
Heliyon 8 (2022) e12562
Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon
Research article
Carbon price prediction based on multi-factor MEEMD-LSTM model

Yang Min *, Zhu Shuzhen, Li Wuwei

Glorious Sun School of Business and Management, Donghua University, Shanghai 200051, China
A R T I C L E I N F O

Keywords:
Carbon price prediction
Multi-factor
MEEMD
LSTM
Production rule
* Corresponding author.
E-mail address: 2488187592@qq.com (Y. Min).

https://doi.org/10.1016/j.heliyon.2022.e12562
Received 11 January 2022; Received in revised for
2405-8440/© 2022 The Author(s). Published by Els
nc-nd/4.0/).
A B S T R A C T

China’s national carbon market has already become the largest carbon market in the world. The prediction of
carbon price is extremely important for policymakers and market participants. Therefore, the prediction of carbon
price in China is of great significance. To achieve a better prediction effect, a multi-factor hybrid model combined
with modified ensemble empirical mode decomposition (MEEMD) and long short-term memory (LSTM) neural
network optimized by machine reasoning system on the basis of production rules is proposed in this paper. In
addition to historical carbon price, other factors, such as energy, macroeconomy, environmental condition,
temperature, exchange rate which affect carbon price fluctuation, are formed as multi-factor. The change char-
acteristics of carbon price time series data and other associated factors are extracted in the carbon price pre-
diction. The MEEMD is used to decompose data which is taken as potential input variables into LSTM neural
network for prediction and the machine reasoning system based on production rules can automatically search and
optimize the parameters of LSTM to further improve the prediction results. The experimental results demonstrate
that the proposed method has better prediction effect, robustness and adaptability than the LSTM model without
MEEMD decomposition, the single factor MEEMD-LSTM method and other benchmark models. Overall it seems
that the proposed method is an advanced approach for predicting the non-stationary and non-linear carbon price
time series.
1. Introduction

The International Energy Agency pointed out that due to the factors,
such as the sharp rise in natural gas price, the Covid-19 pandemic and the
Ukraine crisis, the global carbon dioxide emissions in the energy sector
have reached 36.3 billion tons and grown 6 percent year on year to an all-
time high in 2021. The carbon emission trading market (hereinafter
referred to as the carbon market), which is the product of the Kyoto
Protocol and considerable a powerful mean to global warming, encour-
ages all participants to save energy. 24 carbon markets in four continents
have been launched by the end of 2019 and more and more governments
of countries and regions have seen carbon market as the most important
tool to deal with globe climate change. As the largest carbon emitter,
China has successively launched pilot carbon markets in Beijing, Tianjin,
Shanghai, Chongqing and Shenzhen these five cities and three carbon
provinces, Guangdong, Hubei and Fujian. With nearly eight years of
development, the cumulative trading volume and turnover exceeded 179
million tons and 7.661 billion ¥Yuan respectively by the end of June
2019. The carbon price varies greatly among carbon markets and fluc-
tuates frequently and violently because of different natural conditions
and local policies. In September 2020, President Xi Jinping announced at
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the general debate of the 75th session of the United Nations General
Assembly that China aims to peak carbon dioxide emissions before 2030
and achieves carbon neutrality before 2060. To meet the target of carbon
peak and carbon neutrality, China’ national carbon market started
trading on July 16, 2021 and it has already replaced the European
Union’s carbon trading market (EU ETS) to the world’s largest because of
covering over 4 billion metric tons of carbon dioxide a year now. Pre-
diction carbon price accurately cannot only provide a practical guidance
for policy-makers to develop an efficient stabilization mechanism for
carbon price but also give participants and investors at home and abroad
to have a better understanding of the national carbon market [1].
Therefore, how to improve the prediction accuracy has become an urgent
issue for Chinese researchers.

However, carbon marketers in China are policy-based artificial mar-
kets which cause carbon prices are influenced by internal mechanism,
such as the historical carbon price, trading volume and external envi-
ronmental heterogeneity, for example, macro-economy, energy prices [2,
3] by chevalier and Tan who used different models to prove that there is a
strong connection between macro-economy, energy price and carbon
price, temperature is regarded as one of the influencing factors using HP
Filter by Guo [4], Air Quality index (AQI) proved by Li who believed AQI
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and carbon price affected each other with a negative direction [5], ex-
change rate factors confirmed by LV et al [6] and prices in other carbon
markets. All of these cause the nonsationary and nonlinear characteristics
of carbon price which make it a big challenge for researchers to predict
carbon price accurately.

