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We numerically show that the statistical properties of the shortest path on critical percolation clusters are
consistent with the ones predicted for Schramm-Loewner evolution (SLE) curves for = 1.04 % 0.02. The
shortest path results from a global optimization process. To identify it, one needs to explore an entire area.
Establishing a relation with SLE permits to generate curves statistically equivalent to the shortest path froma
Brownian motion. We numerically analyze the winding angle, the left passage probability, and the driving
function of the shortest path and compare them to the distributions predicted for SLE curves with the same
fractal dimension. The consistency with SLE opens the possibility of using a solid theoretical framework to
describe the shortest path and it raises relevant questions regarding conformal invariance and domain
Markov properties, which we also discuss.

ercolation was first introduced by Flory to describe the gelation of polymers' and later studied in the context

of physics by Broadbent and Hammersley. This model is considered the paradigm of connectivity and has

been extensively applied in several different contexts, such as, conductor-insulator or superconductor-
conductor transitions, flow through porous media, sol-gel transitions, random resistor network, epidemic spread-
ing, and resilience of network-like structures®'°. In the lattice version, lattice elements (either sites or bonds) are
occupied with probability p, and a continuous phase transition is observed at a critical probability p., where for p
< po as the correlation function decays exponentially, all clusters are of exponentially small size, and for p > p,
there is a spanning cluster. At p,, the spanning cluster is fractal'’. In this article we focus on the shortest path,
defined as the minimum number of lattice elements which belong to the spanning cluster and connect two
opposite borders of the lattice'>". The shortest path is related with the geometry of the spanning cluster'"*"".
Thus, studies of the shortest path resonate in several different fields. For example, the shortest path is used in
models of hopping conductivity to compute the decay exponent for superlocalization in fractal objects'®"’. It is
also considered in the study of flow through porous media to estimate the breakthrough time in oil recovery® and
to compute the hydraulic path of flows through rock fractures®. The shortest path has even been analyzed in cold
atoms experiments to study the breakdown of superfluidity®>. However, despite its relevance, the fractal dimen-
sion of the shortest path is among the few critical exponents in two-dimensional percolation that are not known
exactly***.

Let us consider critical site percolation on the triangular lattice, in a two-dimensional strip geometry of width L,
and height L, (L, > L,), in units of lattice sites, see Fig. 1. Each site is occupied with probability p = p.. See
Methods for details on the algorithm used to generate the curves. The largest cluster spans the lattice with non-
zero probability, and the average shortest path length (), defined as the number of sites in the path, scales as
Iy~ ij"‘ , where d,,;, is the shortest path fractal dimension and its best estimation is d,,;, = 1.13077(2)***. There
have been several attempts to compute exactly this fractal dimension®-**. Most tentatives were based on scaling
relations, conformal invariance, and Coulomb gas theory. But the existing conjectures have all been ruled out by
precise numerical calculations. For example, Ziff computed the critical exponent g; of the scaling function of the
pair-connectiveness function in percolation using conformal invariance arguments™. g; has been conjectured to
be related to the fractal dimension of the shortest path®'. In turn Deng ef al. conjectured a relation between d;,
and the Coulomb gas coupling for the random-cluster model®*. Both conjectures were discarded by the latest
numerical estimates of d,,,;;,****. Thence, as recognized by Schramm in his list of open problems, a solid theory for
the shortest path is still considered one of the major unresolved questions in percolation™.

Impressive progress has recently been made in the field of critical lattice models using the Schramm-Loewner
Evolution theory (SLE). In SLE, random critical curves are parametrized by a single parameter «, related to the
diffusivity of Brownian motion. Let us consider the case of a non self-touching curve, like the shortest path,
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Figure 1 | A spanning cluster on the triangular lattice in a strip of vertical size L, = 512. The shortest path is in red and all the other sites belonging to the

spanning cluster are in blue.

defined in the upper half plane M, that starts at the origin and grows
towards infinity. Under a proper choice of parameters, it is possible
to define a unique conformal map g, from H\y[0,t], i.e. the upper
half-plane minus the curve y[0, t], onto H such that there exists a
continuous real function &, and g; satisfies the stochastic Loewner
differential equation,

0g:(z) _ 2
ot glz)—¢&°

with gy(z) = z. The function &, is called driving function. For details
about the conformal map g; see Supplementary Information online.
We define chordal SLE,. as the random collection of conformal maps
in the upper-half plane that satisfy the Loewner equation with a
driving function & =+/kB;, where B, is a one-dimensional
Brownian motion.

