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Abstract
The purpose of this review was to assess the advancement of applications for physiologically based pharmacokinetic (PBPK)
modeling in various therapeutic areas. We conducted a PubMed search, and 166 articles published between 2012 and 2018 on
FDA-approved drug products were selected for further review. Qualifying publications were summarized according to thera-
peutic area, medication(s) studied, pharmacokinetic model type utilized, simulator program used, and the applications of that
modeling. The results showed a 13-fold increase in the number of papers published from 2012 to 2018, with the largest
proportion of articles dedicated to the areas of infectious diseases, oncology, and neurology, and application extensions including
prediction of drug-drug interactions due to metabolism and/or transporter-mediated effects and understanding drug kinetics in
special populations. In addition, we profiled several high-impact studies whose results were used to guide package insert
information and formulate dose recommendations. These results show that while utilization of PBPK modeling has drastically
increased over the past several years, regulatory support, lack of easy-to-use systems for clinicians, and challenges with model
validation remainmajor challenges for the widespread adoption of this practice in institutional and ambulatory settings. However,
PBPK modeling will continue to be a useful tool in the future to assess therapeutic drug monitoring and the growing field of
personalized medicine.

Keywords Physiologically based pharmacokinetic modeling . PBPKmodeling applications . Modeling and simulation . In vitro
in vivo extrapolation . Personalizedmedicine

Introduction

Our healthcare system is transitioning towards a patient-
centered healthcare model, in which therapies are selected
on the basis of a patient’s needs and preferences and optimized
according to patient-specific factors including age, bodymass,
allergies, and disease states. In this model, healthcare pro-
viders, including physicians, nurses, and pharmacists, work

together to provide care, ensure patient safety, reduce medica-
tion errors, and improve clinical outcomes. Physicians must
individualize therapies to a patient by examining factors such
as age, disease states, allergies, and concurrent medications.
Pharmacists also play a crucial role in the identification, reso-
lution, and prevention of medication-related problems such as
medication overuse and underutilization, as well as the pre-
vention and detection of adverse drug reactions and adverse
effects.

An adverse drug reaction (ADR) is defined as “any re-
sponse to a drug that is noxious and unintended, and that
occurs at doses used for prophylaxis, diagnosis, or therapy,
excluding failure to accomplish the intended purpose” [1].
ADRs are distinguishable from adverse effects, which are
“expected, well-known reactions resulting in little or no
change in patient management”. Medication adverse effects
and adverse drug reactions are studied during the drug approv-
al process and data on their frequency and severity are includ-
ed in the product’s package insert, while those detected after a
product has reached the market can be reported to the FDA
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through the MedWatch program. This allows providers to ef-
fectively communicate known reactions to patients and pro-
vide appropriate monitoring. An additional consideration for
providers is the medication adverse effects which are pro-
voked by a patient’s comorbidities (e.g., renal and hepatic
impairment) and interactions with other medications. Drug-
drug interactions (DDIs) lead to changes in the pharmacoki-
netics of treatments, resulting in unintended ADRs, an in-
crease in adverse effects, or reduced efficacy. This is especial-
ly important with narrow therapeutic index drugs such as war-
farin, lithium, and digoxin, because even minimal changes in
drug concentration or metabolism can lead to the drug not
being effective or can cause toxic and potentially irreversible
adverse effects. Conversely, exploitation of drug interactions
may be beneficial in some treatment regimens; for instance,
utilization of cobicistat (an enzyme inhibitor) to increase the
exposure of atazanavir or darunavir in the treatment of human
immunodeficiency virus (HIV). Although the pharmacist acts
as a late gatekeeper for drug efficacy and safety, utilization of
pharmacokinetic/pharmacodynamic (PK/PD) modeling tools
may be helpful to facilitate the decision-making process in all
levels of the patient-centered healthcare model.

Physiologically based pharmacokinetic and pharmacody-
namic (PBPK/PD) modeling has become more prevalent to
aid with the prevention of adverse drug events, drug-drug
interactions, and drug-disease interactions. PBPK modeling
is a mechanistic mathematical modeling technique that inte-
grates drug (substance) and system (physiology) information
that is used to predict pharmacokinetic characteristics and dis-
position for drugs [2, 3]. Differential equations are implement-
ed in a number of commercial software packages (e.g.,
Simcyp® Population-Based Simulator, GastroPlus®, and
PK-SIM®) [4]. PBPK models provide many advantages over
static models, which typically use one or two in vitro param-
eters to predict specific human PK parameters, overall drug
exposures, or magnitude of drug-drug interactions (DDI)
without considering time-varying changes [5]. In contrast,
PBPK models are able to assess complex clinical scenarios,
such as potential DDIs due to time-dependent metabolism or
transporter changes, pharmacokinetics in special populations
with notable physiological differences (e.g., pediatrics, geriat-
rics, and pregnancy), bioequivalence, food effects, and
pharmacogenomics [6]. By incorporating drug-specific and
system-specific parameters from different sources, these
models are able to estimate PK parameters, further our under-
standing of a compound’s properties, and predict plasma and
tissue concentration-time profiles.