The primary focus of this paper is to put forward a new model to
better the prediction performance by taking the carbon price data in
Hubei, Shanghai, Beijing, Guangdong and Shenzhen. The reminder of
this paper is organized as follows. Section 2 contains a brief literature
review and drawbacks. Section 3 introduce MEEMD algorithm, LSTM
model and explains the framework of the proposed hybrid prediction
approach. Section 4 preprocesses the selected data and the effectiveness
and robustness of the proposed model is tested by empirical analysis.
Section 5 is about the conclusions and future work.

2. Literature review

According to the existing literatures, there are various methods
adopted for carbon price prediction. These methods are mainly divided
into two categories: statistical methods and artificial network methods.

Before the rapid development of computers, the most common pre-
diction method for carbon pricing was statistical models, Byun, Maria
and Ji used ARMA and GARCH models to predict carbon price on the
basis of the assumptions that the carbon price time series is normal and
linear [7, 8, 9]. In reality, however, the carbon price time series has the
non-stationary and non-linear characteristics, the traditional statistical
models usually cannot deal with this kind of situation effectively pointed
out by Feng et al. [10].

To get better prediction effect and with the development of machine
learning, more and more intelligent algorithms, such as Support Vector
Machine (SVM), Markov and Back propagation (BP) neural networks
have been introduced to predict complex time series data. They do not
need to satisfy statistical hypothesizes and can sensitively capture the
hidden nonlinear features in time series. Their strong parallel processing
information ability of self-adaptive and self-learning greatly improves the
accuracy of prediction results that make up for the shortcomings of the
traditional statistical model. Tang et al found the prediction of mixed
models with different methods usually has been better than that of a
single model [10]. After that, some scholars used combination models to
predict carbon price and got a better prediction result. For example,
Zhang (2016), Yao (2017), Jiang (2018) and Hu, (2018) proposed
combination models Grey-Markov, EMD-SVM and PSO-BP respectively.
Their studies all discovered that the prediction accuracy of proposed
combination model significantly improved by compared with single
model GARCH, Markov, SVM and BP [11, 12, 13, 14].

However, the intelligent algorithms above belong to static network
and are difficult to fully reflect the dynamic financial markets in reality
which leads room for improvement. Deep learning is considered to be
much closer to artificial intelligence because it simulates the mechanism
of the human brain, thus making the prediction more accurate. Long
Short-term memory (LSTM) is an efficient and recursive iterated neural
network of Deep learning [15]. It developed from the Recurrent Neural
Network (RNN) meet the requirements of dynamic system because of its
memory which means the input of the previous step can be fed back to
the input of the next step. Therefore, in recent years, LSTM has been
applied to some financial markets other than Language System, Image
Recognition and Machine Translation, such as Exchange Rate of Euro
against US dollar prediction [16], Stock Price prediction [17] and
Commodity Price prediction [18]. These literatures all proved that LSTM
had better predictive ability than the existing methods, that is, LSTM is
feasible and effective in financial market prediction field.

This study will establish a carbon price prediction model based on a
LSTM neural network. However, the application of LSTM has two diffi-
culties. One problem is how to select the appropriate input, that is, single
variable or multi-variable. As mentioned above, there are many factors
that affect the fluctuation of carbon price, however, almost all existing
2

researches only use the historical carbon price data as the input without
considering the possibilities of using multi-variables which will cause
errors of prediction results.

The other problem is that LSTM is a typical black box algorithm with
many parameters, how can we ensure the optimal selection of them. To
improve the parameter settings of the LSTM, researchers have suggested
combining. symbol learning, interpretable algorithms with deep learning
to form production rules that can provide prior knowledge and solve the
learning problems of small samples in a dynamic environment, leading to
better expression ability, adaptability and interpretability of the LSTM
[19, 20, 21]. Srivastava et al [22] and He et al [23] proposed that the
working mechanism and performance of neural network prediction has
changed by different topology, control gate and parameter settings of the
LSTM. Chen et al [24], Zhang and Zhao [25] and Pei and Zhu [26] argued
that the settings and adjustment of parameters, like network layers,
neurons and time window, would affect the prediction effect of the
LSTM.

