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Vitiligo is a complex autoimmune disease characterized by the loss of melanocytes, leading to skin 
depigmentation. Despite advances in understanding its genetic and molecular basis, the precise 
mechanisms driving vitiligo remain elusive. Integrating multiple layers of omics data can provide a 
comprehensive view of disease pathogenesis and identify potential therapeutic targets. The study 
aims to delineate the genetic and molecular mechanisms of vitiligo pathogenesis using an integrative 
multiomics strategy. We focus on exploring the regulatory influence of the JAK/STAT pathway 
on Cathepsin S, a potential therapeutic target in vitiligo. Our GWAS-meta analysis pinpointed 
five druggable genes: ERBB3, RHOH, CDK10, MC1R, and NDUFAF3, and underwent drug target 
exploration and molecular docking. SMR analysis linked CTSS, CTSH, STX8, KIR2DL3, and GRHPR 
to vitiligo through pQTL and eQTL associations. Microarray and single-cell RNA-seq data showed 
differential expression of CTSS and STAT1/3 in vitiligo patients’ blood and skin lesions. Our study offers 
novel perspectives on vitiligo’s genetic and molecular basis, highlighting the JAK/STAT pathway’s role 
in regulating CTSS for antigen processing in melanocytes. Further research is needed to confirm these 
results and assess the therapeutic potential of CTSS and related genes.
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Vitiligo is a prevalent autoimmune disorder characterized by the selective destruction of melanocytes, resulting 
in depigmented patches on the skin. In approximately 0.5–1% of the global population, vitiligo significantly 
impacts the quality of life and psychosocial well-being of affected individuals1,2. Despite extensive research, the 
etiology and pathogenesis of vitiligo remain incompletely understood, and effective treatments are limited3.

Recent advances in genomics and bioinformatics have provided unprecedented opportunities to elucidate the 
complex genetic architecture of vitiligo. Genome-wide association studies (GWAS) have identified numerous 
loci associated with vitiligo susceptibility, shedding light on the genetic underpinnings of the disease4,5. Other 
multiomics techniques, such as transcriptomics6, epigenomics7, and proteomics8, allow for a comprehensive 
investigation of vitiligo at multiple biological levels. Integrating these diverse data types can offer a holistic 
view of the molecular landscape of vitiligo, identifying key pathways and molecular targets involved in disease 
pathogenesis.

In this study, our aim was to utilize integrative multiomics data to uncover the genetic and molecular 
mechanisms underlying vitiligo and explore new therapeutic targets. We conducted a GWAS meta-analysis using 
the latest data from FinnGen, the GWAS Catalog, and the UK Biobank, revealing vitiligo-associated genetic 
loci through FUMA and MAGMA analyses9. Potential therapeutic targets were explored through a series of 
druggability analyses10. Additionally, we employed summary-based Mendelian randomization (SMR) methods11 
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combined with multiple eQTL and pQTL databases to identify pathogenic and protective genes for vitiligo, 
construct a transcription factor regulatory network, and validate findings via chromatin immunoprecipitation 
sequencing (ChIP-seq) data from the ENCODE database12.

To validate the genetically associated genes identified in the GWAS-meta analysis and the causal genes 
discovered through SMR analysis, we integrated microarray and single-cell RNA sequencing data13,14 to 
investigate the differential expression of these genes in the blood and lesional skin of vitiligo patients. Our 
integrative approach highlights the role of the JAK/STAT pathway and its regulation of CTSS (Cathepsin S) in 
vitiligo, providing new insights into disease mechanisms and potential therapeutic targets.

Materials and methods
This study is divided into three interconnected parts, each focusing on different aspects of vitiligo research. The 
detailed design is shown in Fig. 1.

Part 1: GWAS meta-analysis and druggability analysis
We integrated multiple vitiligo GWAS datasets, including those from the GWAS Catalog, UK Biobank, and 
FinnGen, comprising a total of 791,208 individuals and 41,539,347 SNPs. A GWAS meta-analysis was conducted 
to identify genetic loci associated with vitiligo. Subsequent annotation of SNPs to genes was performed via the 
FUMA website, followed by MAGMA analysis to identify genetically associated genes. These genes were then 
subjected to a series of druggability analyses. Part 1 included the following steps:

GWAS meta-analysis
We conducted a GWAS meta-analysis to identify genetic loci associated with vitiligo. METAL15  (   h    t t p  s :  / /  g e  n o  m 
e  . s p h .  u m i c h . e d u / w i k i / M E T A L _ D o c u m e n t a t i o n     ) was used to perform the GWAS meta-analysis. A sample size 
weighted meta-analysis of Z scores (Stouffer’s method) was employed. This method converts the observed effect 
direction and P-value in each study into a signed Z-score: a very negative Z-score indicates a small P-value and 
that the allele is associated with a lower disease risk or quantitative trait level. A large Z-score indicates a small 
P-value and that the allele is associated with a higher disease risk or quantitative trait level. The Z-scores for each 
allele were combined across samples via a weighted sum, where the weights are proportional to the square root 
of the sample size in each study16.

