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Simple Summary: The skeletal muscle growth and development affects the production of goat
meat. Here, we performed transcriptome sequencing of longissimus dorsi muscle of goats at two
development stages (namely, 1-month-old and 9-month-old) by RNA sequencing, assessing the
lncRNA expression profile during skeletal muscle development. This study identified regulatory
lncRNAs and pathways related to the development of skeletal muscle, providing a reference for
future study on the molecular mechanism that regulates the skeletal growth and development.

Abstract: LncRNAs are essential for regulating skeletal muscle. However, the expression profile
and function of lncRNAs in goat muscle remains unclear. Here, an average of ~14.58 Gb high-
quality reads were obtained from longissimus dorsi tissues of 1-month-old (n = 3) and 9-month-old
(n = 3) Wu’an black goats using RNA sequencing. Of a total of 3441 lncRNAs, 1281 were lincRNAs,
805 were antisense lncRNAs, and 1355 were sense_overlapping lncRNAs. These lncRNAs shared
some properties with goats, such as fewer exons, shorter transcript, and open reading frames (ORFs)
length. Among them, 36 differentially expressed lncRNAs (DE lncRNA) were identified, and then
10 random lncRNAs were validated by RT-qPCR. Furthermore, 30 DE lncRNAs were neighboring
71 mRNAs and several genes were functionally enriched in muscle development-related pathways,
such as APC, IFRD1, NKX2-5, and others. Additionally, 36 DE lncRNAs and 2684 mRNAs were
included in co-expression interactions. A lncRNA-miRNA-mRNA network containing 4 lncRNAs,
3 miRNAs, and 8 mRNAs was finally constructed, of which XR_001296113.2 might regulate PDLIM7
expression by interaction with chi-miR-1296 to affect skeletal muscle development. This study
revealed the expression profile of goat lncRNAs for further investigative studies and provides a fuller
understanding of skeletal muscle development.

Keywords: goat; skeletal muscle; lncRNAs; RNA sequencing; regulation networks

1. Introduction

As an important economically farm animal, the goat is raised for the utilization of
meat, cashmere, and milk. With people’s living standards having improved, the demand
for goat meat has gradually increased. As a result, the lower meat production has hindered
the development of the goat industry. Postnatal muscle growth is positively correlated with
muscle fiber diameter, with larger muscle fiber diameters resulting in faster muscle growth
rates [1,2]. Recently, the studies of genome-wide transcription have provided a series of
valuable candidate genes that regulate muscle growth in goats [3,4]. Thus, uncovering
the genetic mechanisms underneath muscle growth could help us to improve the meat
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production. The Wu’an black goat, a unique black goat breed in the Hebei province of
China, has attracted increasing interest due to its better meat performance. This goat breed
has many outstanding characteristics such as good meat quality, rich protein content, low
fat and cholesterol content, and good flavor, which has high breeding value [5,6]. LncRNAs
are transcribed as RNAs longer than 200 bp in length, with a complex structure and no
protein-coding ability [7], but can regulate gene expression and are involved in multiple
physiological processes, including cell proliferation, differentiation, and apoptosis [8].
They are widely distributed in different species, such as animals, plants, yeast, and even
viruses [9–12]. Moreover, lncRNAs are expressed temporally, spatially, and tissue-specific
expression, and play a vital role in biological processes like transcriptional regulation [13],
epigenetic modification [14], and in development [15]. The complicated process of muscle
development necessitates the interaction of numerous factors. However, the function
of lncRNAs in revealing skeletal muscle growth and development remains unclear, and
understanding the molecular mechanism is crucial.

