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Ovarian carcinoma is the leading cause of death from gynecologic malignancy in the US. Factors such as the molecular
heterogeneity of ovarian tumors and frequent diagnosis at advanced stages hamper effective disease treatment. There is growing
emphasis on the identification and development of targeted therapies to disrupt molecular pathways in cancer. The epidermal
growth factor (EGF) receptor is one such protein target with potential utility in the management of ovarian cancer. This paper will
discuss contributions of EGF receptor activation to ovarian cancer pathogenesis and the status of EGF receptor inhibitors and EGF

receptor targeted therapies in ovarian cancer treatment.

1. Introduction

Ovarian carcinoma is the leading cause of death from
gynecologic malignancy, with an estimated 15 520 deaths in
the USA in 2008 [1]. Ovarian cancer is a highly metastatic
disease that is rarely detected when disease is confined to
the ovary (stage I) and 5-year survival is >90%. The great
majority of ovarian cancer patients are initially diagnosed
with disseminated intra-abdominal disease (stages III-1V)
and have a 5-year survival of <20% [2]. Clinically, ovarian
tumors often involve the ovary and omentum, with diffuse,
multifocal intraperitoneal metastases and malignant ascites
[2, 3]. The combined factors of late diagnosis and the cellular
and molecular heterogeneity of ovarian cancers hamper
efforts to effectively treat this disease.

For many cancers, including those of the ovary, there
is growing emphasis on the identification and development
of targeted therapies to disrupt specific molecular pathways
contributing to disease progression [4]. The epidermal
growth factor (EGF) receptor is one such molecular target.
The EGF receptor impinges on multiple key hallmarks of
cancer defined by Hanahan and Weinberg [5] and the EGF
receptor is associated with a gene expression pattern unique
to invasive tumor cells [6]. Aberrant expression and activity
of the EGF receptor is generally recognized to have a deleteri-
ous impact on the clinical outcome of cancer patients which

has fueled development of targeted therapeutics (reviewed
in [7-12]). This paper will discuss potential contributions
of EGF receptor activation to ovarian cancer pathogenesis
and the status of EGF receptor inhibitors and EGF receptor
targeted therapies in ovarian cancer treatment.

2. The EGF Receptor in Ovarian Cancer

The EGF receptor is a member of the receptor tyrosine
kinase (RTK) family of growth factor receptors and the
founding member of the ErbB subfamily that includes four
proteins: ErbB1 (EGF receptor), ErbB2 (HER-2), ErbB3
(HER-3), and ErbB4 (HER-4). The ErbB receptors are single
membrane spanning proteins possessing intrinsic tyrosine
kinase catalytic activity. Ligand binding promotes EGF
receptor homo- and heterodimerization with ErbB family
members, activation of the intracellular tyrosine kinase
domain, and stimulation of numerous downstream signaling
cascades associated with cell growth and survival, increased
angiogenesis, and tumor metastasis (reviewed in [7-10],
[13-17]).

The most common form of ovarian cancer arises from
the ovarian surface epithelium (OSE). The OSE expresses
EGF receptors in vivo and EGF receptor activity is impli-
cated in gonad development, growth and differentiation
of the ovarian follicle, and postovulatory repair [18-20].
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It has been proposed that EGF stimulation of the OSE
contributes to its rapid post-ovulatory proliferation and
to epithelial-mesenchymal transition (EMT) of OSE cells
within the ruptured follicle. Malfunctions in post-ovulatory
repair are believed to contribute to formation of epithelial
inclusion cysts, which are the preferential sites of malignant
transformation [15, 21, 22]. The normal OSE responds to
EGF receptor generated signals by displaying a phenotypic
plasticity characterized by transition between epithelial and
fibroblastic phenotypes, a characteristic usually limited to
immature, regenerating, or neoplastic epithelia [23]. These
attributes of the adult OSE suggest that this tissue is “primed”
to respond to the EGF receptor during tumor development
and progression.