PBPK modeling can be an important tool for healthcare
professionals to create individualized drug therapy regimens
by assisting them in choosing the optimal dose, frequency, and
route of administration for their patients based on population
pharmacokinetic information. There are many individualized
parameters that can alter a drug’s absorption, distribution,

metabolism, and elimination (ADME) characteristics, includ-
ing age, comorbidities, renal and hepatic status, genetic poly-
morphisms, and more. PBPK modeling is a predictive tool
that can be used to influence drug choice, selection, and routes
of administration in different ethnic populations as well as
populations of various ages and with various disease stages.
Some applications of PBPK models include examination of
potential drug-drug interactions, pharmacokinetics within spe-
cial physiological populations (e.g., pediatrics, pregnancy),
and other pharmacokinetic differences based on internal (ge-
netic polymorphisms) and external (food effect) characteris-
tics. Through the use of modeling, clinical pharmacists can
play a role in the management of complex drug regimens
and may be able to avoid drugs with potential adverse effects
in susceptible patients.

Simulation of drug disposition and PK prediction has
evolved as an important instrument in drug development, reg-
ulatory review, and clinical study design [7].When submitting
a New Drug Application (NDA), researchers can use PBPK
predictions to fill in unknown clinical gaps during the evalu-
ation of a breakthrough therapy drug. The U.S. Food and Drug
Administration (FDA) recently announced the availability of a
guidance document concerning format and content of PBPK
data in regulatory submissions [8]. The FDA guidelines sug-
gest the use of PBPKmodeling in DDI assessment and hepatic
impairment studies. In addition, the European Medicines
Agency has released their own guidance for the utilization of
PBPKmodeling in research, which mandates a detailed report
of the model, including drug-specific parameters, an overview
of the model building process, sensitivity analyses, and a dis-
cussion on the regulatory impact of the modeling be submitted
along with all results and other relevant data [9]. PBPK
modeling allows the pharmaceutical industry, regulators, and
academic researchers to overcome several challenges in cre-
ating a new drug and allows them to create an efficient and
economical way to ensure the safety and effectiveness of the
medication.

The objective of our work was to examine recently pub-
lished PBPK modeling studies in order to profile their appli-
cations in various therapeutic areas and to assess their rele-
vance to clinical practice.We also aim to highlight some of the
high-impact applications of PBPK modeling and discuss the
regulatory factors which support ongoing research in this
field.

Literature Search Strategy

We conducted a search through PubMed using the search
terms “Physiologically based pharmacokinetic modeling”
and “Physiologically based pharmacokinetic-dynamic model-
ing” within the title or abstract of an article. Manuscripts were
selected for assessment if they were written in English
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between 2012 and 2018 and presented PBPK models
established/validated with human (clinical) PK data on
FDA-approved products. Articles for medications that were
still in clinical testing were not included. However, the quan-
tity of publications cited may not adequately represent all the
PBPK/PD models because of the restrictions used.

Qualifying publications were categorized into the follow-
ing therapeutic categories: cardiovascular, endocrine, gastro-
intestinal, hepatic, immunosuppressants, infectious disease,
neurologic, oncology, renal, respiratory, and supplements.
Furthermore, each medication was classified by drug class,
PK model type utilized (e.g., PBPK, PBPK/PD), and the spe-
cific simulator program employed. Specific simulator pro-
grams included PK-Sim, QSP, MATLAB, GastroPlus,
Monolix 3.2, and Non-MEM. The model applications for
drugs in each article were also categorized by drug-drug inter-
actions due to either metabolism, transporter effects, or com-
binations of both. Other applications listed here include spe-
cial populations (e.g., renal impairment, pregnancy, pediatrics,
race and ethnicity) and pharmacokinetic prediction (e.g., phar-
macogenetics, bioequivalence, tissue distribution, food
effects).

Results

The idea of simulating PK by usingmulticompartment models
with physiological factors was introduced by Teorell in 1937,
but PBPKwas not widely used until recently [10, 11, 12]. One
key factor is the increasing availability of in silico and in vitro
systems, which act as surrogates for in vivo ADME processes
and the advancement of in vitro to in vivo correlation of these
data.

Our literature search resulted in 166 PBPK or PBPK/PD
manuscripts published since 2012 which met the criteria, ex-
cluding publications of medications in development. A sum-
mary of each article summarized by therapeutic area, medica-
tion, application, software, model type, and year are shown in
Tables 1 through 5 in Online Resource 1. The majority of
PBPK models have been developed for infectious disease,
accounting for 24% of all articles, followed by oncology at
22%, neurology at 18%, cardiovascular at 17%, and endocrine
with 5%. Therapeutic areas representing altogether ≤ 14%
were renal, hepatic, respiratory, gastrointestinal, immunosup-
pression, supplements, and miscellaneous (Fig. 1). In addi-
tion, the number of articles published in each year increased
from 4 in 2012 to 53 in 2018, representing a 13-fold increase
(Fig. 2).

Modeling related to infectious disease accounted for the
largest portion of modeling literature, comprising 40 of the
166 eligible articles. The number of articles increased from 1
article published in 2012 to 16 articles published in 2018,
representing a 16-fold increase. A likely reason for the

increase in articles is due to increased concern about antibiotic
resistance and the involvement of anti-infectives in clinically
significant drug-drug interactions. According to the World
Health Organization, antibiotic resistance is one of the biggest
threats to global health, food security, and development today.
Resistance to antibiotics has been attributed with the inappro-
priate use and overuse of antibiotics in humans and animals,
and it has resulted in longer hospital stays, higher medical
costs, and increased mortality. Drug-drug interactions are of
particular clinical importance with antimicrobials, especially
in patients who are receiving therapy for HIV. Roberts et al.
examined the DDI be tween an t i r e t rov i ra l s and
antituberculotic drugs in patients with HIV coinfected with
Mycobacterium tuberculosis [13]. Resistance to antitubercu-
losis drugs can occur when prescribers prescribe the wrong
treatment or the wrong dose for an inappropriate length of
time. The treatment of tuberculosis is especially critical in
patients with HIV because patients are immunocompromised,
which increases the mortality rate of infections. One of the
common drugs used for tuberculosis in patients with HIV is
rifampin, an antibiotic that acts as a strong inducer for many
cytochrome P450 enzymes, which in turn can lower the ex-
pected concentrations of drugs which are hepatically metabo-
lized. PBPK modeling to assess the DDI risk of antitubercu-
losis drugs like rifampin when co-administered with other
medications is incredibly important as resistance may develop
with low drug concentrations.

