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An omnidirectional visualization model of personalized gene
regulatory networks
Chixiang Chen1,2, Libo Jiang3, Guifang Fu4, Ming Wang1,2, Yaqun Wang5, Biyi Shen2, Zhenqiu Liu2, Zuoheng Wang 6, Wei Hou7,
Scott A. Berceli 8,9,10 and Rongling Wu 1,2*

Gene regulatory networks (GRNs) have been widely used as a fundamental tool to reveal the genomic mechanisms that underlie
the individual’s response to environmental and developmental cues. Standard approaches infer GRNs as holistic graphs of gene co-
expression, but such graphs cannot quantify how gene–gene interactions vary among individuals and how they alter structurally
across spatiotemporal gradients. Here, we develop a general framework for inferring informative, dynamic, omnidirectional, and
personalized networks (idopNetworks) from routine transcriptional experiments. This framework is constructed by a system of
quasi-dynamic ordinary differential equations (qdODEs) derived from the combination of ecological and evolutionary theories. We
reconstruct idopNetworks using genomic data from a surgical experiment and illustrate how network structure is associated with
surgical response to infrainguinal vein bypass grafting and the outcome of grafting. idopNetworks may shed light on
genotype–phenotype relationships and provide valuable information for personalized medicine.
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INTRODUCTION
Gene regulatory networks (GRNs) have been thought to operate
as the genomic mechanisms that guide the organism’s response
to changes in their environment.1,2 One promising subject of
research in modern biology and translational medicine is how to
infer biologically realistic and statistically robust GRNs from
increasingly available transcriptional data and link them to
physiological, pathological, and clinical characteristics.3–5 A
number of statistical approaches, such as Boolean networks,6

Bayesian networks,7 mutual information theory,8,9 and graphical
models,10 have been developed for network inference, and these
approaches visualize GRNs as probabilistic, undirected or unidir-
ectional graphs, where each node represents a gene and edges
depict relationships between genes. However, such graphs may
not be sufficiently informative for charting the topological
structure of a GRN because genes may regulate and also be
regulated by other genes, with regulations in different signs and
strengths and varying across time and space scales.3,11

As the time generalization of Bayesian networks, dynamic
Bayesian networks (DBNs) can code cyclic, causally directed, and
probabilistic interactions into networks through temporal inter-
dependence, but their application is often impaired by the choice
of granularity when time spaces vary.12–14 When gene networks
are modeled by a system of time-derivative ordinary differential
equations (ODEs), most of these issues can be addressed.15–18 The
implementation of ODEs critically relies on high-density temporal
expression data and parametric dynamic functions. The first
condition is crucial for obtaining reasonable solutions of ODEs,19

but the collection of time-series data is extremely expensive and,
more importantly, infeasible for many experiments, such as multi-
tissue studies. The second condition is very difficult to justify, since

gene expression is often stochastically fluctuated.20,21 To the end,
despite its capacity to code bidirectional, signed, and weighted
interactions into a fully informative network, the direct use of ODE
networking can be very limited in practice.
Here, we develop a general framework that can recover any

fully informative network without need of temporal data and
parametric fitting. We analogize a gene network to being an
ecological community composed of many interacting species, in
which ecology theory and evolutionary game theory are at play.22–
24 We integrate elements of these disciplines to derive a system of
quasi-dynamic ODEs (qdODEs) that model and recover gene
networks across samples. The qdODEs preserve the advantage of
time-based ODEs and, in the meanwhile, possess and combine
several additional valuable features. First, gene networks are
regarded as temporal or spatial snapshots of biological pro-
cesses.25 Our approach can monitor and predict how gene
networks change dynamically in response to developmental and
environmental cues. Second, it has been clear that genes involved
in biological traits or processes are innumerable and, thus, the
resulting regulatory networks should be high-dimensional or even
ultrahigh-dimensional.26 Despite being highly challenging, our
framework allows large but sparse networks to be reconstructed,
providing a way for visualizing the omnidirectional mechanisms
underlying biological complexities. Third, existing GRN inference
approaches are developed to reconstruct an aggregate network
from a large number of samples, such as individuals, tissues, or cell
types. This may not be sufficient because networks as a biological
process display great variability among samples and change
dynamically along a spatiotemporal gradient. More recently,
Kuijjer et al.27 have proposed a reverse-engineering approach
for inferring and using sample-specific networks to reveal
population heterogeneity, but it is unclear how their approach
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can reconstruct fully informative networks and, thereby, identify
the genomic mechanisms for sample-dependent divergences. Our
framework can extract individualized gene networks for each
sample from any type of expression data and compare how
network architecture varies among individuals, treatments, and
cell/tissue types.
Taken together, our framework is equipped with a capacity to

reconstruct informative, dynamic, omnidirectional, and persona-
lized networks (idopNetworks) from standard genomic experi-
ments. We test and validate the framework by analyzing genomic
data of circulating monocytes from human infrainguinal vein
bypass grafting, aimed at treating lower extremity arterial
occlusive disease.28 The utility of the framework is also supported
by a second vein graft experiment for rabbits.29 By reconstructing
graft- and outcome-perturbed idopNetworks, we can potentially
gain a mechanistic understanding of vein bypass graft success vs.
failure.