In addition to its role in normal ovarian epithelium,
there is abundant evidence of aberrant EGF receptor
and/or ligand expression in ovarian cancer. A recent review
[15] provides an excellent and comprehensive summary
of immunohistochemical studies evaluating ErbB receptor
and ErbB ligand expression in malignant ovarian tumors.
Briefly, published reports estimate EGF receptor expression
in 10-70 percent of human epithelial ovarian cancer cases
(reviewed in [15]). A smaller subset of studies has examined
amplification of the EGF receptor gene in ovarian cancer. An
advantage of this approach is the relative stability of DNA in
archived samples, but because EGF receptor overexpression
can occur in the absence of gene amplification, these studies
may underestimate the frequency of elevated EGF receptor
protein in tumors. Despite this caveat, EGF receptor gene
amplification is detected in ~10-20 percent of ovarian cancer
cases [24-26], with low-level gains detected more frequently
in 43 percent of tumors [24]. Thus, based on detection of
protein or gene amplification, there is strong evidence for
elevated EGF receptor expression in a significant fraction of
ovarian cancer cases.

Overall, elevated EGF receptor is associated with less
favorable disease outcomes in a number of human tumors
[17, 27-29]. Despite evidence for EGF receptor expression
in ovarian tumors [15], studies on the relationships between
receptor and patient outcomes do not provide a uniform
picture on the clinical consequences of elevated EGF receptor
levels. Based on studies with normal tissue reference controls,
elevated EGF receptor levels significantly correlated with
aggressive disease characteristics [24] and high tumor EGF
receptor expression was proposed as the most significant
prognostic factor for disease-free and overall survival [30].
An overall conclusion that aberrant EGF receptor status is
a factor in ovarian cancer outcome is supported by a meta-
analysis study revealing a relationship between EGF receptor
and decreased survival [31], and the abundant evidence
linking EGF receptor to poor patient outcome in other
cancers of epithelial origin.

3. Consequences of EGF Receptor Activation
in Ovarian Cancer

A limited number of studies examine activated (tyrosine
phosphorylated) EGF receptor in ovarian tumors and over-
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all, little attention has been given to receptor activation status
and disease parameters. In one study, 11.8 percent of ovarian
tumors were positive for phosphorylated EGF receptor
(pEGFR) but no clinicopathological parameter or survival
differences were noted [32]. In another study, twenty-four
heavily pretreated patients with epithelial ovarian cancer
all had detectable EGF receptor and p-EGFR (Y1143),
suggesting that EGF receptor activation might be more
evident in advanced disease [33]. We conducted a tumor
tissue array analysis and found evidence for pEGFR in
approximately 1/3 of ovarian tumor samples [34]. EGF
receptor activation was statistically positively correlated with
matrix metalloproteinase (MMP)-9 expression, a protein
associated with tumor invasion and metastasis. Together,
these in vivo data indicate that activated EGF receptor is
present in ovarian tumor specimens, likely driving aspects of
tumor behavior.

The mitogenic effects of EGF receptor activation in
ovarian tumor cells are well documented. EGF increases the
growth potential of primary ovarian surface epithelial (OSE)
cells in culture [35] and gene expression profiling of normal
rat ovarian surface epithelium following EGF treatment
demonstrates EGF-dependent activation of genes involved in
cell cycle and proliferation, apoptosis, and protein turnover
[36]. In addition, malignant transformation of rat OSE
cells results in alteration of downstream effectors of the
EGF receptor pathway [36]. Regarding ovarian tumor cells,
numerous studies demonstrate that autocrine and paracrine
stimulation of the EGF receptor promotes ovarian tumor cell
growth (reviewed in [37, 38]). Furthermore, blockade of EGF
receptor activation or signaling inhibits ovarian tumor cell
growth in vitro and in vivo (reviewed in [37]).

In addition to fostering cell growth, activation of the
EGF receptor is associated with stimulation of metastasis-
associated cellular responses. Many aspects of tumor metas-
tasis resemble features of epithelial-mesenchymal transition
(EMT) [39-43]. Notably, EGF receptor activation is capable
of driving EMT-associated events in epithelial ovarian car-
cinoma cells in culture including migration and invasion,
disruption of E-cadherin-mediated intercellular junctions,
and production of matrix degrading proteinases (reviewed
in [37, 38, 44, 45]). In contrast to the well-defined events
that characterize EMT in development, tumor-associated
EMT is currently viewed as a continuum of phenotypic
plasticity and gain of mesenchymal characteristics. Tumor
phenotype likely reflects the particular complement of EMT
regulatory factors expressed in cells or within the tumor
microenvironment [42—45]. The functional consequences of
this phenotypic plasticity are not fully understood, but may
play a role in modulation of cell survival in suspension
(ascites), chemoresistance, and intraperitoneal anchoring of
metastatic lesions (reviewed in [42, 44, 46]).