Papers related to oncologic medications accounted for 36
of the 166 papers. The number of articles in this area increased
from 2 published in 2012 to 14 published in 2018,
representing a 7-fold increase. According to the American
Cancer Society, it is estimated that there will be 1,735,350
new cancer cases diagnosed and 609,640 cancer deaths in
the USA in 2018. Per the National Cancer Institute, cancer is
the second largest cause of mortality within the USA, follow-
ing behind cardiovascular diseases, and approximately 38.4%
of men and women are diagnosed with cancer during their
lifetimes. New research is constantly being done to create
better treatments for a variety of cancer types, and PBPK
models have the potential to play a major role in the approval
of new drugs. Many oncologic medications have severe ad-
verse effects, so it is unethical to treat healthy subjects in live
clinical trials. In this application setting, PBPK modeling has
been used to determine adverse effects, dosing strategies, and
the potential for drug-drug interactions. In addition, it can be
used to determine optimal dosing strategies based on comor-
bidities and other patient-specific factors. Several notable ap-
plications of PBPK modeling profiled here include determi-
nation of the dosing of etoposide in adults and children and
systemic drug exposure of busulfan in children [7, 14].

According to the CDC, cardiovascular diseases are the
number one cause of mortality within the USA. Within the
USA, 77.9 million (1 out of every 3) adults have hypertension.
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This number has recently increased with the release of up-
dated guidelines by the ACC/AHA, which have placed more
stringent definitions on optimal blood pressure in adults. As
such, it was anticipated that this therapeutic area would have
one of the highest proportions of articles. Applications involv-
ing cardiovascular drugs represented 28 out of 166 articles
published from 2012 to 2018. The number of articles focused
on cardiovascular medications increased from 1 article in
2012 to 10 articles in 2018, a 10-fold increase.

Neurologic drugs also comprised a significant portion of
the medications studied using PBPK modeling and accounted
for 30 of the 166 articles. This represents an increase from 1
article published in 2012 to 10 articles published in 2018, a
10-fold increase. Drugs which act on the central nervous sys-
tem are of great interest in PBPK modeling, as their activity
depends on adequate levels of drug within the target tissue
(e.g., brain). Because of this, clinicians often rely on surrogate
markers of plasma concentration in order to determine a dose-
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Fig. 1 Percentages of articles in each therapeutic area published between 2012 and 2018 utilizing PBPK modeling on FDA-approved products
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related exposure-response relationship [15]. The blood-brain
barrier consists of tight junctions between capillary endothe-
lial cells, which restrict diffusion into the central nervous sys-
tem, which even once entered can be removed by efflux
pumps (e.g., P-glycoprotein or MDR1, and breast cancer-
resistant protein) [16, 17]. The ability of a drug to penetrate
this barrier is essential in the treatment of central nervous
system (CNS) diseases including epilepsy, psychiatric disor-
ders, and neurodegenerative disorders. In addition, drugs in-
dicated for non-neurologic diseases, such as efavirenz (an an-
tiviral) may have enhanced permeability into the CNS and
produce serious adverse effects such as neurocognitive im-
pairment. This creates marked importance on the utilization
of quantitative approaches like PBPK modeling in order to
predict drug disposition in both the plasma and target tissue.

Figures 3 and 4 show the majority of articles about model
applications pertained to drug-drug interaction (DDI) predic-
tion (34%). This was further classified into metabolism (23%),
transporter (7%), and combination applications (4%).
Assessment of DDI through modeling allows health care pro-
viders to examine the interaction potential of medications and
interpret their clinical significance without causing patient
harm. Other notable applications included pharmacokinetic
predictions (26%) and simulations in special populations
(30%). Special populations were broken into subgroups in-
cluding renal impairment, pregnancy, pediatrics, and
race/ethnicity. Other model applications representing altogeth-
er 9% of articles included cerebrospinal fluid distributions,
impact of genetic polymorphisms, bioequivalence, and phar-
macokinetic variability. PBPK was the most common model
type seen in the literature search (93% of all articles); a dras-
tically fewer percentage of models included a pharmacody-
namic component as well (7%). Several articles were found
with application extensions that included dose recommenda-
tions and patient package insert changes, simulation of chal-
lenging clinical scenarios (e.g., impact of a missed dose), and
providing guidance for clinical trials which are currently
underway,

PBPKmodeling offers distinct advantages over other types
of mechanistically static models (i.e., utilizing one or two
in vitro parameters to predict discrete human pharmacokinet-
ics), which rely on steady-state presumptions. PBPK is dy-
namic in the ability to simultaneously model multiple drug
disposition processes [18–20]. We have highlighted, within
applications for each disease state, several mechanisms spe-
cific to PBPK modeling that enhance understanding of drug
product mechanisms. These include (1) prediction of drug
concentrations in specific target tissues, (2) generation of vir-
tual clinical studies to demonstrate variation in outcomes in
regard to genetic polymorphisms, (3) drug-disease modeling
for high-acuity clinical situations, (4) prospective prediction
of drug pharmacokinetics and dosing using in vitro to in vivo
extrapolations (IVIVE), and drug absorption, especially for

advanced drug delivery systems (i.e., controlled- or extend-
ed-release).