Fig. 1. Study design overview. Part 1: Genome-Wide Association Study (GWAS) Meta-Analysis and 
Druggability Analysis. Part 2: Causal Gene Identification and Regulatory Network Construction. Part 3: 
Transcriptomic Analysis and Mechanistic Exploration.
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FUMA analysis
We used the Functional Mapping and Annotation (FUMA) platform (https://fuma.ctglab.nl/snp2gene) to 
annotate SNPs to genes, with all parameters set to the default thresholds provided by the FUMA website.

MAGMA analysis
We performed Multi-marker Analysis of Genomic Annotation (MAGMA) analysis to identify genetically 
associated genes. MAGMA (v1.10)17 is designed for gene-based and gene-set-based association analyses. This 
approach enables the identification of functional genes or functional modules (such as regulatory pathways) 
associated with the trait of interest and facilitates the discovery of genes linked to multiple small-effect SNPs.

Gene prioritization
We used the Open Targets platform (https://platform.opentargets.org/) to obtain genes with a comprehensive 
score above 0.05. This platform integrates evidence from genetics, genomics, transcriptomics, drugs, animal 
models and scientific literature, facilitating the scoring and ranking of target‒disease associations for the purpose 
of drug target discovery. These genes subsequently intersected with those identified through MAGMA analysis 
and FUMA annotation, leading to the identification of the most druggable target genes from the genetically 
associated genes.

Protein-protein interaction (PPI) analysis
We analyzed the interactions between the intersecting genes identified in "Gene prioritization" section and drug 
targets that have entered phase II or higher clinical trials for vitiligo via the STRING database  (   h t t p s : / / s t r i n g - d 
b . o r g /     ) .  

Pathway enrichment analysis
We considered genes that are linked to existing drug targets in the PPI network constructed via the STRING 
platform as key genes. These key genes may represent new potential drug targets. We used the GeneMANIA 
website (http://genemania.org/) to construct an enrichment analysis network.

Drug target exploration
For genes that are linked to existing drug targets but lack associated therapeutic agents, we explored relevant drugs 
via the Drug Signatures Database (DSigDB, http://dsigdb.tanlab.org/DSigDBv1.0/) 18) and the NetworkAnalyst 
platform19.

Molecular docking
We focused on the relevant drugs identified in "Drug target exploration" section, selecting those that have 
progressed to phase II clinical trials or higher as candidate therapeutic agents for vitiligo. Additionally, molecular 
docking studies included drugs widely used for vitiligo treatment, such as Betamethasone valerate, Clobetasol 
propionate, and Tacrolimus, to provide a basis for comparison. The protein structures were retrieved from the 
Protein Data Bank (PDB) (https://www.rcsb.org/), while the chemical structures of the drugs were obtained from 
PubChem20 (https://pubchem.ncbi.nlm.nih.gov/). Proteins were pre-processed using AutoDockTools21 1.5.6 by 
removing crystallographic water molecules and adding polar hydrogen atoms to prepare them for docking. 
Docking simulations were performed with AutoDock Vina 1.1.2, using a grid box centered on the active domain 
of each protein. The grid box size was set to 30 Å × 30 Å × 30 Å with a grid point distance of 0.05 nm, allowing for 
sufficient molecular movement. Binding free energy (kcal/mol) was employed as the primary evaluation criterion, 
with lower binding energy indicating greater stability of the drug-receptor complex and a higher likelihood of 
interaction. Visualization of docking results was carried out using PyMOL 2.1 and Discovery Studio (DS) V2019 
(Dassault Systèmes Biovia, San Diego, CA, USA). Detailed 2D interaction diagrams highlighted key interaction 
features, including hydrogen bonds and hydrophobic interactions. Comparisons of binding affinities between 
candidate drugs and widely used therapeutic agents were made to evaluate their relative efficacy and specificity.

Part 2: causal gene identification and regulatory network construction
SMR analysis
Using eQTL data from eQTLGen22 and GTEx V823 and pQTL data from deCODE24 and UKB-PPP25, we 
performed summary-data-based Mendelian randomization (SMR) analysis. The analysis was conducted via SMR 
1.3.1 software, with SMR-format files utilized to examine the relationships between gene expression and protein 
expression quantitative trait loci (eQTLs and pQTLs) and vitiligo. We established discovery and validation sets 
to identify genes (proteins) causally related to vitiligo. SMR analysis helps to explore the mechanisms underlying 
vitiligo pathogenesis. The HEIDI test was primarily used to determine whether the phenotype mediated by gene 
SNPs was due to linkage disequilibrium effects26,27.

eQTL-to-pQTL analysis
We conducted eQTL-to-pQTL analysis28 to investigate the relationship between gene expression and protein 
expression.