Based on the evidence that (1) ovarian tumors share
certain characteristics (EGF receptor overexpression and
activation) with tumors approved for treatment with EGF
receptor inhibitors, (2) receptor activation drives tumor-
relevant responses in ovarian tumor cells, and (3) ovarian
tumor growth is reduced by EGF receptor directed therapeu-
tics in preclinical models, the EGF receptor inhibitors have



Journal of Oncology

TasLE 1: FDA approved EGF receptor inhibitors.

Generic, brand . Clinical Dose Approved
’ C
name Type Mechanism Range (route) Tumors ompany
.. Fnhlblts Platinum and
Gefitinib, intracellular . .
Small molecule . 250 mg daily taxane resistant
Iressa TKI EGER tyrosine (oral) nonsmall cell Astra-Zeneca
7D1839 kinase lune cancer
phosphorylation &
Erlotinib, Fnhlblts Nonsmall cell
T Small molecul intracellular 100 150 !
arceva matl molecuie EGEFR tyrosine ., mg=1>umg Ung cancer, OSI Pharmaceuticals/Genentech
0S-774 TKI . daily (oral) pancreatic
kinase
CP-358774 . cancer
phosphorylation
Lapatinib Small molecule Inhibits het- iirfeﬂ;breast
TYKERB dual TKI, erodimerization 1250 mg daily refractory to Glaxo-Smith Kline
EGFR-1 and and herl/her2 days 1-21 (oral) .
GW 572016 . herceptin and
EGFR-2, phosphorylation
chemo
Cetuximab, Extrac.elll{lar . 400 mg/m? load Metastatic
. Human/mouse domain binding N colorectal
Erbitux . . . then 250 mg/m ImClone
IMC-C225 chimeric MAb and ligand weekly (IV) cancer, head,
blockade Y and neck
. Extracellular Metastatic
Panitumamab, H ed d in bindi 6ma/k fract
Vectibix umanize omain binding mg/kg every refractory Amgen/Abgenix
MAD and ligand 14 days (IV) colorectal
ABX-EGF
blockade cancer

moved forward into clinical trials for ovarian cancer and are
discussed in the following section.

4. Clinical Status of EGF Receptor Inhibition
in Ovarian Cancer

With the advent of better understanding of the molecular
mechanisms contributing to ovarian cancer, novel recep-
tor targeted therapeutics or “biologic therapeutics” either
administered alone or in combination with conventional
chemotherapy have become a rapidly developing strategy
in clinical trials design. Based on expression of the EGF
receptor in ovarian cancer and the known consequences of
receptor activation, this pathway could be a prime target
for therapeutic blockade [4]. Numerous anti-EGF receptor
agents are under active development and each compound has
subtle differences in target binding, downstream signaling,
ease of administration and toxicity profiles. Yet despite
favorable preclinical studies using EGF receptor antagonists,
clinical trial outcomes in ovarian cancer have been overall
disappointing. Investigations are underway to understand
the mechanism of escape from EGF receptor blockade as
well as to identify clinical predictors of antagonist response.
The following sections will summarize the success and
shortcomings of these agents in ovarian cancer trials.

The majority of EGF receptor inhibitor agents in clinical
trial development fall into two categories: small molecule
tyrosine kinase inhibitors (TKIs) that compete with ATP for
its binding site in the tyrosine kinase domain or monoclonal
antibodies (MAbs) against the extracellular domain that

interfere with ligand binding and/or receptor dimerization.
Additional EGF receptor directed therapeutic strategies
include development of EGF vaccines, receptor downreg-
ulation by antisense oligonucleotides [47]. EGF receptor
dependent targeting of imaging agents, chemotherapeutic
agents, and toxins will be discussed later in this paper.