Plenty of lncRNAs have been showed to play a key role in the skeletal muscle de-
velopment in multiple species, including goats, sheep, and pigs [16–18]. LncRNAs have
been shown in sheep to have an important regulatory function in muscle growth and
development. During muscles growth in Hu sheep, the genome-wide analysis was used
to detect the DE lncRNAs of the skeletal muscles at three key development stages (fetus,
lamb, and adult). The results showed that 6924 lncRNAs were generated, of which the
DE lncRNAs were involved in the essential bio-function and processes, including skeletal
muscle development [19]. Furthermore, in-depth analysis of the sequencing data identified
the temporal expression patterns of lncRNAs in the sheep longissimus dorsi muscle from
gestation to postnatal stages, and described the functional lncRNAs that regulated the de-
velopment differentiation of the muscle [20]. Similarly, the expression profiles of lncRNAs
were verified in ovine (Texel and Ujumqin) gastrocnemius muscle at fetal (days 85 and
120 of gestation), newborn, and adult stage [21]. In recent years, there has been increas-
ing evidence of the important functions of lncRNAs in the skeletal muscle development
of goats [10,22]. Transcriptional sequencing analysis of Jianzhou big-eared goats at fetal
(45, 60, and 105 days of gestation) and postnatal (3 days after birth) stage showed that
577 DE lncRNAs may play a vital role in skeletal muscle development [23]. The genome-
wide studies of goat lncRNAs associated with skeletal muscle development have been
carried out. The information about functional lncRNAs in skeletal muscle development
is still limited. We hope to elucidate the functional mechanisms of DE lncRNAs in goat
skeletal muscle tissue from a new perspective.

Here, we provided the expression pattern and the potential role of the DE lncRNAs
from the longissimus dorsi muscle of Wu’an black goat at two developmental stages (kid:
1 month; youth: 9 months) by using RNA sequencing. The biological functions of DE
lncRNAs molecules were annotated through GO analysis and KEGG pathway enrichment
analysis. Finally, the lncRNA-miRNA-mRNA ceRNA network was constructed to clarify
the molecular mechanism underpinning skeletal muscle development. The aim of this
study will facilitate a better understanding of transcriptomic changes during skeletal muscle
development of goats and provide a reference dataset for future studies on the molecular
mechanisms that regulate the skeletal growth and development.

2. Materials and Methods
2.1. Animal Preparation and Sample Collection

The animals used in this study were the Wu’an black goats from the Yutian Black Goat
farm (Wu’an, China). A total of six health female Wu’an black goats were selected, covering
two groups at different growth stages: 1-month-old and 9-month-old. The animal samples
(longissimus dorsi) were collected and immediately frozen in liquid nitrogen, and then
stored at −80 ◦C for RNA sequencing analysis.
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2.2. RNA Isolation, LncRNA-Seq Library Construction, and Sequencing

Total RNA was isolated from the 6 muscle tissue samples using TRIzol reagent (In-
vitrogen, Carlsbad, CA, USA). Degradation and contamination of the RNA samples were
monitored by 1% agarose gel electrophoresis. The purity and concentration of the RNA
samples were evaluated by the NanoDrop 2000 spectrophotometer (Thermo Scientific,
Wilmington, DE, USA). The integrity of the total RNA was assessed by the Agilent Bio-
analyzer 2100 system (Agilent Technologies, Palo Alto, CA, USA) with the RNA Nano
6000 assay kit. The RNA samples with a RNA integrity number (RIN) score greater than 8
were used for sequencing.

DNA was removed with deoxyribonuclease I (Takara, Dalian, China). Ribosomal
RNAs were removed from the total RNA using the Ribo-zeroTM Gole Kit (Illumina,
San Diego, CA, USA) according to the manufacturer’s instructions. Then, high qual-
ity strand-specificity libraries were generated using the rRNA-depleted RNA. Briefly, the
rRNA-depleted RNA was broken into short fragments of 250−300 bp. The first strand of
cDNA was synthesized using fragmented RNA as a template and random oligonucleotides
primers. This was followed by the second strand cDNA synthesis using dNTPs (dUTP,
dATP, dGTP, and dCTP), DNA polymerase I, and RNase H. The purified double-stranded
cDNA then underwent end repair, A-tailing, and ligation of a sequencing adapter. Fi-
nally, the products were purified by the AMPure XP system, and an Agilent Bioanalyzer
2100 system was used to assess the library quality. The Illumina Novaseq platform at
Novogene (Beijing, China) was used to sequence libraries, and 200 bp paired-end reads
were generated.

Raw data in fastq format were processed by in-house Perl script that filtered out reads
containing adapter, poly-N, and low-quality reads [24]. Meanwhile, the Phred scores of
Q20 and Q30 were calculated, as well as the GC content of the high-quality clean data.
After the filtering process, high quality clean reads were obtained. All the downstream
analyses were based on the high-quality clean data. The goat reference genome and gene
model annotation files were downloaded from the genome website. Then, the high-quality
clean reads were aligned to goat reference genome (CHIR_1.0, NCBI) using HISAT2. Based
on this, the mapped reads were assembled using StringTie following a reference-based
approach. Finally, both known genes and new transcripts from the results of HISAT2
alignment were merged by Cuffmerge program and annotated by Cuffcompare.

