall performance in the task of gener-
ating models for the prediction of BG values and, in its extension, hyperglycemic and
hypoglycemic events [12,13]. Hence, a preliminary study of a diverse set of ML techniques
was conducted. This study aimed to determine the most suitable methodology for the
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generation of binary predictive models using a set of standard ML algorithms from the
library scikit-learn of Python. The initial set includes the following methodologies: artificial
neural network; multinomial naïve Bayes; adaptive boosting (AdaBoost); support vector
machines (SVM); linear discriminant analysis (LDA) and long short-term memory (LSTM).

The preliminary study involved a series of tests of overall available instances to
measure the performance of the proposed techniques. The pool of instances was divided
into training data (80%) and test data (20%). The results of this preliminary study show
the best results for the SVM algorithm. Therefore, this study has considered that SVMs are
the most suitable option to implement more advanced features, which is in line with the
algorithm selection of the previous articles [1,9].

2.5. Building Machine Learning Models

While the personalization of models has the obvious advantage of creating a custom
model that is perfectly suited to the characteristics of a patient and recording device, it
also has multiple disadvantages: (i) it limits the usability of the failure in that the system
cannot be used on a patient until the data has been calibrated, (ii) it limits the generalization
capabilities of the system and increases the risks of overfitting. Conversely, learning a
model from a heterogeneous group of patients increases the robustness of the recording
devices in principle [23]. Population models have the advantage of creating a common
system for all users, and therefore reduce the burden of computing and give faster results.
However, such patient variability severely limits the use of general models, which cannot
capture the specific physiological behaviors of individuals [16].

This study aims to investigate the possibility of training a population model and the
ability of ML techniques to cope with the lack of personalized data. Therefore, the next step
was to generate population and individual models:

• Population models: The models of this batch of experiments use a leave-one-out
scheme, thus involving all the patient data except data from one of them, which will
be used later for testing. The general population model is useful to see what results
would be obtained if the model were applied to a completely new patient. The process
is similar to that used with the population models. In this case, the testing dataset for
the validation of the model is from a specific patient to be evaluated. Then, a model is
created for each patient.

• Personalized models: The customized model or personalized model is trained and
validated with data from a specific patient, which is basically to create a model for
that particular patient. The same steps are applied to design these models. The main
and unique difference is that the data used for the implementation of each model is
from a single patient. Thus, a model is generated for each patient as well.

For each of the cases, personalized and population, two models were trained, using
the data of physical activity or its lack. The objective was to analyze if models that do
not have information on PA and, therefore, require one less device, are precise enough
to be used to avoid episodes of hypoglycemia. After selecting the data involved in each
of the approaches, the procedure for building the models is the same for all four of them.
As shown in Figure 2, the data was split into training (80%) and testing (20%) datasets
using a nested fivefold cross-validation scheme to ensure the robustness of the model. The
optimization of the hyperparameters (C and γ) of each prediction model was performed
using a grid search with a stratified fivefold cross-validation. In this way, a range of C and
γ values were tested and those who generated better results were selected. This process
guarantees robustness and similar class distribution in each fold despite the great imbalance
between classes. Finally, the model was validated with the previously divided test data set.
From the five iterations, the median results were obtained for each of the metrics.
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2.6. Mitigation Measures

Once a population model has been developed, it is necessary to design mitigation
measures to prevent and reduce the number of NH and evaluate in advance the impact
they will have before conducting clinical trials. For this purpose, a modified version of the
UVA Padova simulator [24] has been used. The modification undertaken was intended to
generate a population mimicking our cohort of real patients (see Figure 3). The similarity
considered the occurrence of nocturnal hypoglycemia between both cohorts. To resemble it,
the parameters related to insulin sensitivity were modified (parameters VMX and kp3 from
Dalla Man’s Model [24]). These parameters were modified manually only during an overnight
period (between 00:00 and 06:00 in the simulations) to simulate nocturnal hypoglycemia.
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In the sequence, the results of SE and SP obtained by the population model were
considered in order to assess the mitigation actions. Mitigation actions consist in giving the
patient a certain amount of rescue CHO to avoid the predicted glycemic drop during the
night. Therefore, considering a random number (uniformly distributed) and the probability
of a correct prediction (given by SE and SP), a certain amount of CHO is consumed by
the patients. A bi-exponential absorption model such as the one from Hovorka et al. [25]
has been applied to model the effects of such CHO. Related to this model, different time
constants have been evaluated to determine the most suitable absorption rate constant
(τ_max) for the type of snack the patient can consume when the mitigation action is
required. A similar procedure has been carried out to determine the optimal quantity
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of carbohydrates. Finally, in order to determine if the results from both simulations are
statistically significant from the baseline, a Wilcoxon signed-rank test has been conducted.