With the value of x, one can obtain exactly several probability
distributions for the curve, allowing to compute, for example, cross-
ing probabilities and critical exponents®*~*®. SLE has been shown to
describe many conformally invariant scaling limits of interfaces of
two-dimensional critical models. In particular, SLE¢ has first been
conjectured® and later proved on the triangular lattice® to describe
the hull in critical percolation®’. SLE has been successfully used to
compute rigorously other critical exponents of percolation-related
objects®*' as, for example, the order parameter exponent f3, the
correlation length exponent v, and the susceptibility exponent .
More recently, the probability distributions of the hulls of the Ising
model** and of the Loop Erased Random Walks***%*” were com-
puted exactly. Therefore, it is legitimate to ask if the SLE techniques
can help solving the long standing problem of the fractal dimension
of the shortest path.

Also, a possible description of the physical process through SLE
gives interesting insights in new ways of generating the shortest path
curves. Once SLE, is established, the value of « suffices to generate,
from only a Brownian motion, curves having the same statistical
properties as the shortest path**~*. This can be very useful in the case
of problems involving optimization processes like the shortest path,
watersheds®, or spin glass problems®™*, as traditional algorithms
imply the exploration of large areas.

In this article, we will show that the numerical results are consist-
ent with SLE predictions with ¥ = 1.04 = 0.02. SLE,. curves have a

(1)

fractal dimension dj related to x by df = min (2,1 + g) %, From the

estimate of the fractal dimension of the shortest path, one deduces
the value of the diffusion coefficient x corresponding to an SLE curve
of same fractal dimension; Ko = 1.0462 = 0.0002. In what follows,
we compute three different estimates of x using different analyses
and compare them to K. In particular we consider the variance of
the winding angle®>*%*’, the left passage probability*, and the stat-
istics of the driving function®>*. All estimates are in agreement with
the one predicted from the fractal dimension, and therefore consti-
tute a strong numerical evidence for the possibility of an SLE descrip-
tion of the shortest path.

Results

Winding angle. The first result related to SLE deals with the winding
angle. For each shortest path curve we have a discrete set of points z;,
called edges, on the lattice. The winding angle 0; at each point z; can
be computed iteratively as 0;+; = 0; + o;, where o; is the turning
angle between the two consecutive points z; and z;;. Duplantier and
Saleur computed the probability distribution of the winding angle for
random curves using conformal invariance and Coulomb gas
techniques®. According to their result®, for SLE,, the winding
angle along all the edges of the curve exhibits a Gaussian
distribution of variance

(0)—(0)°

where b is a constant and L, is the vertical lattice size”. Therefore, 1c/4
corresponds to the slope of (6°) against In(L,). Figure 2 shows the
results for the winding angle of the shortest path. The distribution is a
Gaussian with a variance consistent with Eq. (2). The estimate
Kwinding = 1.046 = 0.004 that we get from fitting the data with Eq.
(2) is in agreement with the value deduced from the fractal
dimension.

=b+7In(L,). @)

Left passage probability. In the following, we work with chordal
SLE. Therefore, one has to conformally map the original curves
into the upper half plane. This is done using an inverse Schwarz-
Christoffel transformation (see Supplementary Information online).

The shortest path splits the domain into two parts: the left and the
right parts of the curve. The curve is said to pass at the left of a given

| 4:5495 | DOI: 10.1038/srep05495

2



20t 7
k=1.046(4) . T
ALS <02 AT
N PN
- pe: e - *
V1.0 3 Q.‘O‘l 4 +
05,7 00§24 0121 8
1 1 1 e
o' 102 100 10t

Figure 2 | Variance of the winding angle against the lattice size L,. The
analysis has been done for L, ranging from 16 to 16384. The statistics are
computed over 10* samples. The error bars are smaller than the symbol
size. By fitting the results with Eq. (2), one gets Kinding = 1.046 = 0.004. In
the inset, the probability distribution of the winding angle along the curve
is compared to the predicted Gaussian distribution, drawn in green, of
variance 7ln( y) with k = 1.046 and L, = 16384.

point if this point belongs to the right side of the curve, see inset of
Fig. 3b. For chordal SLE,; curves, Schramm has computed the prob-
ability of a curve to go to the left of a given point z = Re", where Rand
¢ are the polar coordinates of z**. For a chordal SLE, curve in H, the
probability P,(¢) that it passes to the left of Re” depends only on ¢
and is given by Schramm’s formula,

