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Neural activity in the middle temporal (MT) area is modulated by the direction and
speed of motion of visual stimuli. The area is buried in a sulcus in the macaque, but
exposed to the cortical surface in the marmoset, making the marmoset an ideal animal
model for studying MT function. To better understand the details of the roles of this
area in cognition, underlying anatomical connections need to be clarified. Because
most anatomical tracing studies in marmosets have used retrograde tracers, the axonal
projections remain uncharacterized. In order to examine axonal projections from MT,
we utilized adeno-associated viral (AAV) tracers, which work as anterograde tracers by
expressing either green or red fluorescent protein in infected neurons. AAV tracers were
injected into three sites in MT based on retinotopy maps obtained via in vivo optical
intrinsic signal imaging. Brains were sectioned and divided into three series, one for
fluorescent image scanning and two for myelin and Nissl substance staining to identify
specific brain areas. Overall projection patterns were similar across the injections. MT
projected to occipital visual areas V1, V2, V3 (VLP) and V4 (VLA) and surrounding areas
in the temporal cortex including MTC (V4T), MST, FST, FSTv (PGa/IPa) and TE3. There
were also projections to the dorsal visual pathway, V3A (DA), V6 (DM) and V6A, the
intraparietal areas AIP, LIP, MIP, frontal A4ab and the prefrontal cortex, A8aV and A8C.
There was a visuotopic relationship with occipital visual areas. In a marmoset in which
two tracer injections were made, the projection targets did not overlap in A8aV and AIP,
suggesting topographic projections from different parts of MT. Most of these areas are
known to send projections back to MT, suggesting that they are reciprocally connected
with it.
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INTRODUCTION

The middle temporal (MT) area or V5 was first defined by Allman and Kaas (1971) in the owl
monkey, and has since been an extensively studied visual cortical area, especially in macaques
(Born and Bradley, 2005; Lui and Rosa, 2015). Its neural activity represents the direction
and speed of motion of visual stimuli (Dubner and Zeki, 1971; Maunsell and van Essen, 1983a;
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Albright, 1984; Felleman and Kaas, 1984). MT represents the
entire contralateral visual field and incorporates a magnified
representation of the central visual field (Desimone and
Ungerleider, 1986) which is considered important for the
perception of motion of observed stimuli. Other motion-
sensitive areas such as MST and V6 (DM) also represent
entire contralateral visual fields but with larger receptive fields
(Desimone and Ungerleider, 1986; Galletti et al., 1999) and
represent visual cues related to self-motion (Cardin and Smith,
2010; Pitzalis et al., 2013). Furthermore, combined with a
psychophysics paradigm, analyses of MT function suggest a
causal link to perception (Newsome and Paré, 1988; Salzman
et al., 1990; Britten et al., 1996), giving rise to insights about
neural coding and neural mechanisms of decision-making
(Zohary et al., 1994; Shadlen et al., 1996). Thus, studies on
MT functions have played an important role in cognitive
neuroscience.

MT is present in all primates (Lui and Rosa, 2015). In the
macaque it is located in a sulcus, but it is exposed to the
cortical surface in marmosets. Indeed, the marmoset is the only
simian primate in which MT is located entirely at the surface.
Even in other similar species such as the squirrel monkey and
owl monkey, only a part of MT is located at the surface. This
feature makes the marmoset an ideal animal model for studying
MT functions via several types of new techniques, including

two-photon imaging and array electrode implantation (Chen
et al., 2015; Townsend et al., 2015, 2017; Zavitz et al., 2016,
2017). To better understand the details of the roles of this area
in cognition, underlying anatomical connections need to be
clarified. Previous studies (Krubitzer and Kaas, 1990; Palmer and
Rosa, 2006), pre-date the current comprehensive knowledge of
boundaries of cortical areas in themarmoset (Burman et al., 2006,
2008; Rosa et al., 2009; Paxinos et al., 2012), so it is difficult to
compare results in terms of currently known areas.