2.3. Prediction of Multi-Exon LncRNAs

The assembled new transcripts from the lncRNA-seq libraries were filtered to acquire
the putative lncRNAs. The identification criteria for the putative lncRNA candidates were
in line with the pipeline shown in Figure 1. The assembled transcripts were filtered out
according to the steps as follows: (1) Low-confidence single exon transcripts or transcripts
shorter than 200 bp in length were discarded. (2) To obtain unannotated transcripts, the
known transcripts were filtered out using Cuffcompare. (3) The transcripts that contained
protein-coding potential were also filtered. The software programs of Coding Potential Cal-
culator [25] and Coding-Non-Coding Index [26], as well as Protein Families Database [27],
were used to predict the coding potential of transcripts. Only transcripts without predicted
protein-coding potential remained as putative lncRNAs.
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Figure 1. Identification of the putative lncRNAs. The detailed step of filtering pipeline is depicted in
the methods section.

2.4. Classification and Differential Expression Analysis

The potential lncRNAs were classified based on their association with the annotated
protein-coding genes. In this study, the association between the potential lncRNAs and the
annotated protein-coding genes was compared with cuffmerge [28]. Then, the classification
and characteristics of lncRNAs were analyzed. StringTie was selected to analyze the
expression levels of lncRNAs by calculating fragments per kilobase million (FPKM). The
corrected p-value < 0.05 and an absolute value of the |log2FoldChange| ≥ 2 were set as
the threshold to assess statistically significant differences of lncRNA expression.

2.5. Co-Location and Co-Expression Analysis, and Functional Annotation Analysis

LncRNAs exert cis-regulatory effects on their co-localized genes [13]. However, lncR-
NAs regulate the expression of genes located on other chromosomes through a trans-acting
mechanism [29]. To assess the potential function of DE lncRNAs, we predicted the pos-
sible target genes that were co-located and co-expressed with lncRNAs. In this study,
coding genes located 100 kb/100 kb of DE lncRNA were classified as putative cis-acting
targets. The trans-acting correlations between lncRNAs and genes (co-expression) were
calculated with the Pearson’s correlation coefficients method (|r| > 0.95 and p < 0.05), as
previously reported [22,30]. The cis- and trans-acting putative target genes were annotated
by Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) to explore
the potential functions of lncRNAs. GO terms and KEGG pathways with a corrected
p-value < 0.05 were defined as significantly enriched.

2.6. Verification of LncRNA Expression Pattern with RT-qPCR

To validate the reliability of the RNA-seq data, 10 DE lncRNAs were randomly selected
to verify their expression patterns in skeletal muscle of goats at different development
stages. Primers for the 10 lncRNAs and endogenous reference gene (Table 1) were designed
by Primer 5, and the goat GAPDH was selected as the endogenous reference. Briefly, total
RNA was extracted from the longissimus dorsi muscle samples. For RT-qPCR analysis,
1 µg of the total RNA was reverse transcribed using PrimeScript™ RT reagent kit (Takara,
Beijing, China) according to the manufacturer’s protocol. Then, the qPCR was performed by
a RocheLight Cycler® 480 II system with SYBR Green qPCR Mix kit as previous study [31].
The expression levels were analyzed using comparative threshold (2−∆∆Ct). All experiment
were performed in triplicate.
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Table 1. Primer information of RT-qPCR used in the study.