Apart from assessing the different reductions in the number of nights with hypo-
glycemia, it is important to evaluate the effects of rescue CHO on BG levels. To do so, the
percentage of time in range in different glycemic intervals has been computed for each
patient. The intervals selected for the evaluation are:

• Below 54: BG levels below 54 mg/dL, also known as level 2 hypoglycemia. This refers
to clinically severe hypoglycemia.

• Below 70: BG levels below 70 mg/dL, also known as level 1 hypoglycemia. This refers
to time below range (TBR) levels.

• 70–180: BG levels between 70 and 180 mg/dL, also known as time in range (TIR)
levels.

• Above 180: BG levels above 180 mg/dL, also known as time above range (TAR).

For each of these intervals, the median and interquartile range have been computed
for the baseline simulation, and for simulations with both 25 and 30 g of rescue CHO.
Furthermore, the variation with respect to the baseline simulation, and the p-value from
the corresponding Wilcoxon signed-rank test, have been calculated.

3. Results

A total of ten subjects completed the study. The average age was 31.8 (SD 16.8) years,
the HbA1c 7.3 (SD 0.5) %, the body mass index 24.6 (3.6) kg/m2, and duration of diabetes
20.0 (SD 8.9) years. Among them, 8 (80%) were women. The median number of instances per
patient was 67 (SD 28.2). NH occurred in approximately one third of the nights, 22 (SD 16.5).

3.1. Prediction Models Performance

Tables 2 and 3 show the outcomes of the prediction models’ results including and
excluding PA information respectively. Considering the median outcomes of SE and
SP obtained for each model, it can be stated that there is not much difference between
population and personalized models. In addition to this fact, the results for F1score and
Gmean metrics in the case of the population model show superior values. Considering
the median outcomes for all patients using this metric, almost 75% of NH would be
predicted, achieving a median specificity of 77% and 68% in population and personalized
models, respectively. For models excluding PA, better outcomes were obtained with models
optimized with MCC.

The best result was obtained for individual P56 achieving 95% of sensitivity and 75%
of specificity. The worst outcomes were obtained for individual P12, showing a sensitivity
of 39% and 80% of specificity. Population models without PA information were slightly
inferior. In this case, the models obtained a median of almost 70% of sensitivity and a
specificity of 73%. Best outcomes were achieved for individual P45 with 86% of sensitivity
and 69% of specificity. The worst results were obtained for individual P12 achieving 42%
of sensitivity and 75% of specificity. Considering population models, the median of ROC
curves, including and excluding PA features, was calculated as well (see Figure 4). The
results were 81 (SD 0.07) and 80 (SD 0.06), respectively. Regarding population models per
patient using PA features, the median of ROC curves was 79 (SD 0.07). For the models
excluding the PA variables, the median was 80 (SD 0.06). Results are also shown in Figure 4.
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Table 2. Median sensitivity (SE) and specificity (SP) of the model using support vector machines (SVM),
including physical activity measures. Three different performance metrics were evaluated: MCC, F1score
and Gmean. Results are presented in percentage. Non-evaluated results are marked as X.

Patient ID MCC F1score Gmean

SE (%) SP (%) MCC SE (%) SP (%) F1score SE (%) SP (%) Gmean

Population models

P12 43 78 0.2 39 80 0.37 43 78 0.58
P18 50 88 0.38 50 92 0.55 50 92 0.68
P23 67 92 0.59 73 86 0.63 73 86 0.79
P29 62 80 0.42 62 80 0.63 62 80 0.7
P34 75 67 0.32 75 67 0.44 75 69 0.72
P40 88 54 0.35 88 54 0.52 88 54 0.69
P45 90 50 0.45 100 43 0.8 100 43 0.62
P51 67 91 0.58 67 91 0.67 67 91 0.78
P56 95 74 0.67 95 74 0.79 95 74 0.84
P62 75 46 0.22 75 46 0.69 75 46 0.59

Median: 71 76 74 77 74 76

Individualized models

P12 71 50 0.23 67 50 0.37 65 60 0.61
P18 88 75 0.54 73 100 0.4 78 50 0.55
P23 73 60 0.22 75 100 0.5 69 67 0.68
P29 67 62 0.24 56 67 0.57 70 75 0.75
P34 83 50 0.29 91 50 0.5 91 67 0.78
P40 X X X X X X X X X
P45 80 100 0.73 67 75 0.67 50 75 0.5
P51 X X X X X X X X X
P56 83 67 0.31 86 67 0.67 62 67 0.65
P62 75 75 0.45 75 69 0.76 75 67 0.63

Median: 77.5 64.5 74 68 69.5 67

Table 3. Median sensitivity (SN) and specificity (SP) of the model using support vector machines
(SVM), excluding physical activity measures. Three different performance metrics were evaluated: MCC,
F1score and Gmean. Results are presented in percentage. Non-evaluated results are marked as X.