THEORY CONSTRUCT
The theory for idopNetwork reconstruction is interdisciplinary,
founded on the seamless integration of community ecology and
evolutionary biology through mathematical and statistical reason-
ing. Each discipline contributes its distinct elements to a unified
framework of statistical inference for gene networks.

Niche theory of biodiversity
The concept of niche was first defined by Elton30 to describe the
ecological components of a habitat related to a species’ tolerance
and requirement. This concept has been generalized to explain
biodiversity and species coexistence patterns in ecological
communities.31 A gene network, residing in any biological entity,
such as a cell, a tissue, or even an individual, can be viewed as an
ecological community, in which the expression level of a
constituent gene corresponds to the niche occupied by a species
and niche differences form community diversity and stability.
From a community ecology perspective, the total expression
amount of all genes in the network reflects the carrying capacity
of the entity to sustain these genes and supply them with
essential resources or energy for their function,32 which are a
mixture of many unknown factors. We define the total expression
level of all genes on an entity as the expression index (EI) of this
entity. This concept, similar to environmental index coined to
describe the overall quality of site in terms of the accumulative
growth of all plants,33,34 can describe the overall occupation of all
genes to the entity. By aligning EI values in an ascending order, we
can convert discrete entities to a series of continuous variables
that help establish a system of ODEs.
In an ecological habitat, each organism needs to respond to,

and in turn alters, the distribution of resources and competitors.35

For example, an organism would grow fast when resources are
abundant, or when predators or parasites are scarce, and may limit
access to resources by other organisms or provide a food source
for predators. The types and numbers of environmental variables
constituting the dimensions of a habitat vary from one species to
another and the relative importance of particular environmental
variables for a species may vary according to the geographic and
biotic contexts.36 Thus, based on the niche theory of biodiversity,
the relationship of the abundance of a particular species (part)
with the total abundance of all species (whole) across graded
habitats can potentially describe and predict the inherent
compositional structure of an ecological community and its
response to environmental change. This part-whole relationship,
governed by the power scaling theory, has been observed to
pervade biology; for example, the power equation can well
explain how total leaf biomass scales allometrically with whole-

plant biomass across different plants37,38 and how brain size of
animals scales with whole-body mass across animals.39,40 We
introduce this power scaling theory to model how the expression
of individual genes (part) scales with the total expression of all
genes across EIs through a system of ODEs.

Evolutionary game theory of gene expression
In an ecological community where many species coexist, a species
may adopt a cooperative or competitive decision to maximize its
chance to access to resources.41 This phenomenon has also been
well recognized at the cell level in both humans and rats,42,43 by
which a cell determines a goal-directed decision-making based on
its accrued knowledge of the environment. In an elegant study of
stress impact, Friedman et al.44 identified the cells and networks
that enable a rodent to choose an appropriate strategy of
responsiveness after evaluating possible costs and benefits. Such
rational choice reasoning may also guide how genes, located in
the same cell, promote or inhibit each other in a complex network.
In other words, gene–gene interactions can be modeled as a
game in which one player may choose to compete or cooperate
with its opponents in a quest to maximize its payoff. Classic game
theory, pioneered by mathematical economists,44 suggests that
such choices are not arbitrary, but rather include a rational
judgement based on a gene’s own strategy and the strategies of
other genes. However, it is extremely difficult or impossible to
interrogate the rationality of genes, making a direct application of
classic game theory to gene network inference infeasible. To
address this issue, we introduce evolutionary game theory, a
combination theory of game theory and evolutionary biology,24

which does not rely on the rationality assumption when it is used
to study community dynamics and evolution. In an evolving
population, any strategy used by an individual to maximize its
payoff would be constrained by strategies of other individuals that
also strive to maximize their own payoffs and, ultimately, this
process through natural selection would optimize the structure
and organization of the population, making it reach maximum
(best response) payoff.45

Mathematical integration of evolutionary game theory and niche
biodiversity theory
Suppose we initiate a standard genomic experiment (Fig. 1a)
involving S treatments, each with ns (s= 1, …, S) subjects,
measured for m genes and p phenotypic traits at a series of time
points (t0, t1, …, tT), where t0 denotes one pre-treatment time
point and t1, …, tT denote T post-treatment time points. We call a
subject from a treatment measured at a time point a “sample.”
Thus, we have a total of N= (T+ 1)n samples, where n ¼ PS

s¼1 ns
is the total number of subjects from all treatments. Let Mji denote
the expression level of gene j (j= 1, …, m) on sample i (i= 1, …,
N). The EI of sample i is defined as Ei ¼

Pm
j¼1 Mji . We line up the N

samples in the ascending order of EI, which allows us to construct
a system of ODEs, expressed as

dMji

dEi
¼ gj Mji Eið Þ : Θj

� �þ Xm
j0¼1;j0≠j

gjjj0 Mj0i Eið Þ : Θjjj0
� �

;

j ¼ 1; ¼ ;m; i ¼ 1; ¼ ;N

(1)

where the change rate of the expression of gene j per Ei, Mji(Ei), at
a given sample i, is decomposed into the independent expression
component, gj(·), specified by unknown parameters Θj, and the
dependent expression component, gj|j′(·), specified by unknown
parameters Θj|j′. The independent component of gene j occurs if
this gene is assumed to be expressed in an isolated environment,
and it is determined by this gene’s intrinsic property. The
dependent component of gene j is the aggregated effect of all
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possible other genes j′ (j′= 1, …, m; j′ ≠ j) on this gene. General
speaking, the independent expression of a gene is determined by
its endogenous encoding capacity, whereas its dependent
expression is under the exogenous control. The structure of ODEs
(1) is similar to the generalized Lotka-Volterra equations46 with the
community matrix replaced by the functions gjjj0 �ð Þ and the time
derivative replaced by the EI derivative. Since they are not time
based, such ODEs are called quasi-dynamic ODEs (qdODEs). It is
straightforward to derive example equations of this type from the
multi-gene replicator dynamics. Identifying these functions is a
primary focus of research with a secondary effort being in
interpretation and analysis of the resulting dynamical system.