A significant clinical difference between the small
molecule TKIs and MADbs is that the TKIs are orally admin-
istered and require daily dosing (especially the reversible
inhibitors) to maintain target blockade whereas the MAbs
are given intraveneously usually weekly or every 2 weeks.
The TKIs and MADs share a toxicity profile which includes
fatigue, diarrhea, and a robust acneiform rash. The cuta-
neous rash has been described as a clinical indicator of EGF
receptor blockade due to abrogation of receptor signaling
in nontumor tissues such as the skin and gut mucosa [47].
In addition, hypersensitivity reactions are a concern with
MADs, especially the nonhumanized or chimeric agents.
Several TKIs and MAbs are FDA approved for treatment of
specific solid tumors, yet none have performed well enough
in ovarian cancer trials to warrant such approval (Table 1).
Additional compounds are under clinical development in
ovarian cancer and other solid tumors (Table 2).

4.1. EGF Receptor Specific Inhibitors. In clinical trials EGF
receptor inhibitors have been administered as single agents
and in combination with chemotherapy. Generally the trials
are conducted in patients with recurrent ovarian cancer, and
often patients have been heavily pretreated before receiving
the targeted therapeutics. The common dosing schedules
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TaBLE 2: Non-FDA approved EGFR inhibitors. Data derived from the NCI Drug Dictionary and Clinical Trials Search http://
www.nci.nih.gov/Templates/drugdictionary and [4, 47].

Generic or Clinical ..
. . . Clinical dose
research Type Mechanism trial-ovarian Company
range (route)
name cancer, other
Irreversible
CI-1033 Small molecule binding to 50 mg—200 mg
PD 183805 TKI ATP-binding Phase IT daily day 1-21 Pfizer
Canertinib site EGFR 1, 2, (oral)
3,4
Irreversible
EKB-569 Small molecule binding to TK None, Phase I in 25 mg daily
Pelitinib TKI domain of solid tumors (oral) Wyeth-Ayerst
EGFR 1,2, 4
Reversible
Small molecule binding to TKI None, Phase I'in 600 mg—700 mg .
PKI-166 TKI domain EGFR 1, solid tumors 2 weeks on/off Novartis
2
Second Reversible None. active Dose escalation
. binding to TKI D daily, dose AVEO
AV-412 generation dual . Phase I trial in . .
domain EGFR . escalation three Pharmaceuticals
TKI solid tumors .
1,2 times/wk
Second Irreversible i\(f)(l)i?ie;li}ri)sri Tin 50 mg daily
BIBW-2992 . binding to TKI . (oral), 70 mg Boehringer
generation dual . and Phase I in . .°7
Tovok domain EGFR 1, daily 2weeks Ingelheim’s
TKI lung, breast,
2 on/off
cancer
Multi-targeted Dose escalation,
CUDC-101 Small molecule HDAC/EGFR 1, None, Phase I unknown Curis, Inc.
TKI solid tumors .
2 starting dose
Binds tyrosine None, Phase I in Dose escalation
BMS-690154 Small molecule kinase domains combo with unknown ’ Bristol-Myers
TKI of EFGR1, 2 and paclitaxel and startine dose Squibb
VEGFR-2 carboplatin &
Extracellular Phase IT EGFR+, EMD
Matuzumab, . domain binding other 800 mg weekly
EMD 72000 Humanized MAb and ligand head+neck, (V) Serono/Merk
. KGaA
blockade lung, gastric
Extrac.ellular 840 mg load
her2 ligand Phase II, lun, followed b
Pertuzumab Humanized MAb blockade, » ung, wed by Merck Serono
. breast, prostate 420 mg every 3
prevents dimers weeks (IV)
with EGFR-1
Glycoengineered Iesiltlrisc::ﬁ ElSrFR None, Phase I Dose escalation Roche
RO5083945 yeoeng chuar EGFR+ solid start at 50 mg .
MADb domain, inhibits Pharmaceuticals
tumors (V)

dimers

from multiple Phase I trials for the oral TKIs are shown in
Table 1. Gefitinib alone (500 mg) performed poorly in Phase
II trials with minimal clinical response for ovarian cancer
patients. The only responder had an activating mutation in
the EGF receptor catalytic domain similar to the mutations
evident in responsive lung cancer patients [48]. Erlotinib
alone (150 mg) performed slightly better with 6% of the
patients responding based on tumor regression and 44% of
patients had stable disease [4]. Gefitinib has been combined
with cytotoxic chemotherapy such as carboplatin, pacli-