Application for Infectious Disease

A major area of focus for PBPK modeling in infectious dis-
eases is the prediction of pharmacokinetics in special popula-
tions; specifically, pediatric and geriatric patients. Schlender
et al. used a PBPK model to evaluate the predictive perfor-
mance of ciprofloxacin in pediatric and geriatric patients out-
side of the tested adult age range [21]. Claassen simulated
amikacin and paracetamol drug levels in preterm neonates, a
patient population which requires extreme care with medica-
tion dosing [22]. The researchers concluded that PBPK simu-
lation in preterm neonates has the potential to be a useful tool
in the future to support dosing decisions. Hornik et al. used
modeling to demonstrate the feasibility of using pediatric data
to develop pediatric PBPK models, thus extending the reach
of this powerful modeling tool [23].

Another important area of interest in infectious disease is
HIV. Patients with HIV are often prescribed complex, multi-
drug regimens which present with a multitude of drug-drug
interactions. Without clinical data, DDIs are often predicted
based on preclinical data and knowledge of the disposition of
individual drugs. Predicting drug interactions can be extreme-
ly difficult because some antiretroviral drugs induce and in-
hibit multiple cytochrome P450 isoenzymes simultaneously.
This can present a significant challenge for clinicians, who are
tasked with monitoring not only the patient’s antiviral regimen
but also providing appropriate prophylaxis against opportu-
nistic infections. Roberts et al. created a model to examine
the treatment of Mycobacterium tuberculosis in patients with
HIV-infected patients [13]. The aim of this study was to quan-
tify the effect of cobicistat or ritonavir in modulating DDIs
between darunavir and rifampin in a human hepatocyte-based
in vitro model. Another study sought to predict the magnitude
of the DDI between efavirenz, an inducer of CYP3A4 and
inhibitors of CYP2C8, and dual CYP3A4/CYP2C8 substrates
(repaglinide, montelukast, pioglitazone, paclitaxel) using
PBPK modeling [24]. Another study used a PBPK model of
the interaction between levonorgestrel and efavirenz in order
to develop a dose-adjustment strategy for overcoming this
interaction [25].

PBPK modeling has the distinct advantage of predicting
drug concentrations in target tissues to help guide develop-
ment of dosing regimens for specific diseases. Regarding in-
fectious diseases, a current example of this can be seen with
Yao et al. and their development of PBPK models for chloro-
quine and hydroxychloroquine to evaluate oral dosing regi-
mens for SARS-CoV-2 infection [26]. A permeability rate
limiting model and high lung-to-plasma partition coefficient
was used to imitate drug accumulation in lung tissue, the
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investigated site of action in COVID-19 to reduce potential for
cytokine storm by IL-6 and IL-10 which results in multi-organ
failure. Several clinical trials are investigating both drugs for
use in SARS-CoV-2 infection and as such, the PBPK model
provides the groundwork for an optimized dosing regimen for
clinical trials due to evaluation of the unique pharmacokinet-
ics (i.e., high accumulation in cells and long elimination half-
life) to maximize lung tissue concentrations while minimizing
the systemic adverse effect profile. The assessment of target
tissue concentrations is an advantage specific to PBPKmodels
as they are equipped to assess anatomic (e.g., volumes and
tissue compartment connectivity) and physiologic (e.g., flows
and clearance) characteristics of molecular entities while also
considering the physicochemical properties of the drug [27].

Application for Oncologic Medications

PBPK models play a major role in the investigation and ap-
proval of oncologic medications. Because agents used to treat
cancer target rapidly dividing cells and thus have an unfavor-
able adverse effect profile, it may be unethical or impractical
to treat healthy subjects in clinical trials, which increases the
utility of PBPK modeling for this application. The therapeutic
classes of oncologic medications investigated included topo-
isomerase I/II inhibitors, histone deacetylase inhibitors,
alkylating antineoplastic agents, monoclonal antibodies, se-
lective estrogen receptor modulators (SERMs), and hedgehog
pathway inhibitors. Understanding drug-drug interactions and
special populations were the major applications seen with on-
cologic medications, reflecting the scenarios that clinicians
most often encounter in practice. In addition to antineoplastic
agents themselves, regimens frequently consist of “comfort
medications,” including anti-nausea medications, appetite
stimulants, etc., which are used to make the patient’s chemo-
therapy regimen more tolerable but can also impact drug me-
tabolism and result in adverse effects. Lastly, cancer patients
may have other comorbid conditions or organ damage which
can be due to the type of cancer or chronic consequences of
the other medications they are taking.

Several studies involving oncologic medications focused
on interactions mediated through the cytochrome P450
(CYP450) enzymatic network. Narayanan et al. studied
CYP3A4 induction by enzalutamide via Simcyp, which is a
therapy approved for the treatment of metastatic prostate can-
cer and is often dosed as a combination in clinical practice [4].
Einolf et al. examined the interaction between ketoconazole
and rifampin with the use of sonidegib, a chemotherapeutic
agent used in the treatment of basal cell carcinoma which is
also a CYP3A4 substrate. [28]. Studies conducted by Budha
et al. and Yamazaki on cobimetinib and crizotinib respectively
explored the impact of drug-drug interactions involving
CYP3A4 substrates and evaluated the results using Simcyp

[29, 30]. In addition, Simcyp was utilized to examine the
potential for drug-drug interactions involving renal organic
anion transporters (OATs) in patients using pemetrexed [31].