MATERIALS AND METHODS

Animals and Surgery
The experiments were performed in two marmosets (Callithrix
jacchus; Table 1). All experimental procedures were approved
by the Experimental Animal Committee of RIKEN, or by the
Experimental Animal Committee of the National Center of
Neurology and Psychiatry. The marmosets were handled in
accordance with the ‘‘Guiding Principles of the Care and Use of

TABLE 1 | Subject information.

Subject Sex Weight Age at injection Anesthetic during surgery

Marmoset 1 F 353 g 3 years 4 months Sevoflurane 1%–2%
Marmoset 2 F 348 g 2 years 4 months Isoflurane 1%–2%

FIGURE 1 | Virus injections based on retinotopy maps obtained using in vivo optical intrinsic signal imaging. (A) Cortical surface images through the intact dura in
regions around the middle temporal (MT) area in the left hemispheres of marmosets 1 and 2. (B,C) Retinotopy maps and tracer injection sites. (B,C) Color-coded
retinotopy maps of visual field locations estimated with the annulus (B) and wedge (C) apertures. The green and red dots indicate virus injection sites. (D) Zoomed-in
images of parts of brain sections around the injection sites showing virus tracer spread. The bars indicate 5 mm and 1 mm in (A,D), respectively.
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FIGURE 2 | Brain section images at levels of the occipital cortex. (A) Fluorescent section image from cases 1 (green) and 2 (red). Green and red channel images
taken with FITC and TRITC filters were overlaid. The + and − symbols indicate receptive field locations in the upper and lower visual fields, respectively, for each
visual cortical area (Paxinos et al., 2012). Inset shows a higher magnification view. Some retrogradely labeled cells in V1 were indicated by arrows. (B) Myelin-stained
section image. (C) Nissl substance-stained section image. (D–F) Images of brain sections from case 3 (red) slightly caudal from the sections in (A–C) shown in the
same format as in (A–C) except that a far-red channel image (Cy5 filter) was used as a green channel and overlaid to enhance visibility of the projection by making
the background autofluorescence appear yellowish, as in (A). The triangles indicate brain area borders. The bars indicate 5 mm.

FIGURE 3 | Brain section images at caudal levels from the injection sites, utilizing the same format as in Figure 2. (A) Fluorescent section image from case 1 (green)
and 2 (red). (B) Image of the corresponding myelin-stained section. (C) Images of the corresponding Nissl substance-stained section. (D–F) Images of brain sections
from case 3.
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FIGURE 4 | Brain section images at levels of the injection sites showing projections to intraparietal areas, utilizing the same format as in Figure 2. (A) Fluorescent
section image from case 1 (green) and 2 (red). (B) Image of the corresponding myelin-stained section. (C) Images of the corresponding Nissl substance-stained
section. (D–F) Images of brain sections from case 3. Inset in (A) is a higher magnification view showing horizontal connection in gray matter. In (A) the centers of the
injection sites were slightly caudal from this section, whereas it was slightly rostral from this section in (D).

Animals in the Field of Physiological Science’’ formulated by the
Japanese Physiological Society.

We followed previously described experimental procedures
(Suzuki et al., 2015a,b; Abe et al., 2017; Miyakawa et al., 2017).
Food and water were withdrawn in the evening before the
day of the experiment. Following atropine sulfate (0.15 µg/kg
intramuscular) and ketamine hydrochloride (Ketalar, 25 mg/kg
intramuscular) injections, aseptic surgery was conducted
under anesthesia. The marmoset was intubated and artificially
ventilated by a respirator. Anesthesia was maintained via
1%–2% isoflurane or sevoflurane with a mixture of 50% N2O
and 50% O2. Electrocardiography, expired CO2, SpO2 and
rectal temperature were monitored continuously throughout
the experiment. The marmoset was placed in a stereotactic
apparatus. A head holder was implanted on the skull. The head
was fixed with the head holder and the stereotactic apparatus
was removed, resulting in a space in front of the eyes for
visual stimulation. A stainless-steel chamber (inner diameter
18 mm; Figure 1A) was implanted on the skull after craniotomy
and filled with agar to reduce the effects of pulsation during
imaging.