Last but not least, empirical mode decomposition (EMD) has been
proven to be an effective preprocessing approach to improve the pre-
diction accuracy by decompose the nonlinear original time series data
into subseries with high stability and regularity [27]. EMD is
self-adaptive. It does not need artificially set any basis function, but de-
composes the signal on the basis of its own time-scale characteristics
which can effectively solve the problem about strong randomicity of
carbon price, reflecting all information as much as possible. It was first
successfully applied to natural science and engineering fields such as
bioengineering, image processing and atmospheric science, then intro-
duced into the economic field which indicates EMD has a good perfor-
mance in data analysis and interpretation. In 2012, EMD was first used in
the analysis of carbon price by Zhu [28]. Since then, EMD was utilized
more often in data preprocess and got good results. But there is still room
for improvement, because mode mixing is quite easily appear in EMD
algorithm. To solve this problem, Wu et al. proposed EEMD (ensemble
empirical mode decompostition) [29] and Yeh et al. proposed CEEMD
(complementary ensemble empirical mode decompostition). These two
methods can suppress mode aliasing to a certain extent, but increasing
computing time and pseudo-components [30]. On the basis of these
above EMD family algorithm, Zheng et al (2013) built a modified
ensemble EMD (MEEMD)which uses the singalrandomness based on
permutation entropy (PE) presented by Bandt to detech high-frequency
or intermittent signals [31].. To sum up, MEEMD not only suppresses
the mode mixing caused by EMD, but also effectively avoids the unnec-
essary integrated average in EEMD and CEEMD, reducing the amount of
calculation and reconstruction error.

In this paper, we propose a multi-factor hybrid prediction approach
which is incorporated MEEMD and LSTM including the internal factors
(e.g. opening price, highest price, lowest price and trading volume) and
the external factors (e.g. CSI300 index, coal price, crude oil price, carbon
price in different carbon markets (e.g. EU carbon price, Shanghai carbon
price, Guangdong carbon price, Shenzhen carbon price), AQI, daily
temperature and the rate of Euro against renminbi [RMB]). Taking the
Hubei carbon price as the research object, the Root Mean Square Error
(RMSE), mean absolute error (MAE) and the coefficient of determination
(R2) are introduced to evaluate the prediction effect and the machine
reasoning system is used to automatically search and optimize the pa-
rameters of LSTM. To prove the robust of the proposed model, the price
of Shanghai and Guangdong are taken as the complementary cases. To
confirm the validity of the proposed model, it is compared with LSTM
and single-factor MEEMD-LSTM. To further improve the prediction effect
of the proposed model, a reasoning machine system on automatically
searching production rules is used.

The main four innovations and contributions of this paper are listed
below:

(a) The application of MEEMD algorithm not only restrain the mode
mixing of EMD algorithm effectively, but also decrease the
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reconstruction error and the computation amount of EEMD and
CEEMD, leading to better prediction effect.

(b) Taking into account the historical carbon price data and other
influencing factors as the input of LSTM neural network to get a
multi-variable combination model to predict carbon price might
provide a new idea.

(c) A reasoning machine system on automatically searching produc-
tion rules is utilized to realize the automatic adjustment and
optimization of parameters of the LSTM model which helps
further improve the prediction accuracy.

(d) Data from three carbon markets, Hubei, Shanghai and Guangdong
are selected for empirical cases by using relevant models to prove
the effectiveness and robustness of the proposed model with two
error evaluation indicators RMSE, MAE and R2.
3. Research method

3.1. Construction of the carbon price prediction model

Our model is composed of a main control module and three process
modules: the MEEMD multi-scale decomposition, the LSTM multivari-
able prediction and the machine reasoning system. The multi-scale
decomposition by MEEMD can maintain the inherent characteristics of
the original data and reduce the noise effectively which helps to ensure
the effectiveness of the input data.

We entered data for the carbon price and its influencing factors which
are collected from the China Carbon Trading Website (http://www.tanj
iaoyi.com) into the LSTM as variables to form a multi-factor prediction
model. We calculated the prediction index errors that represent the
correlation degree between different variables and the prediction of
carbon price and gave priority to the variables with a higher correlation
degree. We then sorted the prediction errors of various multivariable
combinations, based on the evaluation indexes, to obtain the optimal
Figure 1. Flow chart of the multi
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result. With the support of the machine reasoning system based on pro-
duction rules, we identified optimized parameters to further improve
accuracy of LSTM. Figure 1 shows the overall flow chart of the multi-
factor MEEMD-LSTM carbon price prediction model.
3.2. The MEEMD method

Two additional sets of white noise of equal amplitude and standard
deviant and parallel to the original signal with opposite directions are
added into the original data time series. Then the new signal is composed
by EEMD and EMD in order of priority. MEEMD not only makes the
Intrinsic Mode Functions (IMFs) have clearer, more complete and inde-
pendent physical meanings, but also lowers the amount of calculation
and reduces the reconstruction error. For a non-stationary signal S(t), the
MEEMD algorithm includes six steps:

1. A pair of white noise niðtÞ and �niðtÞ is added to the original signals
S(t), as shown in formula (1)

Sþi ðtÞ ¼ SðtÞ þ ainiðtÞ
S�i ðtÞ ¼ SðtÞ � ainiðtÞ

(1)

where niðtÞ is the added white noise; ai is the amplitude of added
noise,i ¼ 1;2; :::Ne andNe is the number of pairs of added white noise.