Virtual clinical studies (VCS) are a considerable asset of
PBPK models as they enhance understanding of the variation
in clinical outcomes for a drug within a specific population.
Parameter sets may be generated randomly to reflect the var-
iation in pharmacokinetic and physiologic properties within a
specific population, mainly by Monte Carlo methods. In this
method, each “virtual subject” is assigned a unique set of these
properties while maintaining the distribution of genetic poly-
morphism, ethnic differences, and intra- and inter-individual
variability for that population. An example of this is best
depicted by Toshimoto et al. and their assessment of irinotecan
administered intravenously using VCS to identify factors re-
lated to drug-induced adverse effects (e.g., neutropenia and
diarrhea) [32]. Correlation between drug exposure and ad-
verse effects of neutropenia and diarrhea was determined
through simulated AUC values above a set AUC threshold
in plasma and enterocytes, respectively, which were derived
from in vivo studies. In this work, 1,000,000 virtual subjects
were generated and AUC values of irinotecan and its metab-
olite (SN-38) were simulated in the context of 6 genetic poly-
morphisms, including UGT1A1*28 and SLCO1B1 c.521 T >
C. The probability of adverse effects in the virtual population
were compared against reported values and found to be sim-
ilar, which emphasized the importance of genetic polymor-
phism on irinotecan-induced adverse effects.

Similarly, a VCS with 24,000 patients by Dickschen et al.
emphasized the impact of drug holidays of different lengths on
steady-state kinetics and plasma levels of tamoxifen and its
active metabolite, endoxifen, in patients with different
CYP2D6 genotypes (i.e., extensive, intermediate, and poor
metabolizers) [33]. The VCS explores the impact of patient
adherence, which is difficult and nearly impossible to assess
prospectively in vivo as patients tend to declare their compli-
ance greater than what is reality. The study results support the
use of a fixed-dose combination of tamoxifen and endoxifen
in CYP2D6 extensive- and intermediate-metabolizers in com-
bination with therapeutic drug monitoring as drug holidays
were found to tremendously decrease plasma levels despite
the long half-life of tamoxifen. Both aforementioned studies
demonstrate the marked power and wealth of information that
VCS from PBPK modeling can have when performed retro-
spectively and prospectively in differing populations and clin-
ically important situations.

There was a large percent of articles that focused onmodel-
ing on special populations. Walsh et al. used PBPK to predict
exposure of actinomycin D in younger patients [6]. PK-SIM
was used to study drug exposure in children and adults in two
key studies. Diestelhorst et al. used PK-SIM software to de-
termine the first dose of busulfan in children via PBPK model
parameterization [7], while Kersting et al. used PK-Sim
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software to evaluate the ability of PBPK modeling to predict
the systemic drug exposure of high- and low-dose etoposide in
children from a model developed with adult data [14]. Two
studies focused on the exposure of irinotecan in special pop-
ulations. Yoshida et al. examined mechanisms of PK alter-
ations in patients using irinotecan while Fujita et al. conducted
a more recent study that assessed irinotecan’s mechanism for
delayed SN-38 elimination [34, 35]. In addition, Thai et al.
used PBPK modeling to predict PK profiles of docetaxel in
children by modulating age-dependent physiological differ-
ences [36].

Although the majority of studies cited here utilized a PBPK
model, two specific studies were directed towards PKPD
modeling. Another study by Chalret du Rieu et al. used a
similar methodology to determine maximum tolerated doses
of abexinostat in lymphoma and solid tumor patients [2].

Application for Cardiovascular Medications

Because cardiovascular disease is prevalent throughout much
of the developed world, cardiovascular drugs continue to be
studied in a variety of patient populations with comorbid dis-
ease states to improve outcomes and reduce mortality. Our
findings included modeling studies performed on several
commonly used drug classes, including HMG-CoA reductase
inhibitors, phosphodiesterase-3 inhibitors, class III antiar-
rhythmics, angiotensin-receptor blockers, alpha antagonists,
beta blockers, and anticoagulants. HMG-CoA reductase in-
hibitors (also known as statins) are used to reduce the risk of
atherosclerotic cardiovascular disease by modulating levels of
cholesterol in the blood. This class of medications is notable
for its potential of serious adverse effects, including hepato-
toxicity, teratogenicity, and myopathy. Statins were the subject
of a study by Tsamandouras et al., which predicted the
concentration-time profiles of simvastatin in muscle (to assess
toxicity) and in the liver (to assess efficacy) [37]. Another
class of medications utilized in the literature is the
angiotensin-receptor blocking agents (ARBs), which are com-
monly used for the management of hypertension and heart
failure. Li et al. developed a PBPK model which can be used
to accurately predict the kinetics of IV telmisartan that incor-
porated data from sandwich human hepatocyte and liver mi-
crosome assays [38].

