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A B S T R A C T
Background

Hookworms infect 730 million people in developing countries where they are a leading cause
of intestinal blood loss and iron-deficiency anemia. At the site of attachment to the host, adult
hookworms ingest blood and lyse the erythrocytes to release hemoglobin. The parasites
subsequently digest hemoglobin in their intestines using a cascade of proteolysis that begins
with the Ancylostoma caninum aspartic protease 1, APR-1.

Methods and Findings

We show that vaccination of dogs with recombinant Ac-APR-1 induced antibody and cellular
responses and resulted in significantly reduced hookworm burdens (p ¼ 0.056) and fecal egg
counts (p¼ 0.018) in vaccinated dogs compared to control dogs after challenge with infective
larvae of A. caninum. Most importantly, vaccinated dogs were protected against blood loss (p¼
0.049) and most did not develop anemia, the major pathologic sequela of hookworm disease.
IgG from vaccinated animals decreased the catalytic activity of the recombinant enzyme in vitro
and the antibody bound in situ to the intestines of worms recovered from vaccinated dogs,
implying that the vaccine interferes with the parasite’s ability to digest blood.

Conclusion

To the best of our knowledge, this is the first report of a recombinant vaccine from a
hematophagous parasite that significantly reduces both parasite load and blood loss, and it
supports the development of APR-1 as a human hookworm vaccine.
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Introduction

Hookworms infect more than 700 million people in
tropical and subtropical regions of the world. The major
species infecting humans are Necator americanus and Ancylos-
toma duodenale. The parasites feed on blood, causing iron-
deficiency anemia, and as such, are a major cause of disease
burden in developing countries [1]. Unlike other human
helminthiases, worm burdens do not generally decrease with
age; in fact, recent findings revealed that the heaviest worm
burdens are found among the elderly [2,3]. Whereas
anthelminthic chemotherapy with benzimidazole drugs is
effective in eliminating existing adult parasites, re-infection
occurs rapidly after treatment [4], making a vaccine against
hookworm disease a desirable goal.

Canines can be successfully vaccinated against infection
with the dog hookworm, Ancylostoma caninum, by immunization
with third-stage infective larvae (L3) that have been attenu-
ated with ionizing radiation [5–7]. Subsequently, varying levels
of vaccine efficacy have been reported for the major antigens
secreted by hookworm L3 using hamsters [8,9] and dogs [10].
Despite obtaining encouraging levels of protection with larval
antigens, only partial reductions in parasite load (fecal egg
counts and adult worm burdens) were reported. Moreover,
protective antigens from the larval stage are only expressed by
L3, and not adult worms, rendering antibodies against these
L3 secretions useless against parasites that have successfully
reached adulthood in the gut and begun to feed on blood. We
therefore suggest that an ideal hookworm vaccine would
require a cocktail of two recombinant proteins, one targeting
the infective larva and the second targeting the blood-feeding
adult stage of the parasite [11].

Of the different families of proteins expressed by blood-
feeding parasitic helminths, proteolytic enzymes have shown
promise as intervention targets for vaccine development
[12,13]. Proteases are pivotal for a parasitic existence,
mediating fundamental physiologic processes such as molting,
tissue invasion, feeding, embryogenesis, and evasion of host
immune responses [12,14]. Parasite extracts enriched for
proteases protect sheep against the blood-feeding nematodes
Haemonchus contortus [15–18] and Ostertagia ostertagi [19]; how-
ever, significant protective efficacy has not been shown with a
purified recombinant protease from nematodes of livestock.