P =5+ ey um (5.

where I' is the Gamma function and ,F is the Gauss hypergeometric
function. We define a set of sample points S in H for which we
numerically compute the probability P(z) that the curve passes to
the left of these points. To estimate x, we minimize the weighted
mean square deviation Q(x) defined as,

O FS e W

ze$
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where |§| is the cardinality of the set S, and AP(z)* is defined as
ap(eyt — PAI=P()
N;—1

For a lattice size of L, = 16384, the minimum of the mean square
deviation is observed for xypp = 1.04 = 0.02 as shown in Fig. 3. This
value is in agreement with the estimate of k obtained from the fractal

dimension and the winding angle.

, where Nj is the number of samples®.
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Direct SLE. The winding angle and left passage analyses are indirect
measurements of k. Therefore we also test the properties of the
driving function directly in order to see if it corresponds to a
Brownian motion with the expected value of k.

As for the left passage probability, we consider the chordal curves
in the upper half plane, starting at the origin and growing towards
infinity. We want to compute the driving function &; underlying the
process. For that, we numerically solve Eq. (1) by considering the
driving function to be constant within a small time interval Jt, thus
one obtains the slit map equation*®’,

&(z) =&+ (z—¢&)*+40t. (5)
We start with ¢, = 0 at t+ = 0 and the initial points of the curve
{20=0,2)=z1,..., zy =2y}, and map recursively all the points

{ zi - "*1} i > 0, of the curve to the points
{Zz+1 gtx( 1+i) N (zil\f_l)} through the map 81> sending
Z7' to the real axis by setting ¢,=Re{zi"'} and

5ti=ti—ti,1=(Im{zf_l})z/él in Eq. (5). Re{} and Imf{} are

respectively the real and imaginary parts. In the case of SLE, the
extracted driving function gives a Brownian motion of variance «.
The direct SLE test consists in verifying that the driving function is a
Brownian motion and compute its variance <f?> —(&,)? to obtain
the value of k. The variance should behave as (&7) — (&) =kt

We extract the driving function &; of the shortest path curves using
the slit map, Eq. (5). Figure 4a shows the variance of the driving
function as a function of the Loewner time f. We observe a linear
scaling of the variance with ¢. The local slope x 451 5(#) is shown in the
inset of Fig. 4a. In Fig. 4b, we plot the mean correlation function C(t)
= (C(t, 1)), of the increments ¢, of the driving function, where the
correlation function is defined as,

<5£f+15§t> - <5ét+1><5ét>

8, )= 08407 ((02) — (08))

One sees that the correlation function vanishes after a few time steps.
The initial decay is due to the finite lattice spacing, which introduces
short range correlations. But in the continuum limit, the process is
Markovian, with a correlation function dropping immediately to
zero. In the inset of Fig. 4b, we show the probability distribution of
the increments for different t. This distribution is well fitted by a
Gaussian, in agreement with the hypothesis of a Brownian driving
function. From this result and the estimates of the diffusion coef-
ficient computed for several lattice sizes, we obtain x = 0.9 % 0.2.

C(t,7)=

0.75 1

0.5
o/n

Figure 3 | Left passage probability test. (a) Weighted mean square deviation Q(x) as a function of k, for L, = 16384. The vertical blue line corresponds

the minimum of Q(k), and the green vertical line is a guide to the eye at k =

Kfract- The minimum of the mean square deviation is at k; pp = 1.038 = 0.019.

The light blue area corresponds to the error bar on the value of k7 pp. We define the error bar AQ for the minimum of Q(x) using the fourth moment of

the binomial distribution. The error Ak is defined such that Q(x * Ak) —

[—0.1L, 0.1L] X

AQ = Q(x) + AQ. We considered 400 points, regularly spaced in
[0.15L,, 0.35L,] which are then mapped through the inverse Schwarz-Christoffel mapping into H”. (b) Computed left passage

probability as a function of ¢/n for R € [0.70, 0.75] and x = 1.038. The blue line is a guide to the eye of Schramm’s formula (3) for x = 1.038.
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Figure 4 | Driving function computed using the slit map algorithm.
(a) Mean square deviation of the driving function < étz> — (&) asa
function of the Loewner time #. The diffusion coefficient x is given by the
slope of the curve. In the inset we see the local slope x4s1£(#). The thick
green line is a guide to the eye corresponding to kgsi g = 0.92. (b) Plot of
the correlation C(t, t) given by Eq. (6), and averaged over 50 time steps.
The averaged value is denoted C(7). In the inset are shown the probability
distributions of the driving function for three different Loewner times
t =12X107% t, =3.7 X 10%and t; = 9.95 X 107°. The solid lines