Inferring gene networks
In practice, the number of genes for network reconstruction is
commonly very large (e.g., 103–104), thus if the expression of each
gene involves the effects of all other genes, ODEs in Eq. (1) will
quickly become intractable. Indeed, it is unlikely that each gene
performs an interaction with every other gene in the network. By
regressing the expression of each gene j on the expression of all
other genes j′ (j′= 1, …, m; j′ ≠ j), we formulate a multiple
regression model across samples for variable selection. We
implement adaptive LASSO to detect a small set of the most
significant genes that affect a focal gene j (incoming links), but
posing no constraint on the number of genes affected by the focal
gene (outgoing links). This procedure enables the reconstruction
of a high-dimensional but sparse and stable GRN under the

convex optimization formulation (see the Methods). These
networks (Fig. 1b) possess the following five features:
(i) Bidirectional, signed, and weighted: Let Gj �ð Þ and Gjjj0 �ð Þ denote

integrals of gj �ð Þ and gjjj0 �ð Þ that constitute the system of qdODEs
in Eq. (1), respectively. Note that, for a focal gene j, the number of
its incoming links is dj (<<m) after variable selection. The estimate
of Gjjj0 �ð Þ can help judge in which way gene j′ affects gene j. If it is
positive, negative, or zero, then this suggests that gene j′
promotes, inhibits, or is neutral to, gene j, respectively. The value
of the estimate can quantify the strength of promotion or
inhibition. By comparing Gjjj0 �ð Þ and Gj0jj �ð Þ, we can determine
whether these two genes reciprocally trigger impacts on each
other. Further, we reconstruct a bidirectional, signed, and
weighted graph as the gene network of the sample by considering
all possible gene pairs detected from variable selection. The
estimate of Gj �ð Þ represents how much amount of expression a
given gene j may intrinsically release, and its value is proportional
to the size of a node in the graph.
(ii) Dynamic: The amount of dependent expression Gjjj0 �ð Þ is a

function of Ei, suggesting that the dependent amount of gene j
affected by gene j′ can be estimated at any given EI. Thus, we can
reconstruct a series of “dynamic” networks across samples. These
networks allow geneticists to test how GRNs alter structurally and
functionally in response to environmental and developmental
cues. These tests can be made locally, i.e., testing how networks
differ between two time points of interest under the same
treatment or between different treatments at the same time point.

Fig. 1 a Diagram of a standard genomic experiment under two levels of treatment, I and II. Transcriptomic profiles are monitored at key time
points including one before treatment (t0) and those reflecting early (t1), middle (t2), and late stages (t3) of response after treatment. b Sample-
specific visualization of idopNetworks reconstructed from the above genomic experiment, which describe how six genes co-regulate each
other. Genes 1 and 2 are antagonistic in samples 1 and 2, but with different extents. These two genes are synergistic in sample N and altruistic
in a predicted sample. The directional synergism of gene 5 to gene 1 is strong in samples 1 and N, but weak in sample 2. Because outgoing
links are more than incoming links, gene 5 is a social gene in all samples, but the degree of its sociality is different across samples. Sample-
specific networks can be compared between different treatment levels, signals (pre- vs. post-treatment), and times after the treatment
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(iii) Omnidirectional but sparse: If the number of genes for
network reconstruction is large, we should build a high-
dimensional set of ODEs that can specify the whole picture of
gene interactions in the network. The implementation of variable
selection can detect the most significant links to construct a
sparse network but still allows all possible realistically existing links
to be encapsulated as a whole that underlie the behavior of gene
networks. This dimension reduction procedure will become even
more valuable since more and more studies attempt to
reconstruct regulatory networks from genomic, proteomic, and
metabolomics data. A more fine-grained network inferred from
these omics data at different levels or through different pathways
can reveal previously hidden contributions of gene interactions to
cellular processes.
(iv) Personalized: The most noticeable advantage of our

approach is the ability to pack steady-state expression data into
fully informative networks that can currently be inferred only from
high-density temporal data. As a function of Ei, the independent
and dependent expression values of genes can be calculated for
any sample from Gj(·) and Gj|j′(·), respectively. These values enable
the inference of sample-specific networks from which to compare
how networks differ among entities (e.g., subjects, tissue types, or
cell types), treatment levels, and times (Fig. 1b). The main merit of
a mathematical model is its ability to make a prediction for the
future. The qdODEs allow the independent and dependent
expression levels of genes to be calculated as long as EI is
provided. Thus, for those samples that are not included in our
network reconstruction, we can interpolate or extrapolate gene
networks based on their EIs. Individualized networks are likely to
be associated with clinical and disease phenotypes and, therefore,
can be potentially useful for predicting health risk.
(v) Biologically meaningful and socially interpretable: Because of