Hookworms feed by burying their anterior ends in the
intestinal mucosa of the host, rupturing capillaries and
ingesting the liberated blood. Erythrocytes are lysed by pore
formation [20], releasing hemoglobin (Hb) into the lumen of
the parasite’s intestine, where it is degraded by a semi-
ordered pathway of catalysis that involves aspartic, cysteine,
and metalloproteases [21]. Vaccination of dogs with a
catalytically active recombinant cysteine hemoglobinase, Ac-
CP-2, induced antibodies that neutralized proteolytic activity
and provided partial protection to vaccinees by reducing egg
output (a measure of intestinal worm burden) and worm size,
but significant reductions of adult worm burdens and/or
blood loss were not observed [22]. Anemia is the primary
pathology associated with hookworm infection, and an
ultimate human hookworm vaccine would limit the amount
of blood loss caused by feeding worms and maintain normal
levels of Hb. This is particularly important in young children
as well as women of child-bearing age, in whom menstrual,

and particularly fetal, Hb demands are considerable, render-
ing these populations most vulnerable to the parasite [1].
Here we describe vaccination of dogs with the aspartic

hemoglobinase of A. caninum, Ac-APR-1 [21,23] and show that
vaccination resulted in the production of neutralizing anti-
bodies, significantly reduced egg counts, and significantly
reduced adult worm burdens. Most importantly, Hb levels of
vaccinated dogs were significantly higher than those of dogs
that were vaccinated with adjuvant alone after parasite
challenge. These data show that aspartic hemoglobinases,
particularly APR-1, are efficacious vaccines against canine
hookworm disease, providing strong support for further
investigation and development of APR-1 as a recombinant
vaccine against human hookworm disease.

Methods

Expression of Recombinant Ac-APR-1 in Pichia pastoris
The entire open reading frame of Ac-APR-1 encoding the

zymogen (spanning Ser-17 to the C-terminal Phe-446) but
excluding the predicted signal peptide was cloned into the
expression vector pPIC-Za (Invitrogen, Carlsbad, California,
United States) using the XbaI and EcoRI sites. Yeast, P. pastoris
X 33, was transformed with the vector encoding the Ac-APR-1
zymogen as recommended by the manufacturer (Invitrogen)
with modifications. Protein disulfide isomerase (PDI) gene in
the vector pPIC3.5 (a gift from Mehmet Inan, University of
Nebraska, Lincoln, Nebraska, United States) was cut with SacI
and transformed into P. pastoris X 33 cells which were already
transformed with Ac-apr-1 following the manufacturer’s
instructions. Eight transformed colonies were picked from
YPD plates containing Geneticin (0.5–1.0 mg�ml�1) and
Zeocin (1.0 mg�ml�1) and tested for Ac-APR-1 expression
following the manufacturer’s instructions. The highest
expressing colony was selected and transferred to suspension
culture in flasks containing BMG medium (buffered minimal
glycerol: 1.34% yeast nitrogen base, 0.00004% d-biotin, 1% w/
v glycerol, and 100 mM potassium phosphate, [pH 6.0]).
Suspension cultures were then transferred to a Bioflo 3000
fermentor (New Brunswick Scientific, Edison, New Jersey,
United States) utilizing a 5-l vessel as described [8]. The
recombinant protein was secreted into culture medium and
affinity purified on nickel-agarose as described elsewhere [8].
Progress of purification was monitored using SDS-PAGE gels
stained with Coomassie Brilliant Blue and immunoblots using
monoclonal antibodies to the vector-derived myc epitope.
Recombinant Ac-APR-1 was treated with PNGase F and O-
glycosidase, according to the manufacturer’s instructions
(Enzymatic CarboRelease kit; QA-Bio, San Mateo, California,
United States), under denaturing conditions to remove any
N-linked and O-linked oligosaccharides. Deglycosylation was
performed only to confirm the presence of N-linked sugars
on the recombinant molecule. All remaining studies were
conducted with the glycoprotein.

Activation and Hemoglobinolytic Activity of Recombinant
APR-1
The unactivated zymogen was used for vaccination. A small

amount of the purified protein, however, was buffer
exchanged into 100 mM sodium formate (pH 3.6)/0.15 M
NaCl using a PD10 desalting column (Amersham Biosciences,
Little Chalfont, United Kingdom) to facilitate proteolytic
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activation and removal of the pro-region. One microgram of
purified, activated protease was then added to 10 lg of dog
Hb in the same buffer and incubated at 37 8C for 2 h.
Cleavage of Hb was assessed visually by staining SDS-PAGE
gels with Coomassie Brilliant Blue.