In vivo Optical Intrinsic Imaging and Tracer
Injection
To obtain a retinotopy map, optical intrinsic signal imaging
was performed through the dura just before the tracer

injection. The cortical surface was illuminated by a halogen
lamp or an LED light (535-nm wavelength) and captured by
a CCD camera (GRAS-03K2M-C, FLIR Integrated Imaging
Solutions Inc., Richmond, BC, Canada) with a lens (Ai AF
Micro-Nikkor 60-mm f/2.8D, Nikon, Tokyo, Japan) in a
640 × 480 pixel format at 30 Hz. The focal depth was set
600–800 µm below the cortical surface. Before imaging, gaseous
anesthesia was switched to a combination of remifentanil (Ultiva,
0.1 µg/kg/min, intravenous) and rocuronium bromide (Eslax,
13 µg/kg/min, intravenous; Suzuki et al., 2015a,b; Abe et al.,
2017; Miyakawa et al., 2017). The pupil was fully dilated
with 0.5% topical tropicamide. A contact lens was used to
focus at a distance of 57 cm for the eye contralateral to the
imaged hemisphere (Suzuki et al., 2015a,b) with the aid of
an ophthalmoscope (iExaminer, Welch Allyn, Skaneateles Falls,
NY, USA), which was set on a custom holder with a rotating
stage on a tripod. The fovea direction was back-projected on a
computer monitor by rotating the stage 180◦ to align stimulus
locations.

Moving dots were presented through an annulus (Figure 1B)
or a wedge aperture (Figure 1C) in three or four different
sizes for marmoset 1 or 2, respectively. The largest annulus
and the largest wedge had diameters of 28◦. Five-hundred
white dots (100% Michelson contrast, 0.54◦ in diameter)
moved incoherently in fixed random directions at a speed
of 8.5◦/s within a circular region with a 16-degree radius.
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FIGURE 5 | Brain section images at levels of rostral from the injection sites, utilizing the same format as in Figure 2. (A) Fluorescent section image from case 1
(green) and 2 (red). (B) Image of the corresponding myelin-stained section. (C) Images of the corresponding Nissl substance-stained section. (D–F) Images of brain
sections from case 3.

Each dot was replaced with a new one with a probability of
10% per frame (1/60 s. For each trial, after a 2-s baseline
period one of the stimuli was presented for 2 s followed
by a 15-s blank period. Thirty trials were conducted for
each stimulus in a pseudo-random order. By comparing the
aperture conditions, the eccentricity and radial location of
neurons’ receptive fields were estimated (Figures 1B,C). To
obtain a retinotopy map for radial positions (Figure 1B), an
expected value was calculated for each pixel using the following
formula:

6 r(i)× f(i)/6(f(i))

where r(i) is the radius of the annulus stimulus conditions
(3.75, 8.75, or 14.00◦ in three conditions) and f(i) is the
average ∆F/F across trials in the same condition. The
map was smoothed with a circular averaging filter with
a 5-pixel radius. Similarly, a retinotopy map for angular
positions was calculated using the wedge stimulus conditions
(Figure 1C). The stimulus presentation was controlled by

Psychotoolbox-31 on Matlab (R2014b, Mathworks, Inc., Natick,
MA, USA) which also delivered trigger signals to an image
acquisition PC.