bidirectional and signed features, the network can discern distinct
patterns of gene interactions (Fig. 1b). If two genes facilitate each
other by producing factors that promote both parties, then
synergism occurs. In contrast, an antagonism occurs if two genes
inhibit each other. Directional synergism results if one gene
promotes its partner but the latter does not affect the former
(neutral), while directional antagonism occurs if one gene inhibits
the other and the other is neutral. If one gene inhibits the other
but the latter promotes the former, then the former exerts

synergistic repression to the latter. Conversely, one gene
promotes the other but the latter inhibits the former, then the
former offers antagonistic altruism to the latter. A lack of any
interaction, then, is when two genes coexist and are neutral to
each other. These interaction patterns contain the underlying
mass, energetic, or signal basis of gene interactions and, therefore,
they are more biologically meaningful than the traditional
description of gene–gene interaction based on statistical tests. A
gene may actively manipulate other genes (by promoting or
inhibiting the latter) but, meanwhile, may also be passively
manipulated by other genes. In networks reconstructed from our
approach, one can identify the numbers of such active links and
passive links for each gene. If a gene has more active links than
passive links, it is regarded as a social gene. If a gene’s active links
are more than the average of all genes (i.e., connectivity), then this
gene is a core gene that is believed to play a pivotal role in
maintaining gene networks. If a gene has less links, including
active and passive, than the average, it is a solitary gene.

RESULTS
Human vein bypass grafting
Rehfuss et al.28 reported a genomic study of infrainguinal vein
bypass grafting involving 48 patients, among whom 35 succeeded
and 13 failed. To investigate the genomic mechanisms underlying
graft outcome, transcriptomes of circulating monocytes from
patients of success and failure were monitored at pre-operation
and at days 1, 7, and 28 post-operation. We selected a subset of
genes measured (1870) that change significantly as a function of
time per ANOVA (P < 0.05) for idopNetwork reconstruction. Four
time points of gene monitoring for 48 patients form 4 × 48=
192 samples.
By plotting the expression of individual genes against EI across

these samples, we found that each gene’s EI-varying expression is
broadly in agreement with part-whole relationship theory. Figure
2 illustrates the goodness-of-fit of gene expression to the power
equation by using four randomly chosen genes as examples. The
expression of ADAM9 and LCN2 increases with EI, but the former
displays a greater slope of increase (Fig. 2a) than does the latter
(Fig. 2b). In contrast, the expression of PLXNA4 (Fig. 2c) and
NSUN7 (Fig. 2d) decreases with EI, but with different slopes. The

Fig. 2 The fitness of a power equation as a function of expression index (EI) (green line) to the observed expression levels of four genes,
ADAM9 (a), LCN2 (b), PLXNA4 (c), and NSUN7 (d), randomly chosen from the genomic study of human infrainguinal vein bypass grafting,
across samples. Samples involve 48 patients, i.e., 35 successes (circle) and 13 failures (plus), multiplied by four time points (including day 0 pre-
operation and days 1, 7, and 28 post-operation). Ticks on the x-axis represent the positions of each sample in terms of its EI
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existence of allometric power equation suggests that gene
expression can be described as a continuous function of EI, which
is the basis for formulating qdODEs (1). This also facilitates the use
of Kim et al.’s functional clustering47 to categorize all genes
considered into different modules, each with a distinct EI-varying
pattern. We found 145 such modules based on AIC. Table S1 lists
the names of genes that are assigned into each modules. We
reconstructed 145-node idopNetworks at the module level.
One major advantage of our model lies in its capacity to

reconstruct personalized networks. In other words, our model can
infer a specific network for each patient and monitor how this
personalized network changes in response to environmental and
developmental signals. To show this capacity, we randomly chose
one successful patient (#125) and one failed patient (#205) and
compare how they respond to grafting through network
alterations. GRNs that specify the alterations of gene co-
expression across environmental change are called environment-
perturbed GRNs. Figure 3 illustrates graft-perturbed idopNetworks
at the module level from pre-operation to days 1 (A), 7 (B), and 28
(C) post-operation, respectively, for parent #205 (upper panel) and
#125 (lower panel). The two patients display some commonalities
and differences in terms of their network structure and sparsity.
For example, module 53 is a hub that actively regulate many other

modules in both success and failure graft-perturbed GRNs. This
module only contains an antisense lncRNA gene, C5orf26/
EPB41L4A-AS1, located in the 5q22.2 region of the genome.48

This gene plays a role in the development, activation, and effector
functions of immune cells.49,50 However, the two networks are
remarkably different in many aspects. First, the success network
contains more links than the failure network at the early and
middle stage of recovery after grafting, but this difference
disappears at the late stage of recovery, suggesting that the
successful patient can more quickly establish a stable network
than the failed patient. Second, the success network from pre-
operation to day 1 post-operation is framed by multiple hubs
(including not only 53 but also 5, 86, and 109), each displaying
strong links with many other modules, but the failure network is
only dominated by hub 53 with relatively weak links to other
modules. Third, graft-perturbed networks alter more dramatically
in topological structure across time for the failed patient than the
successful patient.
Our model can also characterize whether network topologies

can interpret overall differences between succeeded and failed
patients. By averaging the networks of all successful patients and
the networks of all failed patients, we reconstructed outcome-
perturbed networks at different stages of operation (Fig. 4). We