Protein enrichment analysis and transcription factor prediction
To further investigate the downstream mechanisms and upstream regulatory molecules of these causal genes, 
we conducted protein enrichment analysis and transcription factor prediction. Protein enrichment analysis 
was performed via the GeneMANIA website. Transcription factor prediction was conducted primarily through 
the TF-Target Finder website (https://jingle.shinyapps.io/TF_Target_Finder/), developed by Wang Jin29, which 
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integrates multiple transcription factor databases to facilitate the prediction of transcription factors associated 
with target genes. For the causal genes identified through SMR analysis, their upstream transcription factors were 
required to be found in at least four databases. The transcription factor network was constructed via Cytoscape 
software (v3.10.1 https://cytoscape.org/).

Validation of causal genes and transcription factor regulatory network
To validate the causal genes and the transcription factor regulatory network, we performed transcriptomic 
analysis in Part 3 to verify gene expression levels. Additionally, we utilized transcription factor-related ChIP-seq 
data from the ENCODE database across multiple cell lines to validate the potential binding interactions between 
the predicted transcription factors and their target genes.

Part 3: transcriptomic analysis and mechanistic exploration
Dataset integration and preprocessing
We integrated two peripheral blood microarray datasets from vitiligo patients obtained from the Gene 
Expression Omnibus (GEO) database (GSE90880, GSE80009). Standard preprocessing steps were applied, 
including normalization, batch effect correction, principal component analysis (PCA), and quality control, to 
ensure the reliability of the data.

Differential expression and feature gene analysis
We conducted differential gene expression analysis via the limma package to identify genes that were significantly 
upregulated or downregulated in vitiligo patients compared with healthy controls. Next, we applied least absolute 
shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-
RFE)30 to identify feature genes specific to vitiligo patients by taking the intersection of the results from both 
methods.

Validation and functional analysis of genes from part 1 and part 2
We performed differential expression analysis on the genetically associated genes, causal genes, and transcription 
factors identified in Parts 1 and 2. The results were used to construct ROC curves. The final target genes were 
divided into high- and low-expression groups on the basis of their median expression levels, and subsequent 
coexpression analysis, GO/KEGG enrichment analysis, and GSEA were subsequently conducted.

Single-cell level analysis
For single-cell RNA sequencing analysis, we used data from vitiligo lesions in the GSE203262 dataset. The cells 
were filtered on the basis of the following criteria: the number of genes detected per cell was greater than 300 
and less than 7000, the UMI count per cell was greater than 1000, and the largest 3% of the cells were excluded. 
Additionally, cells whose mitochondrial gene expression was greater than 10% and whose red blood cell gene 
expression was greater than 3% of the total gene expression were removed. Batch effects were corrected via the 
canonical correlation analysis (CCA) method, which primarily followed the Seurat V5 package in R31.

Results
Results of part 1: GWAS meta-analysis and druggability analysis
In Part 1 of our study, we conducted a comprehensive GWAS meta-analysis integrating datasets from the GWAS 
Catalog, UK Biobank, and FinnGen, encompassing a total of 791,208 individuals and 41,539,347 SNPs. The 
results of the meta-analysis revealed 9,558 SNPs strongly associated with vitiligo (P < 5e−08), as shown in Fig. 
2A. Using the FUMA platform with default parameters, we annotated these SNPs, resulting in 406 lead SNPs 
(Supplementary Fig. 1) and 2717 associated genes.

Next, we performed a genome-wide MAGMA analysis, identifying 1302 genetically associated genes and 
893 pathways. We highlight 15 of these pathways in Fig. 2B. From the Open Targets Platform, we obtained 
241 vitiligo-related targets with comprehensive scores above 0.05. By intersecting these targets with the genes 
identified through MAGMA and FUMA, we identified 9 genes with the highest druggability potential (Fig. 2C).

Further analysis of the protein‒protein interactions (PPIs) of these 9 druggable genes with existing vitiligo 
treatment targets via the STRING database revealed 5 key genes that interact with current therapeutic targets, 
underscoring their potential as new drug targets (Supplementary Fig. 1). Figure 2D illustrates the relationships 
between these 5 key genes, existing vitiligo drugs, and their respective targets. Notably, the close association 
between ERBB3 and JAK1/2 suggests that any therapeutic benefit of tyrosine kinase inhibitors may potentially 
be derived from their additional impact on ERBB3. These genes are mapped onto the genome, and their locations 
are highlighted in the Manhattan plot Fig. 2E.

We then conducted pathway enrichment analysis via GeneMANIA, focusing on the 5 identified druggable 
genes. The resulting interaction network and enrichment analysis are depicted in Supplementary Fig. 3. This 
analysis highlighted potential pathways and processes in which these genes may be involved, further supporting 
their relevance in vitiligo pathology.