Virus injections were made to MT regions representing
near, but not in, the central visual field (green tracer, case
1; Figures 1B,C) and a peripheral and lower visual field (red
tracer, case 2) in marmoset 1, and a peripheral visual field
around the horizontal meridian in marmoset 2 (red tracer,
case 3). Adeno-associated viral (AAV) tracers, which work as
anterograde tracers by expressing fluorescent proteins in infected
neurons, were injected into each designated site through a
glass-pipette attached to an injector (Nanoject II, Drummond
Scientific Company, Broomall, PA, USA). Two minutes after
positioning of the pipette tip at a depth of 800 µm from the
cortical surface, 200 nl of a viral tracer was injected at a rate
of 25 nl/min. The tracers were a mixture of AAV1-Thy1S-
tTA (1 × 109 vector genomes (vg)/µl) and AAV1-TRE-clover
(5 × 109 vg/µl) for green fluorescent protein and AAV1-Thy1S-

1http://psychtoolbox.org/
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FIGURE 6 | Brain section images at levels of the motor cortex, utilizing the same format as in Figure 2.

tTA (1 × 109 vg/µl) and AAV1-TRE3-tdTomato (5 × 109

vg/µl) for red fluorescent protein. After the tracer injection,
the bone was replaced directly over the cortex after carefully
ensuring that there was no ongoing bleeding. The bone was
sealed with thin dental cement and the skin was sutured. After
careful monitoring of recovery, themarmoset was returned to the
cage.

Histology and Brain Section Images
After a 3-week waiting period, the marmosets were perfused with
4% paraformaldehyde with picric acid (Abe et al., 2017) after
the injection of atropine (0.15 µg/kg intramuscular), ketamine
hydrochloride (25 mg/kg intramuscular), and an overdose of
sodium pentobarbital (Somnopentyl, 100 mg/kg intraperitoneal;
Kyoritsu Seiyaku, Tokyo, Japan). Histological processing was
performed as previously described (Suzuki et al., 2015a; Abe
et al., 2017; Miyakawa et al., 2017). Brain sections were sliced at
a thickness of 50 µm and divided into 3 series for fluorescent
image scanning, myelin staining (Pistorio et al., 2006), and Nissl
substance staining with thionin (Suzuki et al., 2015a) in an

interleaving manner. Brain section images were acquired using
a slide scanner (NanoZoomer 2.0-HT, Hamamatsu Photonics
K.K., Hamamatsu, Japan; 20× objective, 455 nm/pixel) with
a filter cube (LED-DA/FI/TR/Cy5–4X-A-OMF, Semrock, Inc.,
Rochester, NY, USA), and injection sites were examined using an
epi-fluorescence microscope (BZ-X700, Keyence, Osaka, Japan;
Figure 1D). During sectioning, a pre-sectioning block-face brain
image was taken of each section. Those images were used as
references to reconstruct 3D brain section-derived images (Abe
et al., 2017), which were rendered using Fluorender (Wan et al.,
2012). Brain areas were identified based on the histologically
stained section images according to a marmoset brain atlas
(Paxinos et al., 2012).

Flat Map Construction
A 3D mid-depth cortical surface representation of the gray
matter was created. Pia and white matter contours were
manually drawn on reconstructed histologically stained section
images using graphics software (CorelDRAW X7, Ottawa, ON,
Canada), and saved in scalable vector graphics format. Using
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FIGURE 7 | Brain section images at levels of the prefrontal cortex. (A,D,G) Fluorescent section images from cases 2 (red; A), 1 (green; C) and 3 (red; E).
(B,E,H) Images of the next myelin-stained sections. (C,F,I) Images of the Nissl substance-stained section.

those contours as boundary conditions, Laplace’s equations
were solved to obtain ‘‘potential’’ (depth information) in
the gray matter (e.g., Allen Mouse Common Coordinate
Framework). Mid-potential (depth) points were collected to
create a mid-depth cortical surface (MyCrustOpen Matlab
function2). The obtained 3D surface was flattened by initial
Tutte embedding (compute_parameterization function3) and the
DMflatten algorithm, which reportedly yields more accurate
flat maps than other flattening algorithms (Balasubramanian
et al., 2010) by calculating exact geodesics on polyhedral
surfaces (Balasubramanian et al., 2009). Each voxel of the
3D-reconstructed fluorescent signals was projected onto the
mid-depth cortical surface based on the gradients of the potential.
The projected fluorescent signals and identified brain areas were
assigned to each polygon of the surface, and color coded. Custom
Matlab scripts were used unless otherwise indicated.