Fig. 3 Graft-perturbed networks that code how different gene modules are co-expressed for a failed patient (upper panel) and a successful
patient (lower panel) in response to physiological changes from pre-operation to day 1 (a), 7 (b), and 28 (c) post-operation. Numbers in small
circles (each denoted as a node of the graph) represent module IDs. Red and blue arrows denote the direction by a gene promotes and
inhibits other genes, respectively, and the thickness of an arrowed line is proportional to the strength of promotion or inhibition. A proportion
of modules are unlinked, suggesting that they are neutral to each other and other linked genes. Dark red circles denote hub modules with
higher connectivity than the average number of links among all modules
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argue that if networks are not associated with graft outcomes,
outcome-perturbed networks should be similar structurally
between pre- and post-operation. The outcome-perturbed net-
work prior to operation is dominated primarily by hub module 53,
followed by module 124 (Fig. 4a), but the outcome-perturbed
network at day 1 post-operation involves hubs 53, 124, 109, 59,
and 5 (Fig. 4b). Module 53 drives the prior network purely through
inhibiting other modules, whereas much of its role in the post
network is played by promotion. Outcome-perturbed networks at
days 7 (Fig. 4c) and 28 post-operation (Fig. 4d) differ not only from
that prior to operation in terms of the number and type of hub
modules, but also are sharply contrast to those at day 1 post-
operation. Taken together, the genomic differences driving
outcomes can be interrogated by the topology of graft- and
outcome-perturbed idopNetworks reconstructed by our model.
How much a gene is expressed across dynamic networks is

determined by its endogenous encoding force (independent
expression) and the exogenous influence by other genes
(dependent expression). Our model can dissect the overall
expression level of each gene into its independent and dependent
expression components. The sign and size of the dependent
components can explain how each gene is regulated by other
genes in the networks. Four representative modules 20, 27, 118,
and 135 exhibit distinct expression patterns across samples,
whose underpinnings can be illustrated by drawing the

independent and dependent expression curves (Fig. 5). The
independent expression of each module increases exponentially
with EI, but the slopes of increase vary depending on module
type. Modules 20 and 27 are each promoted by other modules,
109, 1, 59, and 115 for the former (Fig. 5a) and 5, 53, and 13 for the
latter (Fig. 5b), both listed in the order of promotion degree. These
modules produce accumulative positive dependent effects on the
expression of modules 20 and 27, leading the observed expression
level of these two focal modules to be higher than their
independent expression level across EI gradients. By contrast,
the independent expression level of modules 118 and 135 is
downshifted by a set of eight modules for the former (Fig. 5c) and
a set of four modules for the latter (Fig. 5d). These two sets of
modules inhibit the expression of modules 118 and 135,
respectively, producing accumulative negative dependent effects
on the focal modules.

Rabbit vein bypass graft
We analyzed a second data set of gene expression to validate the
usefulness of our approach. The data of microarray genes was
collected from a rabbit bilateral vein graft construct.29 New
Zealand white rabbits (weighing 3.0–3.5 kg) of high genetic
similarity were treated by bilateral jugular vein interposition
grafting and unilateral distal carotid artery branch ligation to
create two 6-fold different blood flows. Thousands of genes were

Fig. 4 Outcome-perturbed networks that code how different gene modules are co-expressed in response to a successful patient vs. a failed
patient prior to operation (a) and day 1 (b), 7 (c), and 28 (d) post-operation. Numbers in small circles (each denoted as a node of the graph)
represent module IDs. Red and blue arrows denote the direction by a gene promotes and inhibits other genes, respectively, and the thickness
of an arrowed line is proportional to the strength of promotion or inhibition. A proportion of modules are unlinked, suggesting that they are
neutral to each other and other linked genes. Dark red circles denote hub modules with higher connectivity than the average number of links
among all modules
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monitored on vein grafts, harvested at 2 h, 1, 3, 7, 14, 30, 90, and
180 days after implantation, under both conditions, high flow and
low flow. Each outcome involves three to six rabbits at each time
point, which totalize 73 samples. We chose a set of differentially
expressed genes (1395) for idopNetwork reconstruction. We
calculated the EI of each sample with these genes and plotted
the expression of individual genes against EI. EI-varying expression
profiles, fitted by a power function (Fig. S1), were clustered into 50
modules (Fig. S1).
We reconstructed module-based idopNetworks of gene co-

expression altered from time 2 h to 1 (A), 30 (B), and 180 days (C)
after implantation under high and low flows (Fig. S2). These
networks change strikingly in the structure and connectivity
across times under both flow conditions. Also, at the same time,
idopNetworks differ between high and low flows. Flow-perturbed
networks are structurally simple at time 2 h, but show increasing
complexities with time (Fig. S3), suggesting that high and low
flows need a time to display their differences. Figure S4 illustrates
how the expression of four modules is determined by their
endogenous capacity and the exogenous influence of other
modules. The overall expression of modules 3 (A), 45 (B), and 38
(D) was observed to be higher than their independent expression
because of positive influences exerted by other modules, but
module 20 (C) is negatively affected by other modules, making its
overall expression lower than independent expression. Taken
together, results from the rabbit grafting study support the
usefulness of our network inference approach.