taxel, topotecan, oxaliplatin, vinorelbine, and the aromatase
inhibitor anastrazole in multiple Phases I and II trials with
some patients responding to treatment [4, 47]. Eroltinib has
been combined with carboplatin, docetaxel, paclitaxel, and
the VEGFR inhibitor bevacizumab [4]. Several of these trials
were performed as front line treatment after cytoreductive
surgery demonstrating good clinical and some pathologic
complete response rates, but the response rates do not appear
dramatically different when compared to historic controls for
conventional therapy alone. The pipeline of EGF receptor
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tyrosine kinase inhibitors continues to expand (Table 2). A
randomized Phase II trial of the irreversible EGF receptor
inhibitor CI-1033 was performed in a heavily pretreated
population of women with recurrent ovarian cancer. Two
different oral dose regimens were given (50 mg versus 200 mg
daily) for 21 days. Unfortunately there were no responders to
single agent treatment and no association between baseline
ErbB expression and disease stability [49]. Future studies will
likely see these new agents in combination with cytotoxic and
other biologic agents.

There are many possible reasons to account for the mod-
est responses to EGF receptor inhibitors. The oral tyrosine
kinase inhibitors can be difficult to use in this patient popu-
lation, as advanced disease causes loss of bowel function and
potential unreliable absorption of drug. Another significant
concern is the lack of validated biomarkers for response to
these TKIs. To date, activating mutations in the EGF receptor
kinase domain are the only known predictors of response,
but these mutations have not been fully explored in ovarian
tumors.

The monoclonal antibodies against the EGF receptor
ligand binding domain have some pharmacologic advan-
tages and may perhaps lead to better clinical outcomes
compared to the TKIs. Cetuximab is the prototype MAb
and has been administered alone or in combination with
carboplatin +/— paclitaxel. A Gynecologic Oncology Group
(GOG) Phase II trial of cetuximab and carboplatin in
platinum sensitive recurrent ovarian cancer showed a 35%
response rate (partial and complete responses) in patients
with tumors displaying EGF receptor overexpression docu-
mented by immunohistochemistry (IHC). Of note, 93% of
patients had overexpression of EGF receptor in the primary
archived tumor as determined by immunohistochemistry
[50]. Although it is tempting to conclude that EGF receptor
immunohistochemical analysis of formalin fixed, paraffin
embedded tissue is of predictive value for response rate,
this has been neither quantified nor validated. A Phase
II trial of EMD 72000 (matuzumab) given at 800 mg IV
weekly enrolled 37 women with heavily pretreated platinum
resistant recurrent ovarian cancer. EGF receptor status was
not evaluated for entry criteria or for correlation to clinical
response and there were no objective responses in this
group when matuzumab was used as monotherapy [51].
The authors concluded that matuzumab monotherapy was
not effective for this heavily pretreated group of women.
Panitumumab is a fully humanized EGFR MAb under active
investigation, particularly in lung and colorectal cancer. It is
expected to elicit fewer hypersensitivity reactions than the
chimeric human/mouse cetuximab, but to date, there is little
direct clinical trial emphasis in ovarian cancer.

4.2. Dual Receptor Inhibition. Dual inhibition of ErbB
receptor family members is an interesting approach for
targeted therapy as much of the signaling is generated by
heterodimers, particularly heterodimers of EGF receptor
and ErbB2. Lapatinib is an oral small molecule tyrosine
kinase inhibitor that reversibly inhibits both ErbBl and
ErbB2. It is well tolerated alone and in combination with
chemotherapy as determined by Phase I trials [4, 47].

Our group recently completed a Phase I/II trial of weekly
metronomic carboplatin and paclitaxel in combination with
lapatinib (1250 mg daily) in 25 evaluable patients with
recurrent ovarian cancer. Interval evaluation showed a 50%
response rate (complete and partial response) with the
expected gastrointestinal and hematologic toxicities [52].
The final analysis and publication of this study is pending.
Canertinib (CI-1033) is a newer oral dual TKI which inhibits
autophosphorylation of all ErbB receptors including a highly
tumorigenic, constitutively active mutant form of the EGF
receptor (EGFRVIII) [47]. This agent showed no significant
activity as a single agent in a Phase II study in patients with
recurrent ovarian cancer.