Animal Husbandry
Purpose-bred, parasite naive, male beagles aged 8 6 1 wk

were purchased from Marshall Farms (North Rose, New York,
United States), identified by ear tattoo, and maintained in the
George Washington University Animal Research Facility as
previously described [24]. The experiments were conducted
according to a protocol approved by the University Animal
Care and Use Committee (IACUC 48–12,0 [12,1]E). Before the
first vaccination and after each subsequent one, a blood
sample was obtained from each dog.

Vaccine Study Design and Antigen-Adjuvant Formulation
The vaccine trial was designed to test Ac-APR-1 zymogen

formulated with the adjuvant AS03 [25], obtained from
GlaxoSmithKline (a kind gift from Drs. Joe Cohen and Sylvie
Cayphas; GSK Biologicals, Rixensart, Belgium). To make six
doses of Ac-APR-1 formulated with AS03, 600 lg of
recombinant protein (1.5 ml of Ac-APR-1 at a concentration
of 0.4 mg�ml�1) was mixed with 1.2 ml of 20 mM Tris-HCl, 0.5
M NaCl (pH 7.9), and 1.5 ml of AS03; the contents of the tube
were vortex mixed for 30 sec then shaken at low speed for 10
min. Dogs were immunized with 100 lg of formulated antigen
in a final volume of 0.5 ml. AS03-only control was prepared as
described above, with PBS included instead of Ac-APR-1.

Canine Immunizations and Antibody Measurements
Five beagles were immunized three times with AS03-

formulated Ac-APR-1 by intramuscular injection. The vaccine
was administered on days 0, 21, and 42, beginning when the
dogs were 62 6 4 d of age. As negative controls, five beagles
were also injected intramuscularly with an equivalent amount
of AS03 using the identical schedule. Blood was drawn at least
once every 21 d and serum was separated from cells by
centrifugation. Enzyme-linked immunosorbent assays (ELI-
SA) were performed as previously described [24]. Recombi-
nant Ac-APR-1 was coated onto microtiter plates at a
concentration of 5.0 lg�ml�1. Dog sera were titrated between
1:100 and 1:2 3 106 to determine endpoint titers (the highest
dilution of test group [APR-1] sera that gave a mean O.D. of
�33 the mean optical density (OD) of sera from the control
group). Anti-canine IgG1, IgG2, and IgE antibodies conju-
gated to horseradish peroxidase (Bethyl Laboratories, Mont-
gomery, Texas, United States) were used at a dilution of
1:1,000. Blood was collected from dogs before immunizations
and 7 d after the third vaccination but before L3 challenge.

Stimulation of and Cytokine Measurements from Cultured
Whole Blood

Lymphoproliferation assays were performed using a whole
blood microassay as previously described [26]. Briefly, 25 ll of
heparinized blood was diluted in 200 ll of RPMI 1640
medium (Gibco, Invitrogen) supplemented with 3% anti-
biotic/antimycotic solution (Gibco). All tests were performed
in triplicate in 96-well flat-bottomed culture plates using
recombinant APR-1 at a concentration of 25 lg�ml�1 and
concanavalin A (ConA; Sigma-Aldrich, St. Louis, Missouri,
United States) at 80 lg�ml�1. Incubation was carried out in a