Computer simulation
We performed computer simulation studies to empirically
evaluate the accuracy of the proposed qdODEs approach. We
simulated the expression data of m genes,

yj ¼ yj E1ð Þ; ¼ ; yj ENð Þ� �
j ¼ 1; ¼ ;mð Þ, across N samples, with

yj(Ei) varying with Ei i ¼ 1; ¼ ;Nð Þ. We let N change from 50 to
100 to 200. The EI-varying expression change of gene j was
generated by a multivariate normal distribution with zero mean
vector and covariance matrix following the AR(1) model. Each
gene was designed to interact with a specific set of genes
following a system of EI-varying qdODEs. To assess the robustness
of the approach, we also changed the variance and correlation
coefficients to control four different levels of variation for each
fixed sample size, which generate a total of 12 scenarios.
The performance of the proposed approach was assessed by

three criteria as follows:
Sensitivity quantifying the percentage of patients with the

disease test positive, which is defined as

Sensitivity ¼ TP
TPþ FN

;

where TP is true positive and FN is false negative, and specificity
measuring the percentage of healthy people test positive as

Specificity ¼ TN
TNþ FP

:

where FP is false positive and TN is true negative.
Alternatively, we also computed the positive likelihood ratio

(PLR) to give a comprehensive assessment

Positive likelihood ratio ¼ TP=ðTPþ FNÞ
FP=ðTNþ FPÞ :

In general, a sensitive test picks up most of the patients with the
disease but may also pick up healthy people without disease. A
specific test will not pick up healthy people but may also miss a lot
of true patients with disease. The trade-off between the sensitivity

Fig. 5 Overall fitted curves of gene expression (orange line) from modules 20 (a), 27 (b), 118 (c), and 135 (d) by a system of qdODEs as a
function of expression index (EI) in the human vein grafting study. Each dot denotes a sample representing a patient with outcome success
(circle) or failure (plus), measured at a time point (day 0 pre-operation and days 1, 7, and 28 post-operation). The overall expression curve of
each module is decomposed into its endogenous expression curve (blue line) and exogenous expression curves (green lines) exerted by a set
of other modules (listed by their IDs). Exogenous expression curves are better displayed by a small plot within each large plot. Value 0 at y-axis
is a cutoff point that describes how a focal module is regulated by other modules: Greater than 0 for promotion, less than 0 for inhibition, and
zero for neutrality. Ticks on the x-axis represent the positions of each sample in terms of its EI
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and specificity was balanced by maximizing the area under the
receiver operating characteristic (ROC) curve (i.e., AUC). As shown
in Table 1, both the sensitivity and specificity of the proposed
approach are high, which indicate its accuracy and potential in
clinical genomic studies. In addition, high positive likelihood ratios
also show that the approach is very discriminatory. For example, a
value of 21.706 means that a patient with the disease has a 21
times higher chance to be tested as positive compared with a
healthy people.
Something worth to mention is that the approach is quite

robust with stable results among 12 combinations of different
sample sizes and variations. When sample size is larger (n= 200)
the results are the best, but neither specificity nor sensitivity
reduces much if the sample size is only ¼ of it (n= 50).

DISCUSSION
A fully informative network is defined as one that encapsulates
bidirectional, signed, and weighted interactions into a graph. Such
networks can provide a detailed mechanistic understanding of
how genes interact and work together to determine complex
phenotypes. To reconstruct fully informative networks, existing
approaches need the collection of high-density temporal data and
the parametric fitting of the observed data, both of which are
hardly met in many genomic studies. In this study, we develop a
novel approach that can infer fully informative networks, not
relying on these two conditions. The key component of our
approach is a system of qdODEs that are derived by integrating
elements of ecology theory and evolutionary game theory. The
optimization solution of the qdODEs, through the implementation
of variable selection, enables the inference and recovery of
informative (encapsulating bidirectional, signed, and weighed
links), dynamic (tracing network alterations across spatiotemporal
gradients), omnidirectional (capturing all possible links but
maintaining the sparsity of networks), and personalized (indivi-
dualizing networks for each subject) networks (idopNetworks).
Vein bypass grafting is an essential treatment for lower

extremity arterial occlusive disease, but only with 30–50% success
rate.28 The biological mechanisms underlying the outcome of
grafts include cue-induced differentiation of gene expression. We
used our approach to reconstruct graft- and outcome-perturbed
idopNetworks from 1870 differentially expressed genes, providing
a new avenue to find key genes and key interactions that cause
success vs. failure. We found that, as an antisense lncRNA gene,
located in the 5q22.2 region of the genome, C5orf26/EPB41L4A-
AS148 plays a leadership role in regulating other genes within

networks. How many genes it regulates, how differently it regulate
these genes, and how its regulation responds to grafting and
recovery may be potentially important for patients to cure. Based
on previous functional studies,49 we postulate that the role of
C5orf26/EPB41L4A-AS1 in mediating and activating the gene
networks toward cure may be executed through its effects on the
development, activation, and effector functions of immune cells.
We found more links in the networks of successes than those of
failures at the early and middle stage of recovery after grafting.
Previous ecological studies show that the number of links, which is
usually defined as the complexity of a network,51 is positively
correlated with the stability of the network.52–54 This thus suggest
that the successful patient can more quickly establish a stable
network than the failed patient.
The past two decades have witnessed countless transcriptional