2. SiðtÞ and �SiðtÞ are decomposed by CEEMD to obtain p number of
IMFs Components fIþip ðtÞg and fI�ip ðtÞgði ¼ 1; 2; :::NeÞ

3. Average fIþip ðtÞg and fI�ip ðtÞg obtain I1ðtÞ ¼ 1
2N

PNe
i¼1½Iþip ðtÞþI�ip ðtÞ� and

check whether IpðtÞ is an abnormal component.
4. If IpðtÞ is an abnormal component, return to step1 until IpðtÞ is no

longer an abnormal component
5. Separate the first composed P-1 number of components from the

original data, as shown in formula (2)
-factor MEEMD-LSTM model.

http://www.tanjiaoyi.com
http://www.tanjiaoyi.com


Figure 2. Unit structure of the LSTM.
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rðtÞ¼ SðtÞ �
Xp�1

j¼1
IjðtÞ (2)
6. Use EMD to decompose rðtÞ and arrange the IMFs components from
high to low frequency.

3.3. LSTM model

LSTMmodel, first proposed by Hochreiter in 1997, is an improvement
of recurrent neural network (RNN) by effectively solving gradient van-
ishing and gradient exploding. LSTM model introduce a mechanism
called “gate” which can selectively add new information and forget the
previous information, thus reducing the sequence length and the number
of grid layers [32]. Figure 2 shows the unit structure of the LSTM.

The flow of the LSTM are firstly according to the previous external
state ht�1 and the current input xt , calculate the gates of forget, input and
output, secondly activate forget gate ft , input gate it and gt to update the
current internal state of the memory unit ct and lastly activate output gate
ot and output the external state ht and internal state ct to the next unit at
the same time. The specific calculation formulas for each “gate” are
shown in formula (3).

ft ¼ σ
�
Uf xt þ Vf ht�1 þ bf

�
it ¼ σðUixt þ Viht�1 þ biÞ
gt ¼ φ

�
Ugxt þ Vght�1 þ bg

�
Ct ¼ Ct�1 � ft þ it � gt
ht ¼ ot � φðCtÞ

(3)

In formula (3), Uf ;Vf ;Ui;Vi;Ug and Vg are the state-state weight ma-
trix and state-output weight matrix of forget gate, input gate and output
gate; bf ; bi and bg are the bias matrices of the forgetting gate, input gate
and output gate respectively; � is the Hadamard product and σð ⋅Þ and
φð ⋅Þ are activation functions of sigmoid and tanh respectively.

3.4. Machine reasoning method based on production rules

The production rule is one of the most widely used knowledge rep-
resentation methods in artificial intelligence [33]. The main advantages
of machine reasoning system based on production rules are the simplicity
of expressing uncertain knowledge, natural expression, clear control
structure, strong modularity and good consistency. The steps are as
follows:
Table 1. The abbreviations of the dataset.

Item Abbreviation Item

Hubei carbon price HB Shanghai carbon price

Guangdong carbon price GD Shenzhen carbon price

Internal factor IF CSI 300 Index

Thermal coal price coal Exchange rate of EURO against

Air quality index AQI
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1. Initialize the integrated database and input the known facts of
problems to be resolved in the database;

2. Check the rule base to see if there are any unused rules whose pre-
mises can match the known facts in the integrated database. If so,
then select; otherwise, go to step 5;

3. Execute the selected rule and mark it. If we obtain conclusions, then
store them in the integrated database as new facts. If we obtain op-
erations, then execute them;

4. Check whether the solution of the problem is included in the inte-
grated database. If included, then the problem has been solved and
the solving process is over. Otherwise, go to step 2;

5. When there are still unused rules in the rule base and none of them
can match the existing facts in the integrated database, then more
known facts are required. If more known facts can be provided, go to
step 2. Otherwise, the problem has no solution and the solving process
is terminated;

6. If there are no more unused rules in the knowledge base, the problem
has no solution, and the solving process is also terminated.

3.5. Prediction error indexes

In this paper, we use RMSE, MAE and R2 to evaluate the prediction
effect. The calculation formulas are shown in (4), 5 and (6).