humidified 5% CO2 atmosphere at 37 8C for 2 d (ConA-
stimulated cultures) and 5 d (APR-1). Cells were pulsed for 6 h
with 1.0 lCi of [3H] thymidine (PerkinElmer Life And
Analytical Sciences, Boston, Massachusetts, United States)
and harvested onto glass fiber filters. Radioactive incorpo-
ration was determined by liquid scintillation spectrometry.
Proliferation responses were expressed as stimulation indices,
SI (where SI¼mean proliferation of stimulated cultures/mean
proliferation of unstimulated cultures). For cytokine analyses,
whole blood (collected as described above) was diluted 1:8 in
RPMI supplemented with 3% antibiotic/antimycotic solution
in a 48-well flat-bottomed culture plate with a final volume of
1.0 ml per well. Cells were stimulated by the addition of 25
lg�ml�1 of recombinant APR-1. After 48 h of incubation at 37
8C, 700 ll of supernatant was removed from each well and
stored at�20 8C until required for the cytokine assay. IL-4, IL-
10, and IFN-c were measured using a capture ELISA assay for
dogs (R & D Systems, Minneapolis, Minnesota, United States)
following the manufacturer’s instructions. Biotin-labeled
detection antibodies were used (100 ng�ml�1), revealed with
streptavidin-HRP (Amersham Biosciences), and plates were
developed with OPD (O-Phenylenediamine) substrate system
(Sigma-Aldrich).

Hb Measurements
To determine Hb concentrations of experimental dogs, 1–2

ml of blood were collected in EDTA and analyzed using a
QBC VetAutoread Hematology System and VETTEST Soft-
ware (IDEXX Laboratories, Westbrook, Maine, United States).

Hookworm Infections and Parasite Recovery
Two weeks after the final immunization, dogs were

anaesthetized using a combination of ketamine and xylazine
(20 mg�kg�1 and 10 mg�kg�1 respectively) and infected via the
footpad with 500 A. caninum L3 as described elsewhere [22].
Quantitative hookworm egg counts (McMaster technique)
were obtained for each dog 3 d per wk from days 12–26
postinfection. Four weeks postinfection, the dogs were killed
by intravenous injection of barbiturate, and adult hookworms
were recovered and counted from the small and large
intestines at necropsy [24]. The sex of each adult worm was
determined as described elsewhere [8]. Approximately 1–2 cm
lengths of small intestine were removed and stored in
formalin for future histopathologic analysis.

Statistical Methods
In most cases, the small size of the samples did not enable

us to determine if values were normally distributed, so the
following non-parametric tests were used: Mann-Whitney U
was used to test whether two independent samples (groups)
came from the same population, and the Kruskal Wallis H test
was used to determine if several independent samples came
from the same population. Normally distributed variables
were tested in the following manner: The independent-
samples t-test procedure was used to compare the means for
two groups, and an analysis of variance was used to test the
hypothesis that several means are equal, followed by a Dunnet
post hoc multiple comparison t-test to compare the vaccine
treatment groups against the control group. Differences were
considered statistically significant if the calculated p-value
was equal to or less than 0.1 (two-sided). The percentage
reduction or increase in adult hookworm burden in the
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vaccinated group was expressed relative to the control group
as described elsewhere [24].

Immunohistochemistry
Adult hookworms were recovered at necropsy from vacci-

nated dogs and control dogs, washed briefly, then fixed and
sectioned as previously described [22]. To observe whether IgG
from vaccinated but not control dogs, bound to APR-1 lining
the intestinal microvillar surface of worms in situ, sections
were probed with Cy3-conjugated rabbit anti-dog IgG (Jackson
Immunoresearch, West Grove, Pennsylvania, United States) at
a dilution of 1:500 as described elsewhere [27]. Sections were
visualized using a Leica IM 100 inverted fluorescence micro-
scope (Leica Microsystems, Wetzlar, Germany).

Effect of Anti–Ac-APR-1 IgG on Proteolytic Activity
Canine IgG was purified from sera of vaccinated dogs using

protein A-agarose (Amersham Biosciences) as previously
described [23]. Purified IgG (0.2 lg) was incubated with 1.0
lg of recombinant Ac-APR-1 for 45 mins prior to assessing
catalytic activity of APR-1 against the fluorogenic substrate o-
aminobenzoyl-IEF-nFRL-NH2 as described previously [23].
The aspartic protease inhibitor, pepstatin A, was included at
a final concentration of 1.0 lM as a positive control for
enzymatic inhibition. Data was recorded from triplicate
experiments and presented as relative fluorescence units
using a TD700 fluorometer (Turner Designs, Sunnyvale,
California, United States).