Oligo Name Primer Sequence (5′→3′) Product Length/bp Annealing
Temperature/◦C

TCONS_00036756 F: AGGCTGCAATCCACGCTAA
R: TCCAACTCTGTGTGACCCCAT 170 60

TCONS_00066056 F: AGAAAATGAATCCCTGGAGTGTG
R: AACGCTGACCACCATGATGAC 114 60

TCONS_00062751 F: CTGGGAGAATACAAAGGGGG
R: GGATCTACGGGCCTTTTGTCT 247 60

XR_001296113.2 F: GCCGCCGTGAAGACTATTG
R: CCATGAAGCCAGGGTACAAAC 180 60

TCONS_00150002 F: CCCCGAATGTAAGCAATGAG
R: AGGAGACCTACCGCTACCTGAG 145 60

TCONS_00134767 F: CCCAACAAAGTGCCCAGAC
R: GGAGAAGACGGCGTTATGC 142 60

TCONS_00126170 F: GCTAGTCCCAGACAGCATTCAT
R: GGTGTTGTTCTCGCCTGGAA 252 60

TCONS_00124841 F: CCCTTACCACAGGCACCACT
R: CAGGTGAGAAGGTGTGTTCTGG 104 60

TCONS_00121766 F: TGTCCCCAACCTCGGTATCT
R: GGTCAAACCTCTGAGCCTCG 211 60

TCONS_00026838 F: CTTCTCCTTGCTTGGCACCT
R: CAGGTGCCAAGCAAGGAGA 121 60

GAPDH F: CACGGCACAGTCAAGGCAG
R: AGATGATGACCCTCTTGGCG 196 60

2.7. Construction of the CeRNA (lncRNA-miRNA-mRNA) Network

To further predict the functional of lncRNA in skeletal muscle development, the ceRNA
(lncRNA-miRNA-mRNA) networks were constructed based on the theory that lncRNA
directly associates with miRNA and subsequently affects the activity of its mRNA [32].
Firstly, the correlation between lncRNA and miRNA or miRNA and mRNA was analyzed
by correlation coefficient. All pairs with COR > 0.85 and adjusted p < 0.05 were selected
as potential lncRNA-miRNA or miRNA-mRNA pairs. Then, the ceRNA networks were
constructed with the DE lncRNAs, miRNAs, and mRNAs. Finally, the networks were
visualized by Cytoscape software.

2.8. Statistical Analysis

RT-qPCR data and graphs were generated by GraphPad Prism 6.0 (San Diego, CA,
USA). The results were presented as means ± SEMs. The unpaired two-tailed t-test was
performed to determine the statistical difference. All experiments were performed in three
replicates. A minimal standard of statistical significance was set at p < 0.05 or p < 0.01.

3. Results
3.1. RNA-Seq Data Filtering, Mapping, and Transcript Assembly

To identify the function of lncRNAs in skeletal muscle growth, two cDNA libraries
were constructed using longissimus dorsi samples of goats at two development stages:
1-month-old and 9-month-old. A total of 89.57 Gb of raw data were generated. After
filtering out low-quality and adaptor sequences, an average of ~14.58 Gb high-quality clean
reads remained. The average GC percentage was 53.41%, with the quality scores of Q20
and Q30 above 96% and 91%, respectively (Table 2). Approximately 72.47–85.25% of the
high-quality reads were mapped to the goat reference genome (Table S1). The mapped
sequences in the library were assembled and a total of 65,247 transcripts were obtained.
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Table 2. Data summary of RNA-seq in goat muscle.

Sample
Name Raw Reads Clean

Reads
Raw

Bases (G)
Clean

Bases (G)
Error

Rate (%) Q20 (%) Q30 (%) GC
Content (%)

mon1_1 98721676 97036650 14.81 14.56 0.03 97.47 93 52.99
mon1_2 104194360 101986738 15.63 15.3 0.03 97.29 92.64 55.08
mon1_3 99110136 97525086 14.87 14.63 0.03 96.95 91.87 53.06
mon9_1 98408274 96645866 14.76 14.5 0.03 97.4 92.79 51.64
mon9_2 90534786 88937344 13.58 13.34 0.03 97.48 92.97 53.35
mon9_3 106156574 101082860 15.92 15.16 0.03 96.92 91.93 54.31