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðbyi � yiÞ2

n

vuuut
(4)

MAE¼ 1
N
¼

XN
i¼1

jyt � byt j (5)

where byi is the predicted value and yi is the actual value

R2 ¼1� SSres
SStot

(6)

where SSres ¼
Pn

i¼1ðbyi � yiÞ2 andSStot ¼ Pn
i¼1ðyi � yiÞ2

RMSE reflects the deviation between the predicted and actual value,
the smaller the RMSE, the higher the prediction accuracy. We used R2 to
show the correlation between the input and output variables. In general,
when R2 is less than 0.85, there is little correlation between the input and
output variables. On the contrary, when R2 is greater than or equal to
0.85, there is correlation between the input and output variables.
Furthermore when R2 is greater than 0.95, there is strong correlation
between input and output variables. Therefore, when the prediction re-
sults had smaller RMSE values and larger R2 values, we considered that
the prediction model was effective.

4. Data description and preprocessing

4.1. Data description

The dataset consist of carbon prices and other influencing factors
from energy price, macroecnomic, temperature, environmental con-
dition and exchange rate. The carbon prices in China and EU ETS are
all available from the Tanpaifang website. Oil price (Brent Crude
Abbreviation Item Abbreviation

SH Beijing carbon price BJ

SZ EU ETS carbon price EU

HZ300 Crude oil price oil

RMB HL Temperature TEMP



Table 2. Proportion of three carbon markets.

Item Hubei Shanghai Guangdong Total

Trading volume 32.4% 7.2% 32.1% 71.7%

Turnover 28.8% 8.8% 27.1% 64.7%

Table 3a. Results of the LSTM.and EMD-LSTM.

Different
combination
of inputs

LSTM EMD-LSTM

RMSE MAE R2 RMSE MAE R2

HB 0.1262 0.0862 0.5554 0.1200 0.0886 0.5935

HBIF 0.0324 0.0127 0.9414 0.0302 0.0109 0.9472

HBAQI 0.1022 0.0683 0.6128 0.0827 0.0600 0.7322

HBHZ300 0.0973 0.0731 0.6278 0.0772 0.0431 0.7528

HBTemp 0.0910 0.0609 0.6541 0.0714 0.0424 0.7549

HBHL 0.0709 0.0597 0.8186 0.0624 0.0405 0.8055

HBEU 0.1088 0.0798 0.6018 0.0869 0.0643 0.7327

HBSH 0.0977 0.0708 0.6237 0.0760 0.0442 0.7953

HBGD 0.0867 0.0641 0.6609 0.0677 0.0495 0.8099

HBSZ 0.1021 0.0773 0.6191 0.0825 0.0598 0.7491

HBBJ 0.0980 0.0705 0.6229 0.0975 0.0674 0.6516

HBoil 0.1065 0.0806 0.6111 0.0842 0.0621 0.7483

HBcoal 0.1124 0.0651 0.5932 0.0986 0.0611 0.6281

Table 3b. Results of the EEMD-LSTM and MEEMD-LSTM.

Different EEMD-LSTM MEEMD-LSTM
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price) and coal price (daily continuous thermal coal futures settle-
ment price) are utilized to represent energy price. This paper selects
Shanghai-Shenzhen 300 index to stand for the macroeconomic.
Because of the correlation between the carbon price in EU ETS and
the carbon price in China, this paper chooses exchange rate of EURO
against RMB. All the above are obtained in Wind database. As for the
temperature and environmental condition, this paper selects the daily
average temperature and air quality index in Hubei, Shanghai, Bei-
jing, Guangdong and Shenzhen which are available in Tianqi2345
website.

Table 1 shows the abbreviations of the dataset.
The economic structure and industrialization degree of Hubei Prov-

ince approximate the current average level of China and the trading
volume, turnover and other indicators of Hubei carbon market are in a
leading position. We took 1561 daily closing price data from April 2,
2014 to November 13, 2020 as a case for empirical analysis. Every
sample set is divided into a training set and a test set. The first 1356 data
before 2020 were used to train the model and the rest data during 2020
were used to test the prediction performance of the model. To prove the
robustness of the model, carbon price of Shanghai and Guangdong
market are selected as supplementary cases. The reason for choosing
these above two markets is that the trading volume, turnover of
Guangdong carbon market are second only to Hubei carbon market and
the trading platform and settlement system of national carbonmarket has
been built in Shanghai. As shown in Table 2, the trading volume and
turnover of the three carbon markets have reached to 71.7% of the total
trading volume and 64.7% of the total turnover of the carbon markets. So
to a great extent, these three carbon markets can represent the overall
situation of China’s carbon market. Figure 3 shows the price fluctuation
trend and partial autocorrelation analysis results of the three carbon
markets. The graphs indicate the carbon price is nonlinearity, complexity
and non-stationarity.