Notably, among the five druggable genes, the MC1R-targeting drug Afamelanotide appears to function more 
as an adjuvant therapy for vitiligo rather than as a standalone treatment option. Meanwhile, the NDUFAF3-
targeting drug metformin is currently undergoing a phase 2 clinical trial, but no data have been published yet to 
support its efficacy in treating vitiligo. Therefore, our focus shifts to the candidate genes ERBB3 and RHOH, as 
these genes show the strongest associations with existing drug targets. To identify potential drugs targeting these 
genes, we used DSigDB and NetworkAnalyst to intersect and identify related drugs. We subsequently refined 
these findings via the Open Targets Platform and shortlisted three candidate drugs (Fig. 2F). Table 1 presents 
the relationships between the identified candidate drugs and their target genes based on DSigDB. One of the 
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Fig. 2. Comprehensive Analysis of Genome-Wide Association Study (GWAS) Meta-Analysis and Druggability. 
(A) Genome-wide Manhattan plot illustrating the distribution of single nucleotide polymorphism (SNP) 
associations across all chromosomes. (B) Gene set enrichment analysis results from Multi-marker Analysis of 
Genomic Annotation (MAGMA), highlighting pathways associated with vitiligo. (C) Venn diagram showing 
the intersection of genes identified from MAGMA gene-based analysis, the Open Targets Platform, and 
Functional Mapping and Annotation (FUMA) Mapping SNPs to Genes. (D) Schematic representation of the 
relationship between existing vitiligo drugs, their targets, and the five newly identified druggable genes. (E) 
Locations of the five druggable genes on the genome-wide Manhattan plot. (F) Identification of related drugs 
for the five druggable genes using Drug Signatures Database (DSigDB) and Network Analyst, followed by 
further screening through the Open Targets Platform to obtain three candidate drugs. (G) NetworkAnalyst 
visualization of the relationships between the three candidate drugs and the three candidate genes.
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candidate drugs, quercetin, was found to interact with the candidate target RHOH in the DSigDB database, 
whereas NetworkAnalyst indicated an interaction with the candidate target ERBB3 Fig. 2G.

Finally, to validate the effectiveness of these candidate drugs, we performed molecular docking studies, 
focusing on three candidate drugs: Lapatinib, Quercetin, and Chloroquine, which dock with ERBB3 and 
RHOH. The docking results are detailed in Table 2 and Fig. 3. The docking results demonstrated that Tacrolimus 
exhibited the strongest binding affinity to both ERBB3 and RHOH, with binding energies of − 16.867 kcal/mol 
and − 11.908 kcal/mol, respectively. These values were significantly lower than those of other tested compounds, 
highlighting Tacrolimus as a potential strong binder for these targets. Among the candidate drugs identified in 
this study, Lapatinib showed a notable binding affinity to ERBB3 (− 9.036 kcal/mol), outperforming Quercetin 
(− 8.232  kcal/mol) and Chloroquine (− 6.439  kcal/mol). Similarly, Quercetin exhibited the highest binding 
affinity to RHOH (− 6.425  kcal/mol) among the studied compounds, marginally surpassing Betamethasone 
Valerate (− 6.098 kcal/mol) and Clobetasol Propionate (− 5.717 kcal/mol). Overall, the results suggest that the 
candidate small molecules, particularly Lapatinib and Quercetin, exhibit promising binding capabilities when 

Fig. 3. Docking results of the target drugs with their respective proteins. (A) Docking results of ERBB3 with 
Chloroquine. (B) Docking results of ERBB3 with Lapatinib. (C) Docking results of ERBB3 with Quercetin. (D) 
Docking results of RHOH with Quercetin. The figure includes three-dimensional (3D) structures of the target 
proteins and their interactions with the drugs, as well as 2D interaction diagrams highlighting key bonds and 
interaction sites. ERBB3: Receptor tyrosine-protein kinase erbB-3; RHOH: Rho-related GTP-binding protein 
RhoH.

 

Target Uniprot ID Drug PubChem ID Binding energy (kcal/mol)

ERBB3 P21860 Lapatinib 208908 − 9.036

ERBB3 P21860 Quercetin 5280343 − 8.232

ERBB3 P21860 Chloroquine 2719 − 6.439

RHOH Q15669 Quercetin 5280343 − 6.425

ERBB3 P21860 Betamethasone Valerate 16533 − 6.809

ERBB3 P21860 Clobetasol Propionate 32798 − 7.380

ERBB3 P21860 Tacrolimus 445643 − 16.867

RHOH Q15669 Betamethasone Valerate 16533 − 6.098

RHOH Q15669 Clobetasol Propionate 32798 − 5.717

RHOH Q15669 Tacrolimus 445643 − 11.908

Table 2. Docking results of available proteins with candidate small molecules and widely used vitiligo drugs.