Results

Secretion of Catalytically Active Ac-APR-1 by P. pastoris
Yeast secreted the APR-1 zymogen into culture medium at

an approximate concentration of 1.0 mg�l�1 (Figure 1A). In the
absence of co-expression with the PDI chaperone, the amount
of APR-1 secreted by P. pastoris was approximately half that
obtained here (not shown). Ac-APR-1 has one potential
glycosylation site at Asn-29 of the zymogen (after removal of
the signal peptide), and treatment with PNGase F decreased
the size of the recombinant protein by the expected size (2–3
kDa; not shown). The activated recombinant protease readily
digested canine Hb at acidic pH (Figure 1B), confirming that
Ac-APR-1 expressed in yeast is catalytically active and digested
Hb with similar efficiency to recombinant Ac-APR-1 produced
in baculovirus (data not shown).

Recombinant Ac-APR-1 Is Immunogenic in Dogs
AS03 was used as an adjuvant based on its ability to induce a

higher IgG1 response and greater reduction in hookworm egg
counts when used to vaccinate dogs in a head-to-head
comparison of a cysteine hemoglobinase formulated with
four different adjuvants [22]. Dogs immunized with recombi-
nant Ac-APR-1 formulated with AS03 produced IgG1 and IgG2
antibody responses as measured by ELISA using the recombi-
nant protein (Figure 2). IgE titers were low (,1:1,500) and

Figure 1. P. pastoris Secrete Ac-APR-1 Zymogen that Autoactivates at

Low pH and Degrades Canine Hb

SDS-PAGE gel stained with Coomassie Brilliant Blue showing purification
of recombinant APR-1 zymogen from P. pastoris culture supernatant.
(A) Lane 1, molecular weight markers; lane 2, concentrated culture
supernatant; lane 3, flow-through from a nickel-IDA column; lane 4, 5
mM imidazole wash; lane 5, 20 mM imidazole column eluate; lane 6, 60
mM imidazole eluate; and lane 7, 1 M imidazole eluate. Purified
recombinant APR-1 zymogen was activated by buffer exchange into 0.1
M sodium formate/0.1 M NaCl (pH 3.6).
(B) Lane 1, molecular weight markers; lane 2, 5.0 lg of canine Hb (pH
3.6); and lane 3, 5.0 lg of canine Hb (pH 3.6) incubated with 0.2 lg of
recombinant APR-1.
DOI: 10.1371/journal.pmed.0020295.g001

Figure 2. The Geometric Mean Titers of the IgG1 and IgG2 Antibody

Responses of Dogs Vaccinated with Recombinant Ac-APR-1 Formulated

with AS03 or AS03 Alone

LC, day on which dogs were challenged with hookworm L3; N, day of
necropsy; V1, V2, and V3, days on which animals were vaccinated.
DOI: 10.1371/journal.pmed.0020295.g002
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were not sustained past challenge. We did not adsorb IgG from
serum before measuring IgE in this study; however, in previous
trials IgG was removed and we did not see a difference in
antigen-specific IgE titers. For vaccinated dogs, maximum
IgG2 titers of 1:121,500 were attained by all five dogs after the
second vaccination. High titers persisted through challenge
and decreased to 1:26,098 by necropsy. IgG1 titers peaked at
1:13,500 after the third vaccination in all four dogs and
dropped to 1:3,600 by necropsy. Dogs immunized with
adjuvant alone did not generate detectable immune responses
greater than 1:500, even after larval challenge.

Dogs rapidly acquire resistance to hookworm with matur-
ity. A single dog was therefore removed from the control
group (for all analyses) because its weight was greater than the
acceptable range at all time points after the first vaccination
(mean plus or minus three standard errors).