5.2. Data preprocessing

Because the dimensions of the variables were inconsistent, we
normalized all samples first which made the step size of each parameter
decrease with the gradient corresponding to its order of magnitude, this
was done in order to improve the convergence speed and the prediction
accuracy of the model. Formula (7) shows the computational process of
normalization.
Figure 3. Price fluctuation trend and partial autocorrelation analysis results of
the three carbon markets.
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x¼ xi � xmin

xmax � xmin
(7)
where xi is theith sample value, xmin is the minimum value of the sample,
andxmax is the maximum value of the sample. According to formula (7),
the data of all prediction indices are from 0 to 1. After normalization, the
time series of the carbon closing price and the internal and external
factors were considered to be candidate input variables which were dealt
with by LSTM to determine the correlation degree, (i.e., to what extent
they influenced the target variable).

5. Empirical study

5.1. Case one-Hubei carbon price prediction

We set the learning rate, the time step, number of neurons, batch-size
and the time window to 0.001, 5, 100, 100 and 2 respectively. Tables 3a
and 3b shows the results of the LSTM with and without MEEMD
decomposition.

1) For the same group of input variables, the RMSE value of the LSTM
after MEEMD was smaller than that of the LSTM only, that is, the
prediction of the MEEMD-LSTM was better than that of the LSTM.
Because the carbon price time series was nonlinear and decomposed
into several stationary components which led to higher accuracy.
combination
of inputs

RMSE MAE R2 RMSE MAE R2

HB 0.0974 0.0662 0.6416 0.0817 0.0590 0.6957

HBIF 0.0258 0.0130 0.9488 0.0277 0.0114 0.9687

HBAQI 0.0817 0.0590 0.8570 0.0743 0.0424 0.7925

HBHZ300 0.0768 0.0548 0.7548 0.0761 0.0570 0.7889

HBTemp 0.0786 0.0674 0.7294 0.0822 0.0710 0.6660

HBHL 0.0617 0.0487 0.8626 0.0611 0.0459 0.8735

HBEU 0.0754 0.0527 0.7698 0.0378 0.0258 0.9422

HBSH 0.0702 0.0501 0.8021 0.0684 0.0474 0.8483

HBGD 0.0695 0.0496 0.8301 0.0692 0.0558 0.8371

HBSZ 0.0792 0.0692 0.7411 0.0642 0.0494 0.8518

HBBJ 0.0956 0.0612 0.6282 0.0940 0.0741 0.6453

HBoil 0.0682 0.0472 0.8544 0.0578 0.0444 0.8826

HBcoal 0.0791 0.0562 0.7412 0.0619 0.0492 0.8697

Three conclusions can be drawn from these results.



Table 4. Results of the multivariable MEEMD-LSTM.

Variables Prediction evaluation index

HBtotal RMSE R2

0.0208 0.9847

Table 5a. Results of the LSTM.and EMD-LSTM.

Different
combination
of inputs

LSTM EMD-LSTM

RMSE MAE R2 RMSE MAE R2

SH 0.1331 0.1050 0.7861 0.1201 0.0987 0.8092

SHIF 0.0948 0.0731 0.8526 0.0752 0.0682 0.8901

SHAQI 0.1146 0.0839 0.8184 0.1006 0.0724 0.8226

SHHZ300 0.0851 0.0646 0.8689 0.0820 0.0700 0.8721

SHTemp 0.0683 0.0119 0.8946 0.065 0.0631 0.9002

SHHL 0.1050 0.0694 0.8195 0.0928 0.0701 0.8320

SHEU 0.1627 0.1280 0.7946 0.1539 0.1155 0.7982

SHcoal 0.1531 0.1012 0.8014 0.1429 0.1007 0.7998

SHGD 0.1554 0.1104 0.8071 0.1414 0.0994 0.8020

SHSZ 0.1196 0.0988 0.8161 0.0948 0.0731 0.8284

SHBJ 0.1378 0.0903 0.7824 0.1196 0.0988 0.8261

SHoil 0.0926 0.0605 0.8899 0.0842 0.0642 0.8396

SHHB 0.1539 0.1155 0.8082 0.1102 0.0911 0.8148

Table 5b. Results of the EEMD-LSTM and MEEMD-LSTM.