 

Drug names P-value Adjusted P-value Genes

Chloroquine 0.005 0.029 ERBB3

Lapatinib 0.002 0.029 ERBB3

Quercetin 0.010 0.034 RHOH

Table 1. Candidate drugs predicted using DSigDB
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compared to some conventional vitiligo treatments. Tacrolimus, however, stands out as the strongest binder 
across both targets, potentially due to its unique structural and pharmacological properties.

Detailed information on the genes identified through MAGMA analysis, genes annotated by FUMA, and 
vitiligo-related genes obtained from the Opentarget platform can be found in the Supplementary Tables S2–S4.

Results of part 2: causal gene identification and regulatory network construction
In Part 2, we utilized SMR analysis to identify causal genes related to vitiligo. The SMR analysis, which used eQTL 
data from eQTLGen and GTEx V8, as well as pQTL data from deCODE and UKB-PPP, is summarized in Fig. 4. 
In the pQTL discovery set (deCODE database), we identified 55 causal proteins (Fig. 4A), of which 23 proteins 
remained causal in the pQTL validation set (UKB-PPP database) (Fig. 4B). Furthermore, the eQTL discovery 
set (eQTLGen) revealed that 9 out of the 23 pQTL causal proteins also had consistent causal relationships at the 
eQTL level (Fig. 4C).

Cross-tissue validation using the eQTL validation set (GTEx V8) in blood and skin confirmed the causal 
relationships of GRHPR, CTSH, CTSS, STX8, and KIR2DL3 (Fig. 4D,E). Notably, CTSS, STX8, and GRHPR 
exhibited causal relationships with vitiligo in both the blood and skin. Figure 4F–K display scatter plots and 
chromosome locus plots for CTSS, STX8, and GRHPR (using GTEx skin eQTL data as examples). The HEIDI 
test results for these analyses showed P-values greater than 0.01, supporting the robustness of our findings.

The eQTL-to-pQTL analysis results, detailed in Table 3, indicated a positive correlation between gene and 
protein expression for these five genes. We constructed a protein‒protein interaction network for these four 
pathogenic genes (proteins) via GeneMANIA to explore shared pathogenic pathways (Fig. 4L).

Additionally, we predicted upstream regulatory transcription factors (TFs) via multiple databases and 
constructed a TF network, revealing that STAT1, STAT3, and CTCF are key TFs that regulate STX8, CTSH, 
and CTSS (Fig. 4M). Validation with ENCODE ChIP-seq data confirmed that STAT1 and STAT3 bind to the 
promoter region of CTSS and the enhancer region of CTSH, whereas CTCF binds to the promoter and enhancer 
regions of CTSH and STX8. Figure 4N shows peak heights in Integrative Genomics Viewer (IGV) software 
(v2.17.3 https://software.broadinstitute.org/software/igv/) with Autoscale, and the global view from IGV is 
provided in the Supplementary Fig. 4.

The results from the SMR analysis using data from deCODE, UKB-PPP, eQTLGen, and GTEx V8 are 
provided in the Supplementary Tables S5–S8.

Results of part 3: transcriptomic analysis and mechanistic exploration
First, we combined and preprocessed the peripheral blood datasets GSE80009 and GSE90880 for vitiligo patients 
and healthy controls. The images before and after batch correction and PCA can be found in the Supplementary 
Figs. 5 and 6.

Figure 5A shows the heatmap of differentially expressed genes between vitiligo patients and healthy controls. 
We performed LASSO regression analysis to identify 13 feature genes (Fig. 5B,C) and SVM-RFE analysis to 
identify 24 feature genes (Fig. 5D,E). By intersecting these results via a Venn diagram, we identified 11 feature 
genes: LILRB4, PPP2R4, PI3, LCN2, MICB, RAP1GAP2, COL13A1, CTSS, STAT3, UTY, and F2R Fig. 5F.

Among these genes, CTSS was identified as a causal gene in Part 2, which was validated through multilevel 
cross-tissue analysis, and STAT3 was identified as an upstream regulatory transcription factor. Additionally, 
these two genes are associated with vitiligo at the genome-wide level: CTSS was one of the 1302 genes with a 
MAGMA analysis P-value less than 0.05 (P = 0.003), and STAT3 was one of the 2717 genes annotated through 
FUMA analysis.

Figure 5G,H shows a violin plot illustrating the differential expression of CTSS and its corresponding 
transcription factor STAT3. The ROC curves for CTSS and STAT3 (Fig. 5I,J) had AUC values greater than 0.85, 
indicating good diagnostic value for vitiligo.

Figure 5K presents a heatmap of single-gene grouping for CTSS, which shows more significant differences 
than those in Fig. 5A. The coexpression heatmap of CTSS with other genes (Fig. 5L) suggested that CTSS and 
STAT3 were coexpressed in the peripheral blood.

Further analysis included GO/KEGG enrichment analysis of the CTSS single-gene groups, which revealed 
15 significant pathways (Fig. 5M). GSEA of the gene sets enriched in the high CTSS expression group (Fig. 5N) 
revealed that the most significant pathway was apoptosis, with the JAK/STAT signaling pathway among the top 
5 pathways.