Vaccination Induces Antigen-Specific Cell Proliferation
and Cytokine Production

Vaccination with APR-1 induced a high level of lympho-
cyte/leukocyte proliferation compared with control dogs
when cells were stimulated with APR-1 (p , 0.01, t-test). Cells
from both vaccinated and control dogs proliferated equally
when stimulated with mitogen (Figure 3A and 3B). No
significant proliferation to APR-1 was observed before the
immunization process. Immunization with APR-1 elicited
antigen-specific production of IFN-c (p ¼ 0.03, t-test) (Figure
3C). In contrast, we did not detect significant production of

IL-4 or IL-10 after stimulation with APR-1 in either
vaccinated or control groups (not shown).

Vaccination with Ac-APR-1 Decreases Fecundity of Female
Hookworms
Dogs develop age- and exposure-related immunity to A.

caninum [5], so we therefore observed egg counts from
vaccinated animals up to 26 d postchallenge, after which we
often observe a significant decrease in egg counts in some
dogs. Because of daily variation in egg counts from infected
dogs (A. Loukas. S. Mendez, and P. Hotez, unpublished data),
we analyzed the data in two ways. Firstly, the median egg
counts for days 21, 23, and 26 postinfection were used to
compare worm fecundity between vaccinated and control
groups. A 70% decrease in median egg counts was observed
in dogs vaccinated with Ac-APR-1 (2,650 eggs per gram of
feces [epg]) compared with dogs that were vaccinated with
adjuvant alone (8,725 epg) when median egg counts were
calculated for the three time points measured after larval
challenge (Figure 4A). We then compared geometric mean
values of egg counts between the two groups (Figure 4B), and
showed that mean egg counts of the vaccinated animals
remained lower than the control animals as worms became
fecund by day 21, implying that fecundity of female worms
diminished significantly as they began to feed on blood
containing anti–APR-1 antibodies. By day 26 postchallenge,
there was an 85% reduction in mean egg counts between the
two groups. For statistical analyses, we transformed egg

Figure 3. Canine Cellular Immune Response to Vaccination with Recombinant Ac-APR-1

Cell proliferation of whole blood cells from vaccinated (APR-1) and control dogs (AS03) when stimulated with concanavalin A (A) or recombinant Ac-
APR-1 (B) before (day 0) and after the final immunization (day 51). The p-value comparing the mean differences between the vaccinated group and
controls is denoted. Detection of secreted IFN-c in whole blood cultures taken from vaccinated and control dogs before and after immunization (C).
Mean cytokine concentrations are indicated in pg�ml�1 with standard error bars. Statistically significant differences are indicated above the bars by p-
values. APR, stimulated with recombinant APR-1; NS, non-stimulated cultures.
DOI: 10.1371/journal.pmed.0020295.g003
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counts into log values and ran the test in two ways: (1)
comparing the log transformed epgs in the last three egg
counts by analysis of variance (Kruskall-Wallis) revealed no
significant differences among the groups for the last three egg
counts when each time point was considered individually; and
(2) comparing pooled data from the last three egg counts

using a Mann-Whitney test (APR-1 versus control), revealed a
statistically significant difference (p ¼ 0.018).

Vaccination with Ac-APR-1 Significantly Reduces Adult
Hookworm Burdens
A statistically significant difference at the p � 0.1 level (p¼

0.095; Mann-Whitney U test) was detected for a one-sided test
between median adult worm burdens recovered from
vaccinated dogs (182) compared with control dogs (270) but
not for a two-sided test (p ¼ 0.190) (Figure 5). Percentage
reduction of the median worm counts was 33% when data
from both sexes of worms were combined, 30% for male
worms (p¼ 0.111 [2-sided] or p¼ 0.056 [1-sided]) and 40% for
female worms (p ¼ 0.1905 [2-sided] or p ¼ 0.0952 [1-sided]),
again supporting the enhanced effect of the vaccine on
female worms given their increased nutritional requirements
for egg production.