experiments initiated to explore the genomic mechanisms
underlying high-order phenotypes for a wide range of organisms.
These experiments were designed to monitor gene expression
profiles of biological entities under contrast conditions and/or
across developmental times. By various comparative analysis and
tests, genes expressed differentially under different conditions or
over times are identified as biomarkers of phenotypic variation.
Cluster analysis was also used to detect distinct patterns of gene
expression, facilitating the interpretation of the genomic control
over phenotypic or developmental plasticity. However, gene
regulatory networks, despite their role in linking genotype to
phenotype,1,2 have not been reported from a majority of genomic
experiments. Now, our approach can recover and reconstruct
idopNetworks using these publicly available data, from which to
generate new discoveries traditional approaches fail to identify.
Our qdODE approach has great power to explore various omics

data, generate mechanistic hypotheses, and guide further
experiments, model development, and analyses. By validating or
invalidating various hypotheses experimentally, new scientific
discoveries can be made, new insights gained, and new network
models revised. Our approach can be refined to accommodate the
data features of single cell analysis,55 which facilitates idopNet-
works to explore an in-depth mechanisms that drive remote
biochemical, developmental, and physiological transitions from
genotype to phenotype.

METHODS
The methods were performed in compliance with relevant guidelines and
regulations, and approved by University of Florida. We obtained a written
consent from the participants.
In what follows, we describe a statistical procedure for solving a system

of qdODEs in Eq. (1). By obtaining the maximum likelihood estimates of
independent and dependent expression amounts of each gene, idopNet-
works can be reconstructed.

Variable selection for interacting genes
Let yj= (yj(E1), …, yj(EN)) denote a vector of observed expression values for
gene j (j= 1, …, m) over all samples. The observed expression of gene j at
sample i is expressed as

yj Eið Þ ¼ Mj Eið Þ þ ej Eið Þ
¼ Gj Mji Eið Þ : Θj

� �þ Pm
j0¼1;j0≠j

Gjjj0 Mj0i Eið Þ : Θjjj0
� �þ ej Eið Þ (2A)

¼ aj Eið Þ þ XT
j bj Eið Þ þ ej Eið Þ; (2B)

where the overall expression level of focal gene j, Mj(Ei), includes its
independent expression component, aj(Ei)= Gj(·) and dependent expres-
sion component accumulatively determined by all other genes,
XT
j bj Eið Þ ¼ Pm

j0¼1;j0≠j Gjjj0 �ð Þ; the derivatives of Gj(·) and Gj|j′(·) are gj(·) and
gj|j′(·) of ODEs in Eq. (1), respectively; and ej(Ei) is the measurement error at
sample i, assumed to be iid with mean zero and variance σ2i . Note that X

T
j is

the vector containing m – 1 unities and bj(Ei)= (bj|1(Ei), …, bj|m(Ei)) is a

Table 1. Statistical properties of idopNetwork reconstruction under
different simulation scenarios

Sample size
N

Variance/correlation
coefficient

Sensitivity Specificity PLR

50 0.1/0.3 0.738 0.966 21.706

50 0.1/0.0 0.741 0.966 21.794

50 1.0/0.3 0.501 0.966 14.735

50 1.0/0.0 0.503 0.966 14.794

100 0.1/0.3 0.797 0.967 24.151

100 0.1/0.0 0.809 0.967 24.515

100 1.0/0.3 0.604 0.964 16.778

100 1.0/0.0 0.598 0.964 16.611

200 0.1/0.3 0.871 0.968 27.219

200 0.1/0.0 0.863 0.969 27.839

200 1.0/0.3 0.690 0.963 18.648

200 1.0/0.0 0.693 0.963 18.729
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vector of the dependent expression of gene j determined by all genes,
except for gene j.
Many nonparametric functions, such as B-spline, regression B-spline,

penalized B-spline, local polynomials, or Legendre orthogonal polynomials
(LOP), can be used to model independent expression curves, aj(Ei), and
dependent expression curves, bj(Ei). Chen et al.12 have proved statistical
properties of B-spline variable selection for solving ODEs. Here, we
implement B-spline to fit aj(Ei) and bj(Ei) in Eq. (2B), allowing orders of
nonparametric functions to be gene-dependent and also differ between
independent and dependent expression curves. For any gene j as a
response, there are (m – 1) predictors, each of which contributes to the
dependent expression of this focal gene through unknown nonparametric
dependent parameters βj= (βj|1,…,βj|(j–1),βi|(j+ 1),…,βj|m). Thus, we have
m – 1 groups of dependent parameters that reflects the regulation of other
genes for the focal gene. We implemented group LASSO56 to select those
nonzero groups. The group LASSO estimators of dependent parameters,
denoted as _βj = (βj|1, …, βj|(j–1), βj|(j+ 1), …, _βjjdi ), where dj (≪m) is the
number of the most significant genes that interact with gene j, can be
obtained by minimizing the following penalized weighted least-square
criterion,

L1 _βj ; λj
� �

¼ Yj � aj � XT
j bj

� �T
Zj Yj � aj � XT

j bj

� �
þ λ1j

Xm
j0¼1;j0≠j

βjjj0
��� ���

2
; (3)

where yj= (yj(E1),…, yj(EN)), yj= (yj(E1),…, yj(EN)), aj= (aj(E1),…, aj(EN)), and
bj= (bj(E1), …, bj(EN)); λ1i is a penalty parameter determined by BIC or
extended BIC; and Zj= diag{zj(E1), …, zj(EN)} where zj(Ei) is a prescribed
nonnegative weight function on [E1, EN] with boundary conditions zj(E1)=
zj(EN)= 0. This weight function is used to speed up the rate of
convergence.