For single-cell RNA sequencing data analysis of vitiligo lesions (GSE203262), we focused on the differential 
expression of CTSS and its related transcription factors to further dissect potential mechanisms involved in 
vitiligo lesions. Figure 6A shows the UMAP plot of cell clustering, and Fig. 6C presents violin plots for STAT1, 
STAT2, STAT3, IFNGR1, IFNGR2, and CTSS, highlighting their differential expression across different cell types. 
We discovered that CTSS had the highest expression in dendritic cells. Compared with those in nonlesional 
areas, CTSS and STAT2 were highly expressed in melanocytes from lesional areas, whereas IFNGR1 and STAT3 
were highly expressed in dendritic cells from lesional areas.

The standardized expression matrix after batch correction of vitiligo peripheral blood samples, the gene 
lists filtered by LASSO and SVM-RFE, and the ROC curves of the characteristic genes are available in the 
Supplementary Tables S9–S11. Additionally, detailed information on cell markers and differentially expressed 
genes across cell types can be found in the Supplementary Tables S12–S14.

Discussion
This comprehensive multi-omicsmultiomics bioinformatics study offers a novel and in-depth perspective on 
the potential mechanisms and therapeutic targets of vitiligo. Our research integrates several critical analytical 
approaches, including GWAS-meta analysis, MAGMA and FUMA analyses, druggability analysis, SMR analysis, 
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ChIP-seq analysis, microarray data analysis, and single-cell transcriptomic analysis. This integrative approach 
has provided significant insights into the genetic and molecular underpinnings of vitiligo, paving the way for the 
identification of new therapeutic targets and diagnostic markers.

In 2021, two-thirds of FDA-approved drugs had genetic evidence supporting their efficacy32, underscoring 
the increased likelihood of success for genetically supported drug targets in clinical trials33. In Part 1 of our 
study, a comprehensive genome-wide meta-analysis identified nine target genes with significant druggable 
potential and a strong genetic association with vitiligo. Notably, five of these genes have important links to 
existing vitiligo targets. For example, Melanocortin-1 receptor (MC1R) and NDUFAF3 are associated with 
targeted therapies. Afamelanotide, an MC1R agonist, was demonstrated in a multicenter randomized clinical 
trial34 that the combination of afamelanotide implants with NB–UV-B phototherapy led to faster and more 
significant repigmentation than NB–UV-B monotherapy alone.
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In addition to MC1R, we identified other druggable targets, such as ERBB3 and RHOH, that currently lack 
targeted therapies. These targets are closely related to known vitiligo targets, such as JAK1, JAK2, TYK2, SYK, 
TXK, and ITK35. Through exploration of drug target databases and molecular docking studies, we identified 
lapatinib, quercetin, and chloroquine as the most promising therapeutic agents. Notably, quercetin targets both 
ERBB3 and RHOH. Previous studies have shown that quercetin inhibits H2O2-induced oxidative stress, thereby 
reducing melanocyte apoptosis36–38. In addition, the strong binding affinity of Tacrolimus to both ERBB3 and 
RHOH may explain its established clinical efficacy in vitiligo treatment. However, the candidate molecules, 
especially Lapatinib and Quercetin, demonstrated comparable or superior binding affinities to certain 
conventional drugs, indicating their potential as novel therapeutic agents for vitiligo. These results suggest that 
targeting ERBB3 and RHOH with these small molecules may offer a promising strategy for modulating the 
inflammation and immune dysregulation involved in vitiligo.

SMR is a powerful analytical method that leverages genetic variants as instrumental variables to infer causal 
relationships between gene expression and complex traits or diseases. This approach is particularly valuable 
in drug target discovery and the exploration of molecular mechanisms39,40. In our study, we identified five 
causal genes (proteins) through multilevel, cross-tissue SMR analysis. Subsequent chip analysis and single-cell 
transcriptomic validation revealed that only cathepsin S (CTSS) was differentially expressed and could effectively 
distinguish between vitiligo patients and healthy controls. These findings suggest that the CTSS plays a critical 
role in the pathogenesis of vitiligo.

CTSS, a lysosomal cysteine protease belonging to the cathepsin family, is involved in various biological 
processes. Using the KEGG database41 (https://www.kegg.jp/kegg/), we found that CTSS is part of the apoptosis 
pathway (hsa04210) and the antigen processing and presentation pathway (hsa04612), both of which are closely 
related to vitiligo development42,43. This finding aligns with our results, as shown in Fig. 2C's "peptide antigen 
assembly with MHC protein complex" pathway and Fig. 4L's "antigen processing and presentation" pathway. 
Notably, in Fig. 5N's GSEA analysis of the high CTSS expression group, “Apoptosis” emerged as the most 
significantly enriched pathway.