Patient ID MCC F1score Gmean

SE (%) SP (%) MCC SE (%) SP (%) F1 score SE (%) SP (%) Gmean

Population models

P12 33 75 0.08 42 75 0.37 42 75 0.56
P18 64 82 0.4 45 92 0.5 45 92 0.65
P23 73 84 0.51 73 85 0.61 73 85 0.79
P29 56 75 0.31 56 70 0.58 56 70 0.63
P34 77 65 0.32 77 65 0.45 77 65 0.71
P40 86 63 0.39 86 63 0.52 86 63 0.73
P45 86 69 0.56 86 69 0.84 86 69 0.77
P51 67 82 0.44 67 82 0.44 67 82 0.44
P56 90 69 0.56 85 69 0.71 85 69 0.76
P62 63 65 0.28 63 65 0.66 63 65 0.71

Median: 70 72 69 73 69 73

Individualized models

P12 61 83 0.34 72 62 0.4 60 50 0.57
P18 89 33 0.26 89 33 0.4 78 67 0.72
P23 69 80 0.38 78 100 0.67 72 100 0.85
P29 73 67 0.4 57 62 0.62 62 60 0.6
P34 75 50 0.42 83 50 0.25 83 50 0.65
P40 X X X X X X X X X
P45 50 75 0.25 50 75 0.75 50 75 0.58
P51 X X X X X X X X X
P56 78 67 0.31 71 80 0.73 71 60 0.71
P62 75 75 0.38 60 64 0.71 62 73 0.72

Median: 73 75 71 64 66.5 63.5
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Figure 4. (a,b) represent the receiver operating characteristic (ROC) curves generated by population
models, both including (left) and excluding (right) PA models. Figures (c,d) represent the ROC curves
generated by population models per patient, both including (left) and excluding (right) PA models.

3.2. Reduction of Nocturnal Hypoglycemic Events

The solution to the minimization of the number of hypoglycemia events at night consists
in recommending the patient consume a snack before going to bed in case the model predicts
hypoglycemia. It is expected that this will lead to a reduction in the number of hypoglycemia
events, at least early in the night, and also in the duration of the hypoglycemia.

Given that the patient is going to consume a specific type of snack, 20, 25, 30 and 35 g
of rescue CHO were tested. It has been seen that with the introduction of rescue CHO there
is actually a reduction in the number of NH events. However, the amount of CHO does
not really seem to provide different results. This may be due to the variability of CHO
absorption. For this reason, a consequent study was also conducted with different τmax.
Results in Table 4 show that different time constants do not necessarily lead to better results.
Given that a time constant of 20 min seemed too low to obtain a satisfactory absorption
and a time constant of 60 min does not provide superior results, the first approach was to
choose a τmax of 40 min.

In order to test if it is the case here, the prevention of a specific hypoglycemic event
with 30 g of CHO and a τmax of 40 min along with a ±10 minutes’ variability has been
plotted. As outlined by the plots in Figure 5, it can be seen that even with a variable τmax the
system is still capable of preventing the event from happening. The dotted line corresponds
to the baseline simulation (i.e., without rescue CHO), which in this case delineates the
hypoglycemic event (blood glucose below 70 mg/dL). On the other hand, the star, cross
and square lines correspond to mitigation actions with 30 g of rescue CHO at t0= 11:30 pm
and τmax = 30 min, τmax = 40 min, and τmax = 50 min, respectively.
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Table 4. Percentage of nights with hypoglycemia between 00:00 and 06:00. Results are expressed in
percentages. The baseline simulation corresponds to the same simulation, but without rescue CHO.

t = 20 t = 20 t = 40 t = 40 t = 60 t = 60

Patient ID Baseline Rescue CHO = 20 Rescue CHO = 30 Rescue CHO = 20 Rescue CHO = 30 Rescue CHO = 20 Rescue CHO = 30