Monoclonal antibody dimerization inhibitors have
shown the most promise in preclinical studies. Per-
tuzumab is the prototype of this inhibitor class and pre-
vents ErbB2/HER2 dimerization with the EGF receptor,
ErbB3/HER3, and ErbB4/HER4 leading to inhibition of
MAP kinase and PI3 kinase signaling. A Phase II trial was
conducted by Gordon et al. that included 123 patients with
recurrent ovarian cancer (the majority platinum resistant).
Two different dosing strategies of pertuzumab as a single
agent demonstrated an overall response rate of 4.3% and
a mean response duration of 18.6 weeks [53]. Only 28
patients had biopsy material accessible for evaluation of
phosphorylated HER2 (pHER2) status by ELISA. Of this
group only 8 patients had pHER2+ tissues with one patient
in this group experiencing a partial response. The 20 other
tumors did not show pHER2 expression and there were
no treatment responses in this group [53]. This suggests
that pHER2 rather than HER2 overexpression may be a
viable biomarker for response although validation studies are
desperately needed. Two ongoing randomized Phase II trials
in relapsed ovarian cancer are evaluating pertuzumab versus
placebo in combination with gemcitabine or carboplatin
[54, 55]. In these trials treatments were tolerated, but clinical
response endpoints have not yet been reached. In an early
analysis of the data, low ErbB3/HER3 mRNA levels as
measured in 122 of the 130 patient archival tumor tissues
appeared to predict clinical benefit in the cohort receiving
gemcitabine + pertuzumab versus the gemcitabine + placebo
group [54]. Final analyses of both pertuzamab trials are
pending. Additional monoclonal antibodies developed to
inhibit EGF receptor family members are listed in Table 2
and studies to test the toxicity and efficacy of these agents
in ovarian cancer are needed.

5. EGF Receptor as a Targeting Molecule
for Imaging Agents and Therapeutics

In addition to therapies directed against the EGF receptor
as discussed previously, this receptor has been used to
deliver imaging agents or therapeutics to tumors. To target
the EGF receptor on tumor cells, EGF receptor ligands or
anti-EGF receptor MAbs are incorporated into complexes
containing a therapeutic or imaging agent. EGF receptor
ligands such as mouse EGF can be conjugated through
its N-terminus without affecting receptor binding ability.
In contrast, human EGF has two additional amino groups



due to internal lysines, and their conjugation can interfere
with receptor binding [56]. For that reason mouse EGF
rather than human EGF is usually employed for EGF
receptor targeting. Novel peptides that specifically bind to
EGF receptor provide alternative targeting moieties. Such
peptides have been identified either through screening of
a virtual peptide library [57], or through screening phage
display libraries [58] for peptides that specifically bind to
the EGF receptor, including lysine-deficient EGF variants
[56]. EGF receptor-targeting moieties are conjugated with
imaging or therapeutic agents such as radionuclides, cancer
chemotherapeutic agents, toxins, RNase, or photosenstiz-
ers. In addition, delivery of oligonucleotides or expression
vectors to either suppress or express certain genes in EGF
receptor-positive cells through the use of viral or nonviral
delivery systems has been reported. Recently more complex
systems have been designed that employ various nanocarriers
as targeted delivery systems.

The simplest form of an EGF receptor-targeting complex
is radiolabelled-EGF, TKI inhibitor, anti-EGF receptor MAD,
or engineered anti-EGF receptor fragments, which can be
used for in vivo imaging or for therapeutic purposes [59, 60].
The targeted radionuclide delivery serves as a cytotoxic agent
by itself and has been employed in boron neutron capture
therapy [61, 62], although optimal therapeutic effects may
not be achieved with stand alone boron therapy [63].
Radionuclides as imaging agents can be used to evaluate
whether tumors are EGF receptor positive and thus likely
to respond to EGF receptor-targeted therapies, or monitor
response to therapy. Imaging techniques used to detect
EGF receptor-expressing tumors in small animals include
positron emission tomography (PET), magnetic resonance
(MR), and single photon emission computed tomography
(SPECT) [59, 60, 64]. These techniques involve positron
emitting radionuclides (such as ''C, '8F, among others), beta
emitters (such as Technetium (°*™Tc) and Lutetium (}”7Lu)),
gamma emitters (such as iodide (!*°I) and Indium ('''In)),
and alpha emitters (such as astatine (*''At) and bismuth
(?12Bi, 21*Bi)) [59, 60, 64, 65]. Numerous preclinical studies
indicate that tumor targeting can be achieved through the
EGF receptor; however, most of these studies did not include
ovarian tumor models.