Anes et al.44 systematically summarized the molecular functions of the cathepsin family and reported that 
CTSS is involved not only in the processing of MHC class II molecules but also in MHC class I-mediated antigen 
presentation. Exogenous antigens processed by CTSS in dendritic cells are ultimately presented to CD8+ T 
lymphocytes45. Our single-cell analysis of vitiligo lesions confirmed this finding, showing that CTSS is a marker 
for dendritic cells (Supplementary Table S14) and is differentially expressed in melanocytes, with nonlesional 
melanocytes not expressing CTSS Fig. 6.

Fig. 4. (A) Protein quantitative trait loci (pQTL) discovery set from the deCODE database identified 55 causal 
proteins. (B) pQTL validation set from the UK Biobank Proteomics Project (UKB-PPP) database confirmed 
23 of these proteins as causal. (C) Expression quantitative trait loci (eQTL) discovery set from eQTLGen found 
9 of the 23 pQTL causal proteins with consistent causal relationships at the eQTL level. (D, E) Cross-tissue 
validation using Genotype-Tissue Expression (GTEx) V8 in blood (D) and skin (E) confirmed the causal 
relationships of glyoxylate reductase/hydroxypyruvate reductase (GRHPR), cathepsin H (CTSH), cathepsin 
S (CTSS), syntaxin 8 (STX8), and killer cell immunoglobulin-like receptor 2DL3 (KIR2DL3) with vitiligo. (F, 
H, J) Scatter plots for CTSS, STX8, and GRHPR respectively, using GTEx skin eQTL data as examples. Each 
point represents a SNP, with the x-axis showing its effect size in eQTLs and the y-axis showing its effect size 
in GWAS studies. The red triangle indicates the most significant cis-eQTL SNP, while other SNPs are color-
coded by their linkage disequilibrium (R2) with the top SNP (color mapping shown in the legend). (G, I, K) 
Chromosome locus plots for CTSS, STX8, and GRHPR, respectively. The top panel shows GWAS SNPs as grey 
circles along the chromosome region, while the diamonds represent gene expression probes. Maroon diamonds 
indicate probes passing the Summary-based Mendelian Randomization (SMR) threshold, navy diamonds 
indicate probes not passing the SMR threshold, solid diamonds indicate probes passing the Heterogeneity 
in Dependent Instruments (HEIDI) threshold, and hollow diamonds indicate probes not passing the HEIDI 
threshold. (L) Protein-protein interaction network for the four pathogenic genes (proteins) constructed 
using Gene Multiple Association Network Integration Algorithm (GeneMANIA). (M) Transcription factor 
(TF) prediction network identifying signal transducer and activator of transcription 1 (STAT1), STAT3, and 
CCCTC-binding factor (CTCF) as key TFs regulating STX8, CTSH, and CTSS. (N) Validation of TF binding 
using Encyclopedia of DNA Elements (ENCODE) chromatin immunoprecipitation sequencing (ChIP-seq) 
data showing peak heights in Integrative Genomics Viewer (IGV) software with Autoscale; global IGV view 
provided in the Supplementary Fig. 4.