Different
combination
of inputs

EEMD-LSTM MEEMD-LSTM

RMSE MAE R2 RMSE MAE R2

SH 0.0988 0.0774 0.8892 0.0951 0.0143 0.8514

SHIF 0.0638 0.0132 0.9021 0.0564 0.0686 0.9303

SHAQI 0.0928 0.0728 0.8921 0.0819 0.0621 0.8756

SHHZ300 0.0708 0.0167 0.8992 0.0658 0.0466 0.9029

SHTemp 0.0689 0.0149 0.9001 0.0641 0.0270 0.9093

SHHL 0.0823 0.0407 0.8998 0.0866 0.0681 0.8669

SHEU 0.0750 0.0348 0.8548 0.0900 0.0719 0.8616

SHcoal 0.0745 0.0434 0.8821 0.0836 0.0621 0.8789

SHGD 0.0928 0.0754 0.8932 0.1091 0.0838 0.8119

SHSZ 0.0821 0.0402 0.8998 0.0914 0.0638 0.8554

SHBJ 0.0872 0.0601 0.8953 0.0890 0.0605 0.8632

SHoil 0.0913 0.0712 0.8948 0.0846 0.0646 0.8638

HBcoal 0.0729 0.0331 0.9029 0.0619 0.0492 0.8697

Table 6. Results of the multivariable MEEMD-LSTM.

Variables Prediction evaluation index

SHtotal RMSE R2

0.0470 0.9489
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2) The input of two variables, Hubei daily temperature and the Beijing
closing carbon price, made the value of RMSE higher than that of
single variable HB, and their R2 values were 0.666 and 0.6453
respectively which were far less than 0.85, indicating no correlation
between the two input variables and the target variable.

3) Other than the two variables in Eq. (2), the input of the other vari-
ables decreased the value of RMSE and increased the value of R2 close
to or more than 0.85 which indicated higher correlation. Ordering the
R2 from largest to smallest, the internal factors (e.g. opening price,
maximum price, minimum price and trading volume) had the highest
correlation with the carbon closing price, followed by the EU carbon
price, crude oil price, the exchange rate, coal price, the Shenzhen
carbon price, the Shanghai carbon price, the Guangdong carbon price,
AQI, CSI300 index.

Based on this analysis, all factors listed in Eq. (3) were taken as
multivariable input, named HBtotal, into the MEEMD-LSTM model to
predict the carbon price. Table 4 presents the results of the multivariable
MEEMD-LSTM model.

As shown in Tables 3a and 3b, with the increase of the effective input
variables, the value of RMSE was significantly smaller while the value of
R2 increased. Therefore, the prediction effect of the multivariable
MEEMD-LSTM model was significantly improved compared with that of
the single-variable LSTM model.

The parameter selection of LSTM also affected the final prediction
with the help of a reasoning machine system on automatically searching
production rules, it changed the number of neurons, batch size and the
time window and investigated the change of the prediction error value,
to realize the automatic adjustment and optimization of parameters of
the LSTM model.

Figure 4 respectively shows the changes of the RMSE and the R2 value
when one variable is changed and the other two variables remain un-
changed. In conclusion, when the batch size, neurons number and the
time windowwere 60, 40 and 2, the RMSE value was the smallest and the
R2 value was the largest.

5.2. Case two-Shanghai carbon price prediction

The actual data of Shanghai carbon market and the external and in-
ternal factors affecting its fluctuation are taken as the candidate inputs of
the model. Tables 5a and 5b shows the performance comparison results
of MEEMD-LSTM and LSTM model based on different combination of
inputs.

In Table 6, all relevant effective variables are named as SHtotal as input
into MEEMD-LSTM which has minimum RMSE and maximum R2.

Figure 5 respectively shows the changes of the RMSE and the R2 value
when one variable is changed and the other two variables remain
unchanged.
Figure 4. Impact of the batch size, neurons number and
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From Tables 5 and 6 and Figure 5, the same analysis can be obtained
as Case 1.

5.3. Case three-Guangdong carbon price prediction

The actual data of Guangdong carbon market and the external and
internal factors affecting its fluctuation are taken as the candidate inputs
of the model. Tables 7a and 7b shows the performance comparison
time window on prediction of Hubei carbon price.



Figure 5. Impact of the batch size, neurons number and time window on prediction of Shanghai carbon price.