3.2. Identification and Confirmation of LncRNAs in Goat Longissimus Dorsi Tissue

We developed a highly stringent filtering pipeline to discard transcripts that did not
display characteristics of lncRNAs. The assembled transcripts from the two libraries were
filtered to obtain candidate lncRNAs. A total of 3441 lncRNAs were screened (Table S2),
including 1281 (37.2%) long intergenic ncRNAs (lincRNAs), 805 (23.4%) antisense lncRNAs,
and 1355 (39.4%) sense_overlapping lncRNAs (Figure 2a). There was no sense_intronic lncR-
NAs in this study. These 3441 putative lncRNA were encoded by 2675 genes. There were
1.3 transcripts on average per locus (Table S2). The lncRNA transcripts were widespread in
chromosomes, including 29 autosomes and the X chromosome (Figure S1), which reflected
the function diversity of lncRNAs.
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The Illumina RNA-seq also identified 66 novel mRNAs (Table S3). As shown in
Figure 2b,c, the transcript length and exon number of lncRNAs were both lower than that
of the mRNA. The average length of lncRNA was 2001 bp with an average of 3.2 exons.
The principal lncRNA transcripts with 2 exons accounted for 63.6% of the 3441 lncRNAs
(Table S2). Importantly, the open reading frame (ORF) length of lncRNA was shorter
compared with mRNA (Figure 2d). The result showed that the coding potential of lncRNAs
was lower.
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3.3. Differential Expression Analysis

To dissect the crucial lncRNAs involved in skeletal muscle growth in goats, we ex-
plored the DE lncRNAs (p < 0.05, |log2FoldChange| > 2) for 1-month-old vs. 9-month-old
stage. In this study, 36 lncRNAs were differentially expressed between 1-month-old and
9-month-old stage, among which 28 were up-regulated and 8 were down-regulated at
9-month-old stage compared with 1-month-old stage (p < 0.05) (Figure 3, Table S4).
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3.4. Functional Enrichment Analysis

To evaluate the potential function of DE lncRNAs, we predicted the cis- and trans-
potential targets of DE lncRNAs. In the co-location analysis, 30 lncRNAs (1 annotated lncR-
NAs and 29 novel lncRNAs) were transcribed close to 71 protein-coding genes
(Table S5). GO enrichment analysis showed that 210 GO terms were significantly en-
riched (p < 0.05), including biological process (BP), cellular component (CC), and molecular
function (MF) (Table S6). Only the top 30 GO terms were shown in Figure 4a. According to
GO enrichment analysis, 12 unique genes were enriched in muscle development-related
terms, such as myoblast fate determination, skeletal system development, negative regu-
lation of G1/S transition of mitotic cell cycle, and negative regulation of cell cycle G1/S
phase transition. These genes, including IFRD1, CSRNP1, DYM, FLI1, MEPE, MUSTN1,
TNFRSF11B, WDR48, APC, CRADD, MYO5B, and MYO16, may regulate skeletal muscle
development (Table S6). The co-location interactions between lncRNAs and potential target
genes related to muscle development were visualized by cis-regulatory network (Figure 5a).
Moreover, 57 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were en-
riched through the pathway analysis (Table S7). The top 20 significantly enriched KEGG
analyses were shown in Figure 4b. The potential target genes of DE lncRNAs associated
with muscle development were involved in Glycerolipid metabolism, signaling pathways
regulating pluripotency of stem cells, fatty acid metabolism, and biosynthesis of amino
acids (Figure 4b).
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Furthermore, we further predicted the potential targets of lncRNA in trans regula-
tion based on Pearson’s correlation coefficients (|r| > 0.95). A total of 8438 interaction
relationships were detected between 36 lncRNAs and 2684 mRNAs in goat reference
genome (Table S8). The top 200 interaction relationships, which included 3 lncRNAs
(novel lncRNAs) and 103 putative target genes, were selected for the subsequent functional
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cluster analysis. The putative trans-targets of DE lncRNAs were significantly enriched in
230 GO terms (p < 0.05) (Table S9), of which the top 30 are shown in Figure 4c. GO anal-
ysis indicated that NKX2-5, POU4F1, NPPA, IGFBP1, and TLE6 were enriched in muscle
development-related terms of canonical Wnt signaling pathway, muscle tissue morphogen-
esis, muscle organ morphogenesis, myotube differentiation, and so on. The co-expression
interactions between lncRNAs and the putative target genes related to muscle development
were visualized by trans-regulatory network (Figure 5b). The analysis suggested lncRNA
TCONS_00085732 and TCONS_00005111 may affect muscle development through tran-
scriptional regulation of POU4F1 and NKX2-5 or others. Finally, KEGG analysis indicated
the putative trans-targets of DE lncRNAs were involved in inositol phosphate metabolism,
phosphatidylinositol signaling system, Notch signaling pathway, and HIF-1 signaling path-
way (Table S10, Figure 4d). Overall, lncRNAs and their putative target genes showed great
potential in the regulation of skeletal muscle growth and development.