◂

Gene Beta se P value

CTSS 0.590179 0.028878 7.79E−93

GRHPR 0.30415 0.01029 5.11E−192

CTSH 1.60615 0.022812 3.58E−104

STX8 0.150016 0.021597 3.75E−12

KIR2DL3 1.47521 0.23654 4.47E−10

Table 3. Association between eQTL and pQTL of causally-related genes
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In addition to exploring the downstream pathways mediated by CTSS, such as apoptosis and antigen 
presentation, we investigated the upstream mechanisms responsible for its differential expression. Using 
transcription factor prediction and ChIP-seq analysis, we identified STAT3 as the sole transcription factor that 
is differentially expressed both in peripheral blood and in lesional dendritic cells. STAT3 is also a characteristic 
gene of vitiligo, with AUC values for both STAT3 and CTSS molecules exceeding 0.85, indicating its potential 
diagnostic value. Additionally, we discovered that IFNGR1, an upstream molecule of STAT346, is differentially 
expressed in lesional dendritic cells. While STAT1 and STAT2 were not found to be characteristic genes of vitiligo 
in peripheral blood, GSEA in the high CTSS expression group revealed enrichment of the JAK/STAT pathway. 
Furthermore, STAT1 and STAT2 were expressed at higher levels in lesional melanocytes than in nonlesional 
melanocytes. These results collectively suggest that the JAK/STAT pathway may serve as an upstream regulatory 
mechanism for CTSS, playing a crucial role in the pathogenesis of vitiligo.
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Fig. 5. (A) Heatmap of differentially expressed genes (DEGs) between vitiligo patients and healthy controls. 
(B, C) Feature genes identified by Least Absolute Shrinkage and Selection Operator (LASSO) regression 
analysis, showing 13 feature genes. (D, E) Feature genes identified by Support Vector Machine-Recursive 
Feature Elimination (SVM-RFE) analysis, showing 24 feature genes. (F) Venn diagram of intersecting feature 
genes from LASSO and SVM-RFE analyses, identifying 11 common feature genes: leukocyte immunoglobulin-
like receptor subfamily B member 4 (LILRB4), protein phosphatase 2 regulatory subunit 4 (PPP2R4), peptidase 
inhibitor 3 (PI3), lipocalin 2 (LCN2), MHC class I polypeptide-related sequence B (MICB), RAP1 GTPase 
activating protein 2 (RAP1GAP2), collagen type XIII alpha 1 chain (COL13A1), CTSS, STAT3, ubiquitously 
transcribed tetratricopeptide repeat gene on the Y chromosome (UTY), and coagulation factor II receptor 
(F2R). (G, H) Violin plots showing the differential expression of CTSS and its transcription factor STAT3 
between vitiligo patients and healthy controls. (I, J) Receiver operating characteristic (ROC) curves for 
CTSS and STAT3, indicating diagnostic value with area under the curve (AUC) values greater than 0.85. 
(K) Heatmap of single-gene grouping for CTSS, highlighting significant differences in gene expression. (L) 
Co-expression heatmap of CTSS with other genes, indicating co-expression with STAT3 in peripheral blood. 
(M) Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of CTSS 
single-gene grouping, showing the 15 significant pathways. (N) Gene Set Enrichment Analysis (GSEA) of gene 
sets enriched in the high CTSS expression group, highlighting apoptosis and Janus kinase/signal transducer 
and activator of transcription (JAK/STAT) signaling pathways among the top 5 pathways.

◂

Fig. 6. (A) Uniform Manifold Approximation and Projection (UMAP) plot of cell clustering from single-cell 
RNA sequencing (scRNA-seq) data of vitiligo lesions (GSE203262), showing the distribution of different cell 
types. (B) CTSS exhibits the highest expression levels in dendritic cells, followed by melanocytes, making it a 
cellular marker for dendritic cells. (C) Violin plots for STAT1, STAT2, STAT3, interferon gamma receptor 1 
(IFNGR1), IFNGR2, and CTSS, illustrating their differential expression across different cell types in vitiligo 
lesions. Detailed information on cell markers and differentially expressed genes across cell types can be found 
in the Supplementary Tables S12–S14.

 

Scientific Reports |         (2025) 15:2245 11| https://doi.org/10.1038/s41598-025-86134-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


While our comprehensive multiomics bioinformatics study provides significant insights into the potential 
mechanisms and therapeutic targets of vitiligo, several limitations must be acknowledged. First, the integration 
of various data types, including GWAS-meta analysis, MAGMA and FUMA analyses, druggability analysis, 
SMR analysis, ChIP-seq analysis, microarray data analysis, and single-cell transcriptomic analysis, introduces 
potential biases and technical variability. Each analytical method has inherent limitations, and the combination 
of these methods can sometimes amplify these issues. Second, our study relies heavily on publicly available 
databases and previously published data. The majority of the datasets used are derived from populations of 
European descent, potentially limiting the generalizability of our findings to other ethnic groups. Third, 
although we identified several promising therapeutic targets and pathways, our study is primarily computational 
and predictive. Experimental validation in vitro and in vivo is essential to confirm the biological relevance and 
therapeutic potential of these targets and pathways. Specifically, the therapeutic effects of quercetin on vitiligo, as 
well as the role of the JAK/STAT pathway in regulating CTSS involvement in antigen presentation and apoptosis 
pathways, require further experimental verification.

Conclusion
In this comprehensive multiomics bioinformatics study, we have provided novel insights into the genetic and 
molecular mechanisms underlying vitiligo. Through the integration of GWAS-meta analysis, MAGMA and 
FUMA analyses, druggability analysis, SMR analysis, ChIP-seq analysis, microarray data analysis, and single-cell 
transcriptomic analysis, we identified several potential therapeutic targets and pathways, including CTSS and the 
JAK/STAT pathway. Our findings highlight the critical role of CTSS in the pathogenesis of vitiligo and suggest 
that the JAK/STAT pathway is a key regulatory mechanism. Additionally, we proposed quercetin as a potential 
therapeutic agent on the basis of molecular docking studies. While our study is primarily computational, it lays 
a solid foundation for future experimental research and clinical trials aimed at developing new treatments for 
vitiligo.

Data availability
All original data sources are provided in Supplementary Table S1. An explanation of key bioinformatics terms 
used in this study is available in Supplementary Table S15. The protein and compound structures used for the 
molecular docking part of this study have been deposited in the Mendeley Data repository and can be accessed 
at https://data.mendeley.com/datasets/pwfvn273j4/1. All other data are included in this article and its  s u p p l e m 
e n t a r y information files. For further inquiries, please contact the corresponding author at zja7691@163.com.
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