Vaccination with APR-1 Protects against Anemia
Hb levels in four of the five dogs that were vaccinated with

APR-1 were significantly elevated when compared with
control dogs (adjuvant alone) after challenge infection
(Figure 6). The median Hb concentration of vaccinated dogs
for the last two time points (0 and 7 d prior to necropsy) was
12.45 g�dl�1 compared with 9.5 g�dl�1 for the control dogs that
were immunized with adjuvant alone (p ¼ 0.049; Mann-
Whitney U test). A decline in Hb levels was seen in all of the
control dogs after challenge infection; the decline was
marked in three of the four dogs. Four of the five dogs that
were vaccinated with APR-1 did not show a similar decline,
and had Hb levels within (or very close to) the normal clinical
range of 12–14 g�dl�1. One dog (C5) from the vaccinated
group did become anemic (Hb concentration was 9.6 g�dl�1),
and this animal had more female worms (120 compared with
a mean of 88 female worms for the group) and more male
worms (87 compared with a mean of 80 male worms for the
group). However, using both Spearman and Pearson tests, we
did not detect a significant correlation between worm
burdens (for either or both sexes) and Hb status of the
vaccinated dogs.

Anti–APR-1 Antibodies Are Ingested by and Bind to the
Intestine of Feeding Hookworms
The site of anatomical expression of Ac-APR-1 within adult

hookworms has been previously reported by us to be the

Figure 4. Vaccination with APR-1 Reduces Fecal Egg Counts of Dogs

after Challenge Infection with Hookworms

Statistically significant reduction (p¼ 0.018) in median fecal egg counts
sampled on days 21, 23, and 26 of dogs vaccinated with APR-1 compared
to dogs that received adjuvant alone.
(A). Geometric mean values of fecal egg counts from vaccinated and
control dogs between challenge infection and necropsy.
(B). Error bars refer to the standard error of the mean.
DOI: 10.1371/journal.pmed.0020295.g004

Figure 5. Vaccination with APR-1 Reduces Adult Worm Burdens of Dogs after Challenge Infection with Hookworms

Statistically significant reduction at the p , 0.1 level (p¼0.065) in median adult worm (both sexes) burdens of dogs vaccinated with APR-1 compared to
dogs that received adjuvant alone (A). Reductions are also shown when only male (B) (p ¼ 0.111) and only female (C) (p ¼ 0.1905) worms were
considered; however, statistically significant reductions were not achieved for single sex analyses. Bars represent the median value for each group.
DOI: 10.1371/journal.pmed.0020295.g005
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microvillar surface of the gut [21,23]. To determine whether
vaccination of dogs induced circulating antibodies that
bound to the intestinal lumen during infection, parasites
were removed from vaccinated dogs, fixed, sectioned, and
probed with anti-dog IgG conjugated to Cy3. Worms
recovered from dogs immunized with Ac-APR-1 but not from
dogs immunized with adjuvant alone reacted with Cy3-
conjugated anti-dog IgG (Figure 7), indicating that anti–

APR-1 antibodies were ingested with the blood-meal of the
worm and subsequently bound specifically to the intestine of
the parasite in situ.

IgG from Dogs Vaccinated with Ac-APR-1 Neutralizes
Proteolytic Activity In Vitro
Purified IgG from dogs that were immunized with Ac-APR-1

reduced the catalytic activity of the enzyme by 71%,
compared with just 6% reduction when an equivalent
amount of IgG from dogs immunized with adjuvant alone
was assessed (Table 1). The aspartic protease inhibitor,
pepstatin A, inhibits catalytic activity of APR-1 [23] and was
therefore used as a positive control to obtain 100% inhibition
for comparative purposes.