2https://jp.mathworks.com/matlabcentral/fileexchange/63731
3https://jp.mathworks.com/matlabcentral/fileexchange/5355

RESULTS

Based on in vivo optical intrinsic signal imaging (Figures 1A–C),
the virus tracers were injected into MT regions representing near
the central field (case 1), a peripheral lower visual field (case 2)
and a peripheral visual field around the horizontal meridian (case
3). The spreads of all injection sites were ∼1 mm in diameter
when examined in histological sections (Figure 1D).

Projections to the Occipital Cortex
In case 2, there were projections to layer 6 of the corresponding
lower visual field locations in V1 and V2, but not to the
upper visual field (Figure 2A). In case 1, labeling was mainly
in the upper visual field, but there was also some in lower
visual fields (Figure 2A). This was presumably because the
tracer injection was made in a site representing near the central
visual field extending to both upper and lower visual fields.
In V1, both injections elicited strong labeling in layers 1, 4B,
and 6 (Figure 2A), consistent with previous studies (Maunsell
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FIGURE 8 | Flat map showing MT projection in case 1 (green) and 2 (magenta). To increase visibility, magenta, not red, was used for case 2. White regions indicate
overlaps of the two tracer projections. The inset shows a part of the flat map in increased brightness. The gray regions indicate injection sites in MT.

and van Essen, 1983b; Ungerleider and Desimone, 1986b;
Krubitzer and Kaas, 1990). The projection to layer 4B might
also contain retrograde labeling to an extent, because there
was a small number of infected cell bodies in layer 4B
in V1 (Figure 2A inset), which is known to send strong
projections to MT (Ungerleider and Desimone, 1986b; Rosa
et al., 1993), and minor retrograde labeling occurs with both
AAV and biotin dextran amine tracers (Wang et al., 2014).
In V2, there were columnar projections with weaker labeling
in layer 4 (Figure 2A), which may correspond to thick stripes
in V2.

In case 3, consistent with the above-described cases, there
were projections to layer 6 of V2 and V1 (Figure 2D). Because
the site of this injection was an MT region representing an
area around the horizontal meridian, the injection labeled axons
going to both upper and lower visual fields (Figure 2D).
The seemingly weaker projection may be because the volume
of infected neurons was smaller than in the other cases

(Figure 1D), although the same amount of tracer was
injected.

All injection sites had projections to V3, V3A (DA)
and V4 (VLA; Figures 2–4). Overall the projections to the
occipital visual areas targeted supragranular layers and layer
6, with weaker labeling in layer 4 (except layer 4B in V1),
suggesting feedback-type connections (Rockland and Pandya,
1979; Maunsell and van Essen, 1983b).

There were strong projections from MT to V6 (DM) in all
the injections (Figures 2, 3). Those projections targeted all layers.
In case 2, labeling was found in both upper and lower quadrant
visual fields located in V6, consistent with the fact that V6 covers
the entire contralateral visual fields (Galletti et al., 1999).

Projections to the Temporal Cortex
MT projected to its surrounding areas such as MST, V4T
(MTC), FST, FSTv (PGa/IPa), and TE 3 (Figures 3A, 4A,D,
5A,D). Those projections traveled in the white matter. Notably
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FIGURE 9 | Flat map showing MT projection in case 3 (magenta). The same format as in Figure 8.

however, there were also horizontal connections to those
areas near the injection sites that did not extend into the
white matter (Figure 4A, inset). In a more rostral section,
there were columnar patches in MST and FST (Figure 5A).
These projections mainly targeted layer 4 and supragranular
layers near the injection sites (Figures 3A, 4A,D, 5A,D).
These projections are suggestive of feedforward-type connections
(Rockland and Pandya, 1979; Maunsell and van Essen,
1983b).