3.5. Verification of DE LncRNAs Expression Profile with RT-qPCR

Ten DE lncRNAs were randomly selected to explore their expression profile in skele-
tal muscle of goats at two development stages (1-month-old, 9-month-old) using RT-
qPCR. Expression analysis revealed these 10 lncRNAs exhibited differential expression
profile during skeletal growth in goats (Figure 6). The expression of five lncRNAs, in-
cluding TCONS_00134767, TCONS_00126170, TCONS_00124841, TCONS_00121766, and
TCONS_00026838, increased during the process of skeletal muscle growth. In contrast,
the expression of five other lncRNAs, including TCONS_00036756, TCONS_00066056,
TCONS_00062751, XR_001296113.2, and TCONS_00150002, decreased. Importantly, the
expression trends of the 10 significant differentially expressed lncRNAs were basically
consistent with the RNA-seq results. The above analysis revealed that the pipeline we
developed was reasonable to identify putative lncRNAs, and that the RNA-seq results
were reliable.
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1-month-old stage by RNA-seq (a) and RT-qPCR (c). The expression levels of lncRNAs upregulated
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** p < 0.01.
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3.6. Construction and Bioinformatics Analysis of the ceRNA Network

To elucidate the potential interaction of above lncRNAs, the lncRNA-miRNA-mRNA
ceRNA networks were constructed by Cytoscape software (Figure S2). Considering the
functional diversity of lncRNAs, we selected lncRNAs with muscle functions, which were
based on the reported roles of mRNA in previous studies to construct the following ceRNA
networks diagram (Figure 7). The ceRNA networks comprised 3 miRNAs, 8 mRNAs, and
4 lncRNAs transcripts, which interacted with at least one miRNA.
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It also showed that miRNA forms the center of the network with lncRNA as the
bait and mRNA as the target, suggesting that lncRNA acts as a sponge of miRNA to
regulate gene expression. For instance, lncRNA XR_001296113.2 could regulate PDLIM7
by competing with chi-miR-1296. Meanwhile, lncRNA XR_001917947.1, XR_001917946.1,
and XR_001917948.1 functioned as ceRNAs by regulating chi-miR-30b-3p, which affects
smad3 expression.

4. Discussion

The growth and development of skeletal muscle is one of the most important factors
affecting the meat production of livestock [36]. It is well known that skeletal muscle
development involves a series of exquisitely regulated and orchestrated changes in the
expression of many genes [37]. Importantly, the muscle development in goats involves two
main stages—the embryonic and the postnatal stages. During the embryonic stage, muscle
development is completed, and the number of muscle fibers generally does not change
after birth. At postnatal stage, the muscle growth is mainly triggered by muscle fiber



Animals 2022, 12, 2683 11 of 16

hypertrophy (the diameter and length of the myoblast) and an increase in intermuscular
fat [38]. In general, kid goat (from newborn to 90-day-old) was related to muscle fibers’
hypertrophy and regulation of myoblast proliferation [39]. In addition, goats grow very
quickly from 0 to 7 months, but slowly after 18 months [40]. In this study, two growth stages
(1-month-old and 9-month-old) were selected for researching the molecular mechanism
of muscle growth and development. The lncRNAs expression profile of goat longissimus
dorsi muscle at the two stages were detected by RNA-seq and bioinformatics analysis. We
investigated the transcript structure and expression patterns of lncRNAs in goat skeletal
muscle tissue, and then explored the potential functions of cis- and trans-potential target
genes of lncRNAs.