Optimizing the topological structure of gene co-expression
networks
Through variable selection, we detect the most significant incoming links
(dj ≪m) for each gene j that constitutes the qdODEs of Eq. (1). By replacing
m by dj, these ODEs are modified as

dMji

dEi
¼ gj Mji Eið Þ : Θj

� �þ Xdj
j0¼1;j0≠j

gjjj0 Mj0 i Eið Þ : Θjjj0
� �

; j ¼ 1; ¼ ;m; i ¼ 1; ¼ ;N;

(4)

which are a sparse version that represents the full model of incoming links
for each gene, but with no constraint on the number of outgoing links and,
therefore, the dimension of the network. We formulate a likelihood
approach to estimate the modified ODEs. Let ϕ= (μ; Σ)∈Φ denote all
model parameters. The likelihood function of ϕ given these data is written
as

L μ;Σð Þ ¼ f y1; ¼ ; ymjμ1; ¼ ;μm;Σð Þ; (5)

where f(·) is the N-dimensional m-variate normal distribution for m gene
across N samples with mean vector M,

μ ¼ μ1; ¼ ;μmð Þ ¼ μ1 E1ð Þ; ¼ ; μ1 Enð Þ; ¼ ; μm E1ð Þ; ¼ ; μm Enð Þð Þ; (6)

and covariance matrix Σ,

Σ ¼
Σ1 � � � Σ1m

..

. . .
. ..

.

Σm1 � � � Σm

0
BB@

1
CCA (7)

In Eq. (6), μj(Ei), the mean value of the expression of gene j at sample i,
whose derivative contains gj(·) and gj|j′(·) specified by the modified qdODEs
in Eq. (4), is modeled by B-spline function and estimated by standard
fourth-order Runge-Kutta algorithms. Since B-spline nonparametric func-
tions are intergrable, we can calculate Gj(·) and Gj|j′(·). In Eq. (7), Σj is the
sample-dependent covariance matrix of gene j, and Σjj0 is the sample-
dependent covariance matrix between genes j and j′. We assume that the
residual errors of gene expression are independent among samples and
that the residual variance of each gene is constant across samples. Thus, Σj
and Σjj0 are structured as Σj ¼ σ2j In and Σjj0 ¼ σjj0In , respectively, where σ2j is
the residual variance of gene j at the same sample, σjj0 is the residual
covariance of genes j and j′ at the same sample, and In is the identity
matrix. However, we implement the first-order autoregressive (AR(1))
model to fit the residual covariances of gene expression among different
time points at the same individual.57

All model parameters ϕ can obtain their optimal solution by maximizing
the likelihood in Eq. (5), expressed as

ϕ̂ 2 arg
max
ϕ 2 Φ

L μ; Σð Þ
� �

: (8)

Intuitively, this maximum likelihood optimization implies an optimal
topological structure and organization in which genes interact with each
other to maximize the expression level of all genes as a whole. This
solution of Eq. (8) establishes the mathematical formulation of Smith and
Price’s evolutionary game theory.24

Significance test of gene interactions
One important issue for network reconstruction is how to statistically test
the significance of edges as the measure of associations between nodes.
We propose a likelihood ratio approach for network test. Under the null
hypothesis that all genes are independent from each other, the rate of
expression change for each gene can be formulated by a reduced system
of ODEs, expressed as

dMji

dEi
¼ gj Mji Eið Þ : Θj

� �
; j ¼ 1; ¼ ;m; i ¼ 1; ¼ ;N (9)

which is contrasted to the full system of ODEs in Eq. (4) as the alternative
hypothesis stating that at least one gene interaction in the network is
significant. We calculate the likelihood values under the null and
alternative hypotheses and their log-likelihood ratio (LR) as a test statistic.
A network-wise critical threshold can be determined by permutation tests.
This procedure includes (i) shuffling sample-varying expression data
among genes to make a new data, (ii) calculating the LR value based on
this new data, (iii) repeating (i) and (ii) many times (say 1000), and (iv)
detecting the 95% percentile of these 1000 LR values which is the cutoff
for the significance test of networks.

Environment-perturbed networks
Genetic networks may be activated when the organism experiences
environmental change. Suppose that gene co-expression changes from
one sample (say i1) to next (say i2) due to differences in the internal
environment of samples. The amount of this change can be estimated by
integrating the dependent expression component of qdODEs in Eq. (4)
from Ei1 to Ei2 , expressed as

Δjjj012 ¼
ZEi2
Ei1

gjjj0 Mj0 i Eið Þ : Θjjj0
� �

dEt; (10)

which quantifies the expression difference of gene j regulated by gene j′
by assuming that sample transport virtually from i1 to i2. GRNs
reconstructed from Δjjj012 (j ≠ j′= 1, …, m) reflect the alterations of gene
co-expression in response to environmental change, which are called
environment-perturbed GRNs. Based on this definition, we can reconstruct
treatment-, outcome-, development, or signal-perturbed networks to
better understand the genomic mechanisms underlying cellular, physio-
logical, and ecological processes.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AND CODE AVAILABILITY
The data and code that support the findings of this study are available from https://
github.com/chencxxy or can be requested from the corresponding author.
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