Projections to the Parietal Cortex
For intraparietal areas, there were projections to LIP, MIP and
AIP (Figures 4, 5). These targeted all layers (Figures 4A,D), and
there was a tendency toward stronger labeling in superficial layers
(Figure 5A). In the marmoset that received two tracer injections,
labeling was found in the same area but separated in AIP
(Figure 5A), suggesting that there is a topographic relationship
between MT projections and AIP.

Projections to the Frontal Cortex
There were weak projections to A4ab, and prefrontal
projections in A8C and A8aV in all injections (Figures 6–9).
The projection to A8aV was consistent with a previous

study (Reser et al., 2013), and mainly targeted layer 4 and
supragranular layers. This area is known to have frontal eye
fields and projections back to MT (Burman et al., 2006).
Interestingly, as with AIP, labeling was separated between the
tracers suggesting topographic projections from MT to A8aV
(Figures 7, 8).

Projections to Subcortical Brain Structures
In subcortical structures, MT projections were found in the
superior colliculus (Figure 4A), caudate nucleus, lateral and
inferior pulvinar nuclei and pontine nuclei (Figure 5) in all
injections.

Axon Fibers and Callosal Connection
To visualize overall projection patterns, 3D reconstructions
of the axonal projections were generated using the brain
section images (Figures 10–12). MT had axon bundles in the
white matter separately projecting to the prefrontal cortex,
temporal cortex (with horizontal connection in the gray
matter), and parietal and occipital cortexes, MT in the other
hemisphere through the corpus callosum, superior colliculus,
thalamic reticular nucleus, pulvinar, caudate nucleus and pontine
nuclei.
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FIGURE 10 | Lateral view of 3D reconstructions showing MT projection. The
dots indicate injection sites.

FIGURE 11 | Dorsal view of 3D reconstructions showing MT projection.

FIGURE 12 | Rostral view of 3D reconstruction showing MT projection.

DISCUSSION

MT projected to nearby temporal areas, MST, FST, FSTv
(PGa/IPa), the occipital visual areas V1, V2, V3 (VLP), V4 (VLA),
V4T (MTC), the dorsal visual pathway V3A (DA), parietal V6,
V6A, intraparietal AIP, MIP, LIP and frontal A4ab, prefrontal
A8aV and A8C in all tracer injections (Figure 13). New findings
in this study are that there was MT projection to V6 (DM), A4ab
and topographic MT projections to AIP and A8aV inmarmosets.

Comparison With Previous Tracing Studies
in Marmosets
Most of the projection target areas identified were consistent
with a previous study using peroxidase-conjugated wheat germ
agglutinin (WGA-HRP), in which anterograde connections
between MT andMTC, FST, MST and occipital visual areas were
detected in marmosets (Krubitzer and Kaas, 1990). However,
there were differences. In that previous study, projections to
V6 (DM) and A8aV (FEF) were not detected. This may be due
to a technical difference such as the real flattening procedure
and/or the WGA-HRP method used in the previous study.
Notably, thin axons are difficult to observe using WGA-HRP.
Without additional information or access to the raw data
obtained in the previous study, it is hard to reconcile with

Frontiers in Neuroanatomy | www.frontiersin.org 10 October 2018 | Volume 12 | Article 89

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles


Abe et al. Axonal Projections From Area MT

FIGURE 13 | A summary flat map showing consistency between injections. For each brain area, the number of cases where MT projection was found was indicated
by gray scale.

the results of the current study. In the current study there
were clear projections to V6 (DM), A4ab and A8aV with
traveling axons in the white matter in all three injections
(Figures 3, 6, 7, 10–12). In addition, in a previous retrograde
tracer study MT reportedly received input from both V6
(DM) and A8aV (Rosa et al., 2009). Another previous study
compared anatomical input from MT in macaques, marmosets
and capuchin monkeys, and found that V4T (MTC), MST,
FST, V6 (DM), dorsal posterior parietal cortex (LIP, VIP), V3
(VLP), V4 (VLA) and A8aV received anatomical input from MT
similarly across all three species (Palmer and Rosa, 2006). Those
are the areas that MT projected to in the present study. This
demonstrates that these connections were well conserved during
evolution.