Few studies have reported on the crucial function of lncRNAs expression profile in
Wu’an black goat, especially in skeletal muscle growth and development. In this study,
the cDNA libraries were generated with Illumina NovaSeq. An average of ~14.58Gb high-
quality clean reads were obtained after the filtering process. Subsequently, the high-quality
clean reads were mapped to the goat reference genome and assembled with StringTie,
and a total of 65,247 library transcripts were obtained. LncRNAs can be single- or multi-
exon, making it difficult to distinguish putative lncRNAs from the plentiful sing-exon,
lowly expressed and unreliable sequenced fragments [41,42]. To minimize the selection
of false positive lncRNAs, we set up a relatively stringent filtering pipeline to obtain
true lncRNAs with high confidence. Only multi-exon lncRNAs were selected for further
exploration, as was done in other studies [23,43]. As a result, 3,441 putative lncRNAs with
high confidence were identified. In addition, most lncRNAs were longer than 2000 bp in
length and contained 2 exons, which was in agreement with previous studies in goats and
sheep [21,23]. Moreover, our current data demonstrated that lncRNAs had fewer exons
and shorter transcript length and ORFs length than mRNA, which was consistent with
other studies [22,23]. These similarities suggested that the putative lncRNAs verified in
our study were reliable. This was essential to expand our understanding of lncRNAs via
association with multiple structural features.

In recent years, numerous studies have reported on the biological functions of lncR-
NAs. For example, lnc-SEMT regulates IGF2 expression via competing with miR-125b
to facilitate skeletal muscle growth and development in sheep [17]. Besides, lncR125b
promotes the differentiation of goat skeletal muscle satellite cells by competing with miR-
125b [16]. In addition, a series of lncRNAs, such as lncIRS1, lnc-RAM, and lncMD1, have
been identified to have an essential effect on skeletal myogenesis [44–46]. LncRNAs are
non-coding transcripts that act as regulators of gene expression and are involved in skeletal
muscle development [47]. In the present study, we detected 36 DE lncRNAs in skeletal mus-
cle of goats at two growth stages. These lncRNAs showed significantly different changes
between 1-month-old and 9-month-old goats. They may have certain biological functions
during skeletal muscle growth. Therefore, the DE lncRNAs verified in this study could be
regarded as vital putative regulators of muscle biology. Furthermore, the expression trends
of 10 randomly DE lncRNA (either up or down regulated) identified by RT-qPCR were
consistent with the RNA-seq results. Together, these data provided a valuable resource for
exploring the role of lncRNAs in postnatal muscle growth and provided new insights into
the dynamic gene regulation of muscle biology in Wu’an black goat.

Unlike protein-coding genes, the biofunctions of lncRNAs cannot be directly specu-
lated from their sequence or structure. Therefore, we attempted to uncover the function of
lncRNAs based on their potential cis- and tans-acting target genes in our study [23,39,48].
Additionally, GO and KEGG analyses were carried out to further explore the function of
lncRNAs. It has been known that some lncRNAs are thought to work in cis on neigh-
boring genes, and other lncRNAs work in trans to regulate distantly located genes. The
cis-regulating target genes play an important role in estimating the biological functions of
lncRNAs. We searched for the potential cis-target genes located within 100 kb upstream
and downstream of the identified lncRNAs, which was comparable with previous stud-
ies [19,30]. Of these potential cis-target genes, some were all enriched in the GO term
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of skeletal muscle system development, including APC, IFRD1, CSRNP1, TNFRSF11B,
WDR48, and so on. The result implied that the corresponding lncRNAs had a vital role in
regulating skeletal muscle development. Emerging studies have documented that lncRNAs
were associated with cis-regulation in skeletal muscle biology. For instance, the lncRNA
Dum can facilitate myoblast differentiation and damage-induced muscle regeneration via
silencing its cis-acting target gene, Dppa2 [40]. Co-location correlation analysis combining
GO analysis indicated that TCONS_00062751 could affect muscle development by targeting
APC. The lncRNA TCONS_00062751 was selected because of its cis-target APC enriching
in the GO terms of negative regulation of G1/S transition of mitotic cell cycle and neg-
ative regulation of cell cycle G1/S phase transition. Moreover, it has been reported that
APC is required for muscle stem cell proliferation and skeletal muscle tissue repair [49].
Furthermore, the potential cis-target genes of TCONS_00026388 and TCONS_00026389
mainly enriched myoblast fate determination, in which IFRD1 was significantly enriched.
IFRD1 played a vital role in myoblast differentiation by regulating the expression of MyoD
and NF-kappaB [50]. These results suggested that lncRNAs acted in cis on neighboring
protein-coding genes to regulate muscle development in goats.