1 St
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are guides to the eye of the form P(&,) =
fori=1,2,3.

We note that the numerical results obtained with the direct SLE
method are less precise than with the other analyses and, therefore,
characterized by larger error bars, as is well known in the literat-
ure®">**%2-64 The result we have obtained for « is in agreement with
the ones obtained with the fractal dimension, winding angle, and left-
passage probability.

We also extracted the driving function of the curves in dipolar
space, i.e. defining the curves as starting from the origin and growing
in the strip (see Supplementary Information online). We also
obtained a value of x consistent with the fractal dimension.

Discussion

All tests are consistent with SLE predictions. The numerical results
obtained with the winding angle, left-passage, and direct SLE ana-
lyses are in agreement with the latest value of the fractal dimension.
Being SLE implies that the shortest path fulfills two properties: con-
formal invariance and domain Markov property (DMP). Thus, the
agreement with SLE predictions lends strong arguments in favor of
conformal invariance and DMP of the shortest path.

The DMP is related to the evolution of the curve in the domain of
definition. Let us consider the shortest path y defined in a domain D,
starting in a and ending in b. We take a point ¢ on the shortest path
different from a and b. Then if the DMP holds, one would have that

Po(y[a.bl|vla.d) =Poyaq (v[e.b)), (7)

where y[c, b] is the shortest path starting in ¢ and ending in b in the
domain D except the curve y[a, ], denoted as D\y[a,c|, and Pp and
Pmyja,q are the probabilities in the domains D and D\y[a,c] respect-
ively. One can classify the models as the ones for which DMP holds
already on the lattice, and the ones for which it holds only in the

scaling limit. Many classical models, like the percolation hulls, the
LERW, or the Ising model® for example, belong to the first case. But
some two-dimensional spin glass models with quenched disorder®*
are believed to only fulfill DMP in the scaling limit. Our numerical
results suggest that, for the shortest path, DMP holds at least in the
scaling limit. Further studies should be done to test the validity of
DMP on finite lattices.

The second result we can expect if SLE is established for the short-
est path is conformal invariance. Conformal invariance, being a
powerful tool to compute critical exponents, is of interest for the
study of the shortest path. Conformal invariance, associated to
Coulomb gas theory for example, could be useful to develop a field
theoretical approach of the shortest path. There is no proof of con-
formal invariance of the shortest path, but our numerical results give
strong support to this hypothesis. For example, the expression of the
winding angle is based on conformal invariance and agrees with the
predictions based on the fractal dimension. Also the left passage
probabilities and the direct SLE measurements have been performed
on curves conformally mapped to the upper half plane and gave
consistent results. In addition, we obtained the same estimate of x
by extracting the driving function in chordal and dipolar space.
However, even if the scaling limit would not be conformally invari-
ant, our results suggest that one could still apply SLE techniques to
the study of this problem, as some SLE techniques have also been
used to study off-critical and especially non conformal problems®"°.

Analyzing the shortest path in terms of an SLE process would give
a deeper understanding of probability distributions of the shortest
path, allowing to compute more quantities, like for example the
hitting probability distribution of the shortest path on the upper
boundary segment”’.

Methods

We generate random site percolation configurations on a rectangular lattice L, X L,
with triangular mesh, where L, and L, are respectively the horizontal and vertical
lattice sizes, in units of lattice sites. The sites of the lattice are occupied randomly with

1
the critical probability p. = 3 If the configuration percolates, we obtain the spanning

cluster and identify the shortest path between the top and bottom layers using a
burning method>'*'°. In short, we burn the spanning cluster from the bottom sites,
indexing the sites by the first time they have been reached, and stop the burning when
we reach for the first time the top line. We then start a second burning from the sites
on the top line that have been reached by the first burning, burning only sites with
lower index. With this procedure, we identify all shortest paths from the bottom line
to the top one. We randomly choose with uniform probability one of these paths. The
results presented in the paper are for L, ranging from 16 to 16384 and an aspect ratio
of L/L, = 1/2. We generated 10000 samples and discarded the paths touching the
vertical borders.
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