Comparison With Macaque Studies
Many studies have investigated MT connections in macaques.
Those studies have found reciprocal connections with V1
(Maunsell and van Essen, 1983b; Weller and Kaas, 1983; Perkel
et al., 1986; Van Essen et al., 1986; Ungerleider and Desimone,
1986a; Rockland, 1989; Shipp and Zeki, 1989; Sincich and
Horton, 2003), V2 (Maunsell and van Essen, 1983b; DeYoe and

Van Essen, 1985; Ungerleider and Desimone, 1986a; Rockland,
1995; Stepniewska and Kaas, 1996; Anderson and Martin, 2002),
V3 and V3A (Maunsell and van Essen, 1983b; Ungerleider and
Desimone, 1986a; Felleman et al., 1997), V4 and V4T (MTC;
Maunsell and van Essen, 1983b; Desimone and Ungerleider,
1986; Ungerleider andDesimone, 1986a), V6 (Galletti et al., 2001;
Passarelli et al., 2011), MST (Maunsell and van Essen, 1983b;
Desimone and Ungerleider, 1986; Ungerleider and Desimone,
1986a), FST (Desimone and Ungerleider, 1986; Ungerleider and
Desimone, 1986a; Boussaoud et al., 1990), VIP (Maunsell and
van Essen, 1983b; Ungerleider and Desimone, 1986a; Boussaoud
et al., 1990), LIP (Blatt et al., 1990) and FEF (Ungerleider and
Desimone, 1986a; Leichnetz, 1989; Stanton et al., 1995; Markov
et al., 2014). Thus, those findings were consistent with the MT
projections detected in marmosets, using anterograde tracers, in
the present study.

In macaques, MT projections to TEa and TEm (Seltzer and
Pandya, 1989), TE3 and TEO (Seltzer and Pandya, 1991), POa
(Ungerleider and Desimone, 1986a; Seltzer and Pandya, 1991),
and PG and 7a (Neal et al., 1990) have been reported. Although
no such projections were detected in the marmosets in the
present study, macaque area POa (Seltzer and Pandya, 1991)
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corresponds to LIP (which was labeled in the marmoset), and
PO (Ungerldeider and Desimone, 1986) is actually part of area
V6 (DM; see Angelucci and Rosa, 2015). Therefore, detailed
comparisons are hampered by the use of different nomenclature
in addition to unclear homologies between the species. Previous
studies with both anterograde and retrograde tracers have
detected connections with TE inmarmosets (Krubitzer and Kaas,
1990; Palmer and Rosa, 2006).

With regard to subcortical connections, reciprocal
connections with the pulvinar (Standage and Benevento,
1983; Ungerleider et al., 1984) as well as projections to the
superior colliculus (Maioli et al., 1992), lateral basal nucleus
amygdala (Iwai and Yukie, 1987), thalamic reticular nucleus,
caudate, putamen, claustrum (Ungerleider et al., 1984), nucleus
of the optic tract, dorsal terminal nucleus and dorsolateral
pontine nucleus (Distler and Hoffmann, 2001; Distler et al.,
2002) have been reported. In the present study, we also found
MT projections to the pulvinar, superior colliculus, thalamic
reticular nucleus, caudate, terminal nucleus and pontine nucleus
in marmosets.

CONCLUSION

Using a combination of new virus tracers and in vivo optical
signal imaging, we found that MT projects to occipital visual
areas and its surrounding areas in the temporal cortex, as well
as to the dorsal visual pathway, intraparietal areas and prefrontal

cortex. The different injections into MT exhibited similarity
in the distribution of labeling throughout the brain, which
resembled that observed in retrograde tracer studies that mapped
projections toMT (Palmer and Rosa, 2006), suggesting that these
connections are reciprocal.
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