In addition to radionuclides, cancer chemotherapeu-
tic agents such as cisplatin [66], doxorubicin [67, 68],
carminomycin [69], and tyrosine kinase inhibitors [70, 71]
have been delivered to EGF receptor-positive cells through
conjugation to EGF or to anti-EGF receptor mAb either
directly or through a polymer linker. Numerous toxin
conjugates that inhibit specific molecular targets within
the cell have been delivered to EGF receptor-positive cells
including pseudomonas exotoxin (PE) [72], amanitin [73],
gelonin [74], and ricin chain A [75-78]. Furthermore,
RNases targeted to the EGF receptor were cytotoxic to cancer
cells [79-83] and photosensitizers used for photodynamic
therapy have been successfully targeted to EGF receptor-
positive cells [84-87]. Phase I clinical trials for TP-38
which is a fusion of a mutated PE and the EGF receptor
ligand transforming growth alpha demonstrate that it is well
tolerated with promising clinical response in patients with
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recurring malignant brain tumors [88]. The main challenges
to expanding use of these toxin conjugates in clinical trials
include reducing their immunogenicity by shielding the
toxin portion of the complex, and the need to improve
delivery to solid tumors [72].

EGF receptor targeted approaches have been used for
viral and nonviral gene delivery to cells. As an example
of viral systems, avidin-adenovirus (ADV) that expresses
GFP was functionalized with EGFE, and GFP expression was
enhanced in EGF receptor-overexpressing cells compared
to cells that moderately express EGF receptor or relative
to naked or PEG-ADV [89]. DNA/polycation complexes
have been employed for efficient gene delivery as nonviral
systems. EGF or anti-EGF receptor MAb was conjugated to
cationic polymers such as poly-L-lysine (PLL) [90-95] or
polyethyleneimine (PEI) [96-102] that are positively charged
and thus interact with negatively charged oligonucleotides
or expression vectors. These systems efficiently transfected
tumor cells in a receptor-dependent fashion. A number of
strategies to improve EGF receptor-specific gene transfer
or specificity include PEG or poly-L-glutamic acid (PLG).
Other modifications that enhance EGF receptor gene trans-
fer include incorporation of melittin, a membrane active
peptide [103], or incorporation of PEG to reduce albumin-
caused aggregation [104] and protect the complexes from
serum proteins [105].

New generations of nanocarriers are under intense
investigation as they offer advantages over administering
a drug alone or in a simple conjugated targeting moiety.
Nanocarriers have numerous benefits including their ability
to deliver hydrophobic drugs, increased drug loading, the
potential to load multiple drugs or imaging agents, and the
ability to functionalize nanocarriers with multiple molecules.
Moreover, because of their size these nanocarriers can
passively target tumors through the enhanced retention effect
caused by large gaps between vascular endothelial cells tissue
and defective lymphatic drainage in tumor tissue [106].
In addition to passive targeting, active targeting of cancer
tissue can be achieved using nanocarriers functionalized
with a targeting moiety such as an EGF receptor ligand
or an anti-EGF receptor MAb. Several nanocarriers have
been employed as delivery vehicles for drugs or imaging
agents to target EGF receptor-positive cancers including
liposomes [107-112], gelatin nanoparticles [113, 114], gold
[115], dendrimers [116], and carbon nanotubes [117]. These
nanocarriers specifically bound to and were internalized by
EGF receptor-expressing cancer cells in vitro [109, 115, 116,
118], or preferentially accumulated at tumor sites in vivo
(107, 109, 113].