P12 32.58 23.60 23.60 23.60 23.60 23.60 23.60
P18 30.34 19.10 19.10 20.22 19.10 21.35 21.35
P23 23.60 19.10 19.10 19.10 19.10 19.10 19.10
P29 32.58 23.60 23.60 28.09 26.97 29.21 28.09
P34 25.84 17.98 17.98 17.98 17.98 19.10 17.98
P40 35.96 22.47 22.47 22.47 22.47 23.60 22.47
P45 21.35 15.73 14.61 15.73 14.61 14.61 14.61
P51 38.20 24.72 23.60 25.84 24.72 24.72 24.72
P56 30.34 22.47 22.47 22.47 22.47 22.47 22.47
P62 34.83 21.35 21.35 25.84 21.35 28.09 26.97

Median 31.46 21.91 21.91 22.47 21.91 23.03 22.47
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Figure 5. Example of action to prevent a hypoglycemic event with 30 g CHO. In blue: the baseline
mg/dL of a given patient during the event. In red, black, and green the mg/dL when 30 g of rescue
CHO were ingested with different time constants of absorption.

Consequently, simulations were performed setting the simulator’s SE to 0.73 and SP
to 0.75, employing a τmax of 40 min and introducing 20 or 30 g of rescue CHO. Results are
presented in Table 5 and demonstrate two things. First, since the p-values are both 0.002,
we can assert that ingesting this amount of CHO will significantly reduce the occurrence of
NH. Second, the dose of 30 g of rescue CHO provides slightly better outcomes than 20 g.

Regarding time in range (TIR), results are shown in Table 6. The value with which the
time under 70 mg/dL decreases the most is 30 g, while increasing the time in the target
range by 1.3%, confirming that 30 g is in fact the most appropriate value for preventing
NH. What is more, and also with 30 g of CHO, level 2 NH is reduced by more than 40%.
In addition, all the aforementioned facts show p-values lower than 0.05, which indicates a
statistically significant difference with respect to the baseline simulation.
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Table 5. Percentage of nights with nocturnal hypoglycemia (NH) between 00:00 and 06:00 for 20 and
30 g of rescue CHO (p-values < 0.0005).

No Rescue CHO (Baseline) Rescue CHO = 20 gr. Rescue CHO = 30 gr.

Patient
ID

Nights with NH # Hypos #Hypos Reduction # Hypos Reduction
(%) (%) (%)

P12 32.58 29 21 27.59% 20 31.03%
P18 30.34 27 15 44.44% 16 40.74%
P23 23.6 21 13 38.10% 17 19.05%
P29 32.58 29 23 20.69% 21 27.59%
P34 25.84 23 20 13.04% 14 39.13%
P40 35.96 32 17 46.88% 17 46.88%
P45 21.35 19 15 21.05% 9 52.63%
P51 38.2 34 21 38.24% 22 35.29%
P56 30.34 27 20 25.93% 15 44.44%
P62 34.83 31 22 29.03% 21 32.26%

Median 31.46 28 20 31.25% 17 36.76%

Table 6. Statistical results of the percentage of time in different glycemic intervals (p-values < 0.05).
Each blood glucose level interval is expressed in mg/dL. Abbreviations: TBR, time below range; TIR,
time in range; TAR, time above range; NaN, not a number.

Baseline CHO = 20 Reduction CHO = 30 Variation

Below 54 (%) 0.56
(0.48–1.33)

0.40
(0.17–3.15)

p = 0.03

−35.09%
(27–55%)

0.31
(0.23–3.60)
p = 0.019

−44.44%
(32–53%)

Below 70 (TBR) 7.24
(6.89–8.16)

4.89
(3.47–9.44)
p < 0.001

−32.44%
(27–56%)

4.34
(3.46–10.35)

p < 0.001

−40.09%
(30–57%)

70–180 (TIR) 92.51
(88.81–93.11)

94.56
(92.03–97.71)

p = 0,39
+2.22%

94.19
(91.91–97.27)

p = 0.44
+1.82%

Above 180 (TAR) 0
(0–4.59)

0
(0–13.96)
p = 0.5

-
0.14

(0.01–30.46)
p = 0.31

-

4. Discussion

In this article, different machine learning algorithms, data sources, optimization
metrics and mitigation measures to predict and avoid nocturnal hypoglycaemic events
have been studied. In addition, we have studied the generalizability of the models and the
influence of physical exercise on them. As a main result, a population model capable of
predicting more than 40% NH has been developed, converting the theoretical model in
ref. [1] into a practical case because of the inclusion of mitigation measures.