As the rates of hypertension and cardiovascular disease
continue to increase, it is important to continue to construct
PBPK models examining the potential drug-drug interactions
of these medications. Cardiovascular drugs are often used in
combination with each other in a variety of metabolic disease
states, and many patients with cardiovascular disease have
comorbidities such as diabetes and renal disease, which can
impact drug disposition and increase the likelihood of a sig-
nificant drug interaction. Several studies used modeling to

assess the impact of enzyme and transporter-mediated DDIs.
Burt et al. investigated the DDI potential of organic cation
transporter (OCT) and multi-antimicrobial extrusion protein
(MATE) inhibitors between metformin and cimetidine [39].
Fan et al. predicted the mean active metabolite pharmacoki-
netic profiles in patients taking prasugrel in the presence and
absence of a proton pump inhibitor [40]. Ohtani et al. evalu-
ated the concomitant use of bucolome (a CYP2C9 inhibitor)
with warfarin [41]. Other studies examined the DDI potential
in special populations. For example, Ismail created a DDI
model of rivaroxaban and verapamil to investigate the chang-
es in kinetics between healthy subjects and those with renal
impairment [42].

Drug-disease modeling is another recognizable advantage
to PBPK modeling as drug- and patient-specific parameters
may be investigated to better understand altered pharmacoki-
netics for agents in distinct disease states. Rasool developed a
PBPKmodel that incorporated hepatic and renal hemodynam-
ic changes in patients using carvedilol for chronic heart failure
[43]. Vogt developed a PBPK drug-disease model for
milrinone in pediatric patients with and without low cardiac
output syndrome (LCOS) after open heart surgery in order to
provide guidance on optimal dosing [44]. Age dependency of
milrinone plasma clearance has been described utilizing non-
linear mixed effects modeling (non-MEM), which is not
reflected by age-stratified dosing, and further does not consid-
er differences in organ function between patients with and
without LCOS. The study incorporated a drug model
consisting of drug-dependent pharmacokinetic and pharmaco-
dynamic properties and a system component for whole-body
(i.e., multiple organ compartments) application of intravenous
dosing. A disease model with pre-, intra-, and post-operative
components associated with open heart surgery consisting of
influential factors (i.e., LCOS, acute kidney injury, surgical
trauma) was used to describe altered pharmacokinetics of
milrinone with and without LCOS. These two models were
integrated for simulation in a patient population with varied
characteristics, such as age, race, sex, and bodyweight, organ
growth, and maturation. The study results generated opti-
mized dosing regimens for LCOS treatment and prevention
for pediatric patients stratified into 6 age clusters and provide
information that adult dose scaling attempts are inadequate.
Furthermore, patients with LCOS vs. those without after sur-
gery require lower maintenance infusion doses. This example
of a drug-disease model demonstrates the importance that
PBPK modeling can have in balancing harm with efficacy in
context of clinical situations requiring higher acuity of care.

Within this same disease state, we can also consider a sep-
arate, but clear value from PBPK modeling, which is the em-
ployment of quantitative in vitro to in vivo extrapolation
(IVIVE). A mainstay within PBPK modeling is the ability to
include in vitro experimental observations in order to predict
drug disposition within in vivo biological systems, especially
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when such in vivo is not easily available [45]. Marsousi et al.
demonstrated increased understanding of ticagrelor pharma-
cokinetics utilizing PBPK modeling to assess a clinically rel-
evant drug-drug interaction and need for reduced dosing with
ritonavir, an antiretroviral agent commonly utilized in HIV
and major CYP3A4 inhibitor [46]. Part of this group’s assess-
ment was construction of a PBPK model for ticagrelor using
intrinsic clearances obtained from in vitro assessments using
human liver microsomes [47]. When applying these in vitro
values to their model, oral clearance and the exact contribution
of CYP3A4 to hepatic metabolismwere not wholly accounted
for. As such, these model features were refined and improved
based on existing clinical literature using sensitivity analyses.
The construction of the ticagrelor model coupled with DDI
simulation in this example demonstrates how IVIVE can be
used to prospectively assess drug disposition for clinically
relevant situations to inform dosing decisions.

Application for Neurologic Medications

DDIs are of great importance with neurologic agents, espe-
cially the antiepileptic drugs (AEDs). The AEDs are associat-
ed with more DDIs than any other therapeutic drug class,
which creates a major therapeutic challenge [48–50].
Currently, about 60–70% of newly diagnosed patients have
their seizures controlled effectively with AED monotherapy;
however, the remaining 30–40% of the patients present with
refractory seizures and inevitably need to be treated with AED
polytherapy [51, 52]. Polytherapy with two or more AEDs
and/or drugs used for other disease states dramatically in-
creases the probability of DDIs and the risk of serious clinical
consequences. Our group has developed PBPK models ad-
dressing DDIs of the commonly used AEDs, valproic acid,
and lamotrigine [53, 54]. These models utilize UGT enzyme
kinetics from in vitro literature, which have been scaled to fit
the observed clinical data. Commonly encountered DDIs of
these agents are evaluated such as UGT induction by concom-
itant administration of other AEDs (e.g., carbamazepine, phe-
nobarbital), as well as the classic UGT inhibition of
lamotrigine metabolism by valproic acid.

Prediction of the rate and extent of oral absorption is con-
sidered a complex process, which is not easily demonstrated
by static models. PBPK modeling is adept to handling predic-
tion of absorption through use of transit models. These models
describe the release, dissolution, degradation, metabolism, up-
take, and absorption of a molecular entity as it travels through
different segments of the GI tract. Simulation incorporates
input parameters such as drug solubility, permeability, pKa,
LogP, and particle size, as well as diffusion layer models
which assimilate differential equations to predict absorption
kinetics, guided by Fick’s laws of diffusion, across the gut
wall. Different commercial simulation packages are available

for prediction of absorption, such as GastroPlus™ advanced
compartmental absorption transit (ACAT) model, PK-SIM®
absorption model, and SimCYP©’s advanced dissolution, ab-
sorption, and metabolism (ADAM)model [55, 56]. Our group
has utilized SimCYP©’s ADAM model to demonstrate the
absorption kinetic profile of lamotrigine and valproic acid oral
extended-release formulations, which allow for more conve-
nient once-daily dosing of crucial anticonvulsant medication
to patients with epilepsy [53, 54]. Furthermore, these formu-
lations reduce serum concentration peak-to-trough by 10–
20% therefore minimizing unwanted peak adverse effects
and maximizing concentration-dependent efficacy profiles.