We successfully targeted carbon nanotubes functional-
ized with EGF and a PEG-fluorescein conjugate to ovarian
tumor cells [118]. Specific EGF receptor targeting and
cellular uptake was achieved by coating the nanotubes with
PL-PEG2000. Furthermore, we find that these vehicles were
trafficked to lysosomes, consistent with the fate of ligand-
activated EGF receptor (Zeineldin, unpublished data). Lyso-
somes provide an acidic environment that is conducive to
release of drugs attached to the delivery vehicle through acid-
labile linkers. This property may allow for the design of
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TasLE 3: Clinical trials combining the EGF receptor antagonists with other signaling pathway inhibitors.

American Society of Clinical Oncology (ASCO) 2009 Annual Meeting Proceedings

Phase I trial of bevacizumab + everolimus + panitumumab in refractory solid tumors [117]

Phase I trial of cetuximab and erlotinib in solid tumors [119]

Phase I trial of dasatinib + cetuximab in advanced solid tumors [120]

therapeutics that will release drugs intracellularly following
EGF receptor targeted internalization. In addition, nanocar-
riers are being developed as efficient drug delivery systems to
improve the cellular uptake of certain therapeutic agents such
as inhibitory RNA or to enhance the therapeutic efficacy of
drugs [106]. A pioneering example of a targeted nanocarrier
that just completed phase I trials is CALAA-01. CALAA-01
is a stabilized cyclodextrin-containing polymer that delivers
inhibitory RNA through transferrin targeting (Calando
Pharmaceuticals: http://www.insertt.com). It is expected that
nanotechnology will lead to innovative platforms for targeted
drug delivery in future therapeutics.

6. Summary and Future Perspectives

There is abundant evidence that EGF receptor activation
drives cellular processes linked to ovarian tumor develop-
ment, tumor cell survival, and metastasis. However, the
overall clinical impact of targeting the EGF receptor and its
dimers in ovarian cancer, either by monoclonal antibodies or
inhibition of the tyrosine kinase domain, has been modest
in unselected women with advanced or recurrent ovarian
cancer. Although the EGF receptor is a genetically validated
target for non-small-cell lung cancer, therapeutic EGF
receptor inhibition results in significant tumor regression in
only 10-20% of patients [121]. One key goal in applying
these agents to ovarian and other cancers will be to identify
patients most likely to benefit from targeted therapies and
to validate biomarkers of response [2, 4]. This type of
preselection is standard in breast cancer, for example, where
the estrogen receptor status of a tumor plays a major role in
therapeutic decision-making strategy.

Clearly, a better understanding of in vivo efficacy,
improved predictive biomarkers of response, and an under-
standing of the molecular “escape” pathways for EGF
receptor antagonists is needed in ovarian cancer. Given
concurrent activation of signaling pathways and pathway
crosstalk in tumor cells, inhibition of multiple pathways
has been proposed as a strategy to improve the impact of
targeted therapeutics [2]. Accordingly, the latest approach
in clinical trials is to combine the EGF receptor antagonists
with inhibitors of other related or downstream signaling
pathways. Phase I clinical trials in solid tumors have been
presented recently at the 2009 American Society of Clinical
Oncology (ASCO) meeting demonstrating this strategy
(Table 3). Agents such as the mTOR inhibitor everolimus
and vascular endothelial growth factor receptor inhibitor
bevicizumab have been combined with panitumumab, and
cetuximab has been combined with the BCR/ABL and src
tyrosine kinase inhibitor. Dose limiting toxicities are similar
as seen in other combined trials. The impact on biologic

endpoints in vivo will be critical to assess the mechanisms
of action of these combined therapies.

Ongoing research continues to identify new and more
effective inhibitors of EGF receptor activity, and novel
approaches to target antitumor therapies via the EGF recep-
tor. Exploiting the EGF receptor to target and deliver drugs
or imaging agents to tumor cells shows promise in preclinical
models and an EGF receptor targeted toxin is in clinical
trials for glioblastoma [88]. There is resurgence of interest in
this strategy based on new generations of nanocarriers with
improved drug delivery characteristics and the potential to
deliver multiple drugs to tumor cells. Although application
of EGF receptor antagonists and EGF receptor targeted
therapies to ovarian cancer treatment lags behind that of
certain other tumors such as lung and colorectal cancers,
lessons learned in using these agents in other diseases are
likely to benefit ovarian cancer patients in the future.
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