Still, some lncRNAs have been found to function in trans-acting to target gene loci
far from the transcriptional location of lncRNAs [51]. For instance, LncRNA MUNC,
encode 5 kb upstream of the MyoD transcription start site, facilitates the biofunction
of MyoD in muscle biology [52]. In this study, the co-expression analysis between DE
lncRNA and mRNA on different chromosomes were conducted based on the Pearson
correlation coefficient. We found that several mRNAs were regulated by the trans-action of
lncRNAs clustered in GO terms and KEGG pathways associated with muscle development.
For example, NKX2-5 was enriched in terms of negative regulation of canonical Wnt
signaling pathway, muscle tissue morphogenesis, and muscle organ morphogenesis and
myotube differentiation. NKX2-5 has been reported to regulate the differentiation of skeletal
myoblasts in vitro [39]. Based on the trans-regulatory interactions, TCONS_00085732 and
TCONS_00005111 may affect muscle development by targeting NKX2-5. It was worth
noting that POU4F1 was also the potential trans-action target of TCONS_00085732 and
TCONS_00005111. However, we found no reports on the regulation of muscle development
by POU4F1. The lncRNA TCONS_00085732 and TCONS_00005111 could regulate muscle
development on account of its putative trans-target POU4F1, mainly enriching in the GO
terms of muscle tissue morphogenesis and muscle organ morphogenesis.

Beyond that, another aspect worth considering is the low number of genes in “func-
tionally enriched” categories (some terms have only one gene). Taking the co-location
analysis as an example, the potential cis-targets of only the differentially expressed lncR-
NAs (not all screened 3441 LncRNAs) were predicted in the present study. As shown
in the manuscript, 71 putative target genes were enriched in 210 GO terms. Therefore,
the GO terms with assigned 1 gene were reasonable. Similar results have been found in
several other studies [30,53,54]. The above information validated that lncRNAs may be
involved in goat skeletal muscle biology through cis- or trans-regulation. Overall, these
genes associated with muscle development were derived from target predictions. Further
validation is necessary to explore the function of lncRNAs in skeletal muscle development
in goats.

Currently, the function roles and mechanisms of ceRNA are widely reported [55,56],
in which lncRNAs act as molecular sponges that regulate the expression of target mRNAs
upon binding miRNAs. In this study, the lncRNA-miRNA-mRNA ceRNA networks associ-
ated with muscle development in goats were constructed by sequencing and bioinformatic.
The functional lncRNAs serve as key regulators in muscle biology [44–46]. Therefore, it
was important to investigate the function of lncRNA in skeletal muscle growth. The ceRNA
networks analysis showed that lncRNA XR_001296113.2 acted as a sponge of chi-miR-1296
to regulate the expression of PDLIM7. Similarly, XR_001917947.1 functioned as a ceRNA to
regulate smad3 expression by sponging chi-miR-30b-3p. The potential function of lncRNAs
can be inferred from co-located or co-expressed protein-coding genes. Obviously, PDLIM7
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and smad3 attracted our attention in this study. Previous studies have reported that PDLIM7
is a member of the PDZ-LIM proteins family, which is known to regulate skeletal muscle
development [57,58]. Smad3 plays an important role in skeletal muscle regeneration, as
lack of smad3 signaling leads to impaired skeletal muscle regeneration [59]. Taken together,
the constructed ceRNA networks may function in goat muscle. Nevertheless, the biological
functions of the lncRNA-miRNA-mRNA interactions described in this study need to be
validated by further studies. The discussions mentioned above all suggested that lncRNAs
were an important component of the regulatory network in skeletal muscle growth and
development. The bioinformatics analysis showed that these lncRNAs exhibited significant
changes during skeletal muscle growth in goats, implying that they may have certain
functions in myofiber growth.

5. Conclusions

This study used RNA-seq to systematically characterize the expression profile of lncR-
NAs in skeletal muscle of goats at two development stages. The DE lncRNAs associated
with muscle growth in goats were validated. The verified lncRNAs in our study shared
many common features in their structure. The functional annotation of DE lncRNAs was
performed using GO and KEGG pathway enrichment analysis. In addition, the visualiza-
tion of lncRNA-associated ceRNA networks provide a more comprehensive understanding
of candidate lncRNAs that may regulate skeletal muscle growth in goats. However, the
lncRNA-associated ceRNA network involved in skeletal muscle development was inferred
from the protein-coding genes, and its role needs to be validated by further studies.
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