DDI studies are of particular interest for the opioid receptor
modulating agents, as increased exposure to these agents has
the potential to lead to serious adverse effects including respi-
ratory depression and death. Marsousi et al. have developed a
model of inhibition of oxycodone metabolism, and its two
primary metabolites, in the context of CYP2D6 extensive
and poor metabolizers, as well as CYP2D6 and CYP3A4 in-
hibitors [57]. A second study by Zhou et al. examined the
interaction potential of naloxegol, a peripherally acting mu-
opioid receptor antagonist used for the treatment of opioid-
induced constipation and a substrate of CYP3A4/3A5 and the
P-glycoprotein efflux pump [58]. The results of this study
predicted an approximately 13-fold increase in naloxegol ex-
posure when co-administered with ketoconazole, a 3-fold in-
crease in exposure when administered with diltiazem, and a
75% reduction in naloxegol concentration when administered
with rifampin. These models demonstrate the importance of
assessing the impact of coadministration of multiple inhibitors
together on substrate drugs.

There were several notable examples of neurologic simu-
lations involving special populations. Dosing regimens in
pregnant women are currently based on those designed for
non-pregnant women, which may not take into account drug
distribution and therefore exposure to the fetus. Kalluri et al.
developed a PBPK model to assess the kinetics of
buprenorphine, a partial agonist at the mu-opioid receptor
and a staple in medication-assisted treatment for opioid use
disorder, following intravenous and sublingual administration.
The results from this study were utilized in a separate study by
Zhang et al. to develop a dosing strategy in pregnancy [59,
60]. The model predicted decreased drug exposure and sug-
gest a need for increased dose or frequency in this population,
which was consistent with the available literature. This work
demonstrates the utility of PBPK modeling for neurologic
agents in special populations and the ability to optimize phar-
macotherapy without requiring intensive sampling. A second
example of PBPK modeling for special populations utilizing
neurologic agents is represented in a model for atomoxetine
[61]. This work by Huang et al. was developed to determine if
a PBPK model for atomoxetine in healthy individuals could
be extrapolated to special populations (e.g., renal or hepatic
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impairment, ethnicity, pediatrics). The model demonstrated
predictive performance in Asian and pediatric patients; how-
ever, AUC was over-predicted 3- to 4-fold in both end-stage
renal disease and hepatic impairment subjects. The results
indicate that modeling in healthy individuals can be extrapo-
lated to other certain special populations; however, predictive
performance requires optimization in key end organ disease
states.

Application for Miscellaneous

Therapeutic areas representing altogether ≤ 14% were renal,
hepatic, respiratory, gastrointestinal, immunosuppressants,
supplements, and miscellaneous. A major focus of these stud-
ies was DDI and transporter-mediated effects of drug concen-
tration. For DDI prediction, Duan et al. assessed CYP2C19
ontogeny in neonates and infants [62]. Several endocrine
topics were examined including repaglinide’s inhibitory effect
on the metabolism of pioglitazone [63]. Other studies exam-
ined the impact of DDIs on several medications which are
major substrates of cytochrome P450 enzymes in children
[58]. In addition, several studies analyzed hepatic and renal
elimination of medications. The role of organic anion
transporter-2 in the hepatic uptake of tolbutamide was studied
by Bi et al. [64]. A 2018 study by Nakada et al. determined if
the elevation of serum creatinine could be explained by inhi-
bition by trimethoprim on tubular secretion of creatinine via
renal transporters such as OCT2, OCT3, MATE1, and
MATE2-K, while Tan et al. examined the impact of [65] kid-
ney disease on the disposition of hepatic CYP2C8 and
OATP1B drug substrates [66].

Discussion

Medication safety is, and continues to be, a major concern
throughout all aspects of healthcare. All drugs have adverse
effects, which can range from acute and mild (e.g., itching,
headache) to severe and chronic (e.g., hepatotoxicity, drug-
induced lupus erythematosus). In order to minimize adverse
effects and optimize clinical outcomes, healthcare providers
must consider a drug’s indication and clinical efficacy but
must also identify potentially hazardous drug-drug interac-
tions and engage in monitoring for drug-related toxicities.
However, drug dosing is not straightforward, and patient-
specific factors such as weight, age, renal/hepatic function,
and genetic polymorphisms can lead to unanticipated drug
effects, especially with drugs that have a narrow therapeutic
window. Because many large clinical trials exclude patients
with varying degrees of renal/hepatic dysfunction, extremes of
age, and other distinguishing characteristics as a means to
promote safety, providers who are involved in the care of

special populations are often left to case reports and animal
studies to assess the risks and benefits of therapy in their
patients. Our review examined how simulated modeling of
drug pharmacokinetics is also being utilized for this purpose,
and our results show an increase in the utilization of PBPK
modeling within the last decade, particularly for predicting the
outcomes of drug-drug interactions and understanding how
kinetics are altered in special populations of patients who are
often times underrepresented in large-scale clinical trials.