As a preliminary study determined that the demographic data of the study population
is not significant, these types of variables, such as sex and age, were not considered for the
rest of the process. Once the ML methodology was selected, we studied the optimization
metrics. The Gmean metric was adopted to select the best prediction model, not only
for better results but also because it applies the same weight to the SE and SP metrics.
Although the principal goal is NH avoidance, benefits should be balanced against potential
side effects, such as false positives that may lead to unnecessary ingestion of CHO and
high BG values.

Regarding the different models studied, the population model shows results suffi-
ciently similar to the individual models. One of the main objectives was to implement
a model that could be population-based rather than individual-based, not only to try to
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reduce the time burden on the algorithm, but also due to the scarcity of clinical data to per-
form sufficiently personalized individual models with optimal results. As the results of the
population model study were significantly similar to those of the individual model study,
the population model was applied to the simulator considering the limited database of the
study and the previously mentioned benefits it brings. The simulation results have been
encouraging as it has been observed that about 1/3 of NH could be avoided. With these re-
sults, we can corroborate that a more accurate prediction of hypoglycemia/hyperglycemic
events can give rise to a better management of the disease in the short term, and make
predictive models more reliable for both physicians and patients using MDI [9]. We have
also carried out a study of the impact of PA information on the predictions, from which
we have been able to extract that it is an important factor to consider for the development
of hypoglycemia. The results have been better when PA features have been included, cor-
roborating previous theories [1,7,13,18]. Thus, the monitoring devices and sensors for PA
should be actively updated, as the inclusion of exercise-related signals in future modelling
strategies constitutes a very important research opportunity [10].

Many other proposals [1,13,18,19] have been developed with no clinical evidence and
only validated with in-silico data. Here, we have taken a further step in the validation
procedure, implementing a simulator that uses a cohort of patients with similar conditions
to the real group. The mitigation measures have been designed in such a way that if
the model predicts an NH, the patient is advised to consume a certain amount of CHO.
The statistical results from each simulation confirm that 30 g of CHO are in fact the most
appropriate value for preventing NH. Given that 30 g of rescue CHO is the optimal value
for preventing NH, we can assert that this is the value with which the time under 70 mg/dL
decreases the most, with almost a 35% of reduction, while increasing the time in the target
range by 1.3%.

It is also worth mentioning that a τmax of 40 min for the absorption of carbohydrates
has been chosen because it seemed like the most appropriate absorption time for the type
of snack that is advisable for the patient before going to sleep. Certainly, we need to be
aware that before going to sleep, we cannot ask the patient to have another meal, but we
still need a slow CHO absorption rate. Possible suggestions are a glass of milk with cookies
or yogurt with sugar free biscuits.

In this study, we considered the limited number of instances as a study constraint. To
the point that there is missing data or lack of a few instances. It is likely that, in a study
with a longer follow-up period of the patients, improvements could be obtained in the
models, particularly the personalized models. Our study included a focalized group of
T1D patients particularly predisposed to NH. Therefore, we do not know if the results
would apply to participants with a lower risk of nocturnal hypoglycemia. Finally, it could
be considered that 30 g is a considerable, unpractical, and even unappetizing amount of
CHO at night just to prevent a hypothetical hypoglycemia provoking an undesirable rise in
BG values when a false positive prediction occurs.

5. Conclusions

In this paper, an algorithm to reduce the number of NH is presented, tested, and
validated in-silico, providing a decision support system to people with T1D and improving
self-confidence during the management of the disease. With this new tool, T1D patients
with MDI therapy might be able to reduce more than a third of NH, improving the manage-
ment of the disease and increasing their clinical safety. The results obtained in this study
prove that BG predictions can not only be critical in achieving safer diabetes management,
but also assist physicians and patients to make better and safer decisions regarding insulin
therapy and their day-to-day lives.

In future works, a huge set of data is needed to fully validate the proposed approach.
On the one hand, some techniques could improve their performance. On the other hand,
more advanced classification techniques, such as deep learning, could also be evaluated.
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Also, a future improvement of the mitigation measures proposed may be undertaken in
order to evaluate the absorption behavior of each of the snacks.

Future clinical trials are being prepared by our research group and should be con-
ducted soon. In order to proceed with the clinical trials, we have already carried out a
preclinical study and developed its respective protocol. The analytical models presented in
this article will be implemented in a smartphone application that will support patients to
avoid hypoglycemic episodes at night.
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