Table7a. Results of the LSTM.and EMD-LSTM

Different
combination
of inputs

LSTM EMD-LSTM

RMSE MAE R2 RMSE MAE R2

GD 0.1090 0.0387 0.8504 0.1024 0.0361 0.8401

GDIF 0.0502 0.0211 0.9683 0.0498 0.0302 0.8998

GDAQI 0.1045 0.0379 0.8565 0.0982 0.0359 0.8545

GDHZ300 0.0743 0.0287 0.9087 0.0741 0.0342 0.8610

GDTemp 0.0625 0.0265 0.8884 0.0611 0.0333 0.8702

GDHL 0.0742 0.0277 0.9088 0.0724 0.0348 0.8667

GDEU 0.1007 0.0317 0.8653 0.0892 0.0352 0.8577

GDcoal 0.1140 0.0556 0.8471 0.0912 0.0350 0.8566

GDSH 0.0938 0.0385 0.8728 0.0900 0.0349 0.8567

GDSZ 0.0910 0.0360 0.8787 0.0871 0.0352 0.8580

GDBJ 0.0975 0.0392 0.8661 0.0912 0.0361 0.8600

GDoil 0.0876 0.0343 0.8801 0.0800 0.0320 0.8623

GDHB 0.1120 0.0501 0.8481 0.1101 0.0372 0.8589

Table7b. Results of the EEMD-LSTM and MEEMD-LSTM

Different
combination
of inputs

EEMD-LSTM MEEMD-LSTM

RMSE MAE R2 RMSE MAE R2

GD 0.0964 0.0342 0.8589 0.0924 0.0330 0.8685

GDIF 0.0496 0.0300 0.9002 0.0492 0.0299 0.9631

GDAQI 0.0888 0.0352 0.8551 0.0823 0.0407 0.8894

GDHZ300 0.0738 0.0338 0.8612 0.0734 0.0487 0.9101

GDTemp 0.0589 0.0325 0.8734 0.0542 0.0079 0.9347

GDHL 0.0719 0.0354 0.8676 0.0706 0.0483 0.9138

GDEU 0.0790 0.0376 0.8669 0.0670 0.0321 0.9296

GDcoal 0.0898 0.0350 0.8544 0.0861 0.0462 0.8858

GDSH 0.0855 0.0341 0.8601 0.0873 0.0661 0.8809

GDSZ 0.0700 0.0331 0.8631 0.0743 0.0453 0.9086

GDBJ 0.0900 0.0357 0.8592 0.0911 0.0424 0.8787

GDoil 0.0789 0.0377 08669 0.0755 0.0414 0.8994

GDHB 0.1020 0.0387 0.8422 0.1050 0.0502 0.8564
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results of MEEMD-LSTM and LSTM model based on different combina-
tion of inputs.

In Table 8, all relevant effective variables are named as GDtotal as
input into MEEMD-LSTM which has minimum RMSE and maximum R2.
Table 8. Results of the multivariable MEEMD-LSTM.

Variables Prediction evaluation index

GDtotal RMSE R2

0.0384 0.9739
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Figure 6 respectively shows the changes of the RMSE and the R2 value
when one variable is changed and the other two variables remain
unchanged.

From Tables 7 and 8 and Figure 6, the same analysis can be obtained
as Case 1 and Case 2.

Figure 7 shows the optimum prediction curve and the actual value
curve using the improved multivariable data-driven MEEMD-LSTM
model on Hubei carbon market, Shanghai carbon market
and Guangdong carbon market respectively. These results demon-
strated that the model proposed in this paper has high prediction
accuracy.



Figure 6. Impact of the batch size, neurons number and time window on prediction of Guangdong Carbon price.

Figure 7. Optimum prediction results of the improved multivariable data-driven MEEMD-LSTM model.

Y. Min et al. Heliyon 8 (2022) e12562
6. Conclusions and suggestions for future work

In order to effectively improve the prediction accuracy of carbon
price in China, we proposed a multi-factor MEEMD-LSTM carbon price
prediction method. We selected data for Hubei, Shanghai and Guang-
dong carbon prices to verify the effectiveness of the presented model
compared with the prediction performance of LSTM model without
MEEMD and single-factor MEEMD-LSTM model.

The empirical results showed that 1) the MEEMD decomposed the
time series data into some more regular components, to reduce noise,
better describe the physical characteristics which improve the prediction
accuracy. 2) compared with single-factor input, multi-factor input can
improve the prediction accuracy, but it is notable that including more
variables did not affect the prediction accuracy, only when the input
information was effective and highly correlated to the target variable,
could the prediction effect be improved. 3) the machine reasoning system
based on production rules could automatically select and optimize the
LSTM parameters, leading to better accuracy and adaptability. 4) in all
three cases, we found that our proposed model performed much better
than other models and in general it avoided the blindness of parameter
selection, effectively improved the prediction accuracy and had better
robustness and adaptability.

In the future, we can enhance the proposed model by selecting
more relevant influencing factors, like carbon policy, to build a factor
system for carbon price prediction. Another direction is to develop an
intelligent prediction support and decision system for carbon policy
makers and carbon market participants on the basis of prediction
results.
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