Our results demonstrate that the majority of developed
PBPK models consist of those for infectious disease purposes
(24%), followed by those for oncology (22%) and neurology
(18%). In addition, the therapeutic areas which experienced
the highest proportions of growth during this time period were
infectious diseases and neurology, experiencing a 16-fold and
12-fold increase in the annual number of publications, respec-
tively. The increase in models within these therapeutic areas
over the last several years is suggestive of efforts to maintain
better safety and efficacy profiles for drugs with narrow ther-
apeutic indices and/or difficult-to-predict doses. Our results
show that the utilization of modeling for a particular disease
state appears to be inversely proportional to the prevalence of
that disease state, meaning that the number of published arti-
cles increases as the number of patients available to participate
in clinical studies decreases. The abundance of oncologically
focused studies is due in part to the challenges with feasibility
of clinical studies involving these medications (e.g., low pa-
tient population, chronic disease progress which makes
follow-up difficult), but also because patients with cancer
have a variety of comorbidities which can influence drug dis-
position, such as renal/hepatic impairment, immune deficien-
cy, GI absorption issues, etc. For patients with cancer, PBPK
modeling offers greater control over patient parameters com-
pared to clinical trials and can be used to guide dosing strate-
gies in patients with a multitude of comorbidities.

Our literature review highlighted several high-impact ap-
plications of PBPKmodeling in the drug development process
which have led to revisions in a drug’s prescribing information
and package insert. Drug-drug interaction and bioavailability
studies were included in the package insert information for
ribociclib, a cyclin-dependent kinase 4/6 inhibitor approved
by the FDA in 2017 for the treatment of breast cancer. In this
instance, the authors utilized Simcyp for the prediction of
ribociclib exposure in the presence of CYP3A4 inhibitors.
Based on their findings, they made a formal recommendation
to amend the package insert to state that ribociclib should be
avoided in the presence of CYP3A4 inhibitors/inducers.
Similarly, literature contributed by Arya and Shebley was
used to recommend an update to the package labeling for
dasabuvir, a non-nucleoside inhibitor of the hepatitis C virus’s
RNA-dependent RNA polymerase, due to their modeling ef-
forts which showed a dangerous increase in drug exposure in
the presence of CYP2C8 inhibitors [67, 68].
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The increase in PBPK modeling could also be due to guid-
ance from the FDA suggesting that PBPK modeling is suited
for DDI assessment and hepatic impairment studies. A state-
ment by the Center for Drug Evaluation and Research of the
FDA stated that “the decision to accept results from PBPK
analyses in lieu of clinical pharmacokinetic data is made on
a case-by-case basis, considering the intended uses as well as
the quality, relevance, and reliability of results from the PBPK
analyses”. The guidance letter goes on to state that PBPK
studies are permitted to be utilized in lieu of prospective
DDI studies for investigational drugs and moderate-to-weak
inhibitors of their metabolism provided that these models can
be verified using human PK data and prospective DDI studies
which investigated the effects of strong inhibitors or inducers.

There are several factors which have limited the adoption of
PBPK modeling in various therapeutic areas, such as cost and
ease-of-use. A commercial license for simulation programs can
cost upwards of $100,000 per year, and the time required to
familiarize researchers with the user interface of these programs
is a financial and labor-intensive strainwhichmany organizations
may not be willing to invest in. Another major barrier to use has
been the challenges associated with model validation. Because
PBPK modeling is geared generally towards utilization in
difficult-to-predict clinical scenarios or situations where
obtaining human data is unethical or impractical, there is a great
deal of disagreement on the appropriate strategies for model
validation. Currently, model validation is accomplishedwith data
from animal studies, which is not always a reliable predictor of
kinetics in humans or based on human data from pharmacoki-
netic studies on drugs which are similar to the study drug.

This review article is the first to highlight PBPK articles
over the past several years on major trends in therapeutic area,
applications, and drug class. In addition to highlighting some
of the high-impact applications of PBPK modeling, we also
examined the various regulatory and logistical barriers which
have limited the utilization of this practice in certain therapeu-
tic areas. We did not utilize a standardized assessment tool for
each of the articles; rather, the information that we needed for
the review was pulled from the abstract and, where necessary,
the full manuscript. Although we used the most generic search
terms possible for our literature search, it is unlikely that we
were able to pull and analyze all of the qualifying articles
published from 2012 to 2018. In addition, by limiting the
scope of our articles to products which are currently approved
by the FDA, it is likely that we may have bypassed articles on
drugs which are currently in development, although it is un-
clear the extent.

Conclusion

This study has shown a dramatic increase in the number of
PBPK papers written from 2012 to 2018, with an emphasis on

oncological drugs and applications regarding evaluation of
DDIs. While several review papers published recently have
focused on assessing the predictability of PBPK modeling
with regard to drug-drug interactions, absorption, food effects,
etc., this review primarily summarizes the application of
PBPKmodeling for FDA-approved drugs across various ther-
apeutic areas. This study is beneficial to assess the increasing
use of PBPK modeling in therapeutic drug monitoring, espe-
cially in relation to narrow therapeutic index drugs within
oncologic, neurologic, antimicrobial, and cardiovascular drug
classes. Future research includes further insight into the mag-
nitude of studies influencing package insert dosing recom-
mendations and the distribution of these between PK predic-
tion, DDI, and special population applications. Furthermore,
assessment of simulation interfaces to support clinical utility
of PBPK modeling is needed in order to streamline this pro-
cess for practice in a healthcare setting.
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