Discussion

Here we describe protective vaccination of dogs with a
recombinant aspartic hemoglobinase, a pivotal enzyme in the
initiation of Hb digestion in the gut of canine hookworms
[12,21]. We show that APR-1 provides the best efficacy thus
far reported for a recombinant vaccine aimed at reducing
hookworm egg counts, intestinal worm burdens, and hook-
worm-induced blood loss.
The vaccine efficacy of recombinant Ac-APR-1 expressed in

baculovirus-infected insect cells was described earlier by us

Figure 6. Vaccination of Dogs with APR-1 Reduces Blood Loss and

Protects against Anemia

Hb concentrations of vaccinated dogs were significantly (p ¼ 0.049)
greater than those of control dogs when blood was drawn after larval
challenge (0 and 7 d before necropsy [post]) but not when blood was
drawn 5 d before larval challenge (pre).
DOI: 10.1371/journal.pmed.0020295.g006

Figure 7. Antibodies Bind In Situ to the Intestines of Hookworms that Feed on Vaccinated Dogs

Detection of antibodies that bound to the gut of worms recovered from vaccinated dogs (A and B) but not control dogs (C and D) by
immunofluorescence. Binding was detected using Cy3-conjugated rabbit anti-dog IgG, allowing only detection of antibodies that had bound in situ
while parasites were feeding on blood from vaccinated or control dogs. ic. intestinal contents; in, hookworm intestine; mv, intestinal microvillar surface;
ro, reproductive organs.
DOI: 10.1371/journal.pmed.0020295.g007
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[24]; however, this initial vaccine trial was hampered by
limited availability of the recombinant protein: Suboptimal
doses were used and antibody responses (titers ,10,000) were
first observed just 1 wk following the third (and final)
immunization, and only in some dogs. Despite the weak
antibody responses, a statistically significant reduction in
mean (18%, p , 0.05) and median (23%) hookworm burdens
were observed. In addition there was a shift of adult
hookworms from the small intestine to the colon [24].
However, no reduction in the mean fecal egg counts were
observed, and hematologic parameters were not assessed. The
improved immunogenicity of APR-1 observed in this study
might also be attributed to use of the adjuvant AS03
compared with alhydrogel in the previous study. We have
shown in a head-to-head comparison of a hookworm cysteine
hemoglobinase formulated with different adjuvants (includ-
ing alhydrogel) that AS03-formulated protein generated
higher antibody titers and afforded greater protection to
vaccinated dogs [22]. In this study, we show that yeast-derived
APR-1 provides the best efficacy thus far reported for a
recombinant vaccine aimed at reducing hookworm load and
potential transmission. Moreover, we show that vaccination
protects against the pathology associated with worm-induced
blood loss, or hookworm disease.

Hookworms bury their anterior ends into the intestinal
mucosa to feed, secreting anticoagulants to promote blood
flow and stop clot formation at the site of attachment
(reviewed in [28]). Numerous anticoagulant peptides have
been reported from hookworms [29–31], and their combined
activities result in ‘‘leakage’’ of blood around the attachment
site and into the host intestine [32]. It is not known whether
the majority of blood loss during a hookworm infection is due
to leakage around the feeding site or from ingested blood
that enters the parasite’s alimentary canal for nutritional
purposes. To address this, attempts have been made to
measure blood lost from the anus of A. caninum (i.e., blood
that has passed through the parasite’s alimentary canal);
varying calculations have been proposed ranging from 0.14–
0.8 ml blood expelled over 24 h per adult worm (reviewed in
[32]). Whatever the true figure is, significant blood loss occurs
via this route, supporting the hypothesis that vaccination with
APR-1 damages that parasite’s intestine and results in
decreased blood intake (and blood loss) by feeding worms.

The immunological parameters required for vaccine-
induced protection against hookworm infection were, until
recently, poorly defined. Protection against A. caninum by
vaccination of dogs with radiation-attenuated L3 was
reported many years ago [5]; however, it was not until
recently that murine [8,33] and canine [34] studies revealed
the protective mechanisms of the irradiated larval vaccine at
a cellular level. These studies suggested that a T-helper type-2
response is induced by vaccination with irradiated L3;
however the authors did not prove that a T-helper type-1
response abrogates protection. In our study reported here,
dogs vaccinated with APR-1 generated strong memory
responses to the recombinant antigen and did not secrete
Th-2 cytokines but instead secreted IFN-c in response to
stimulation with recombinant APR-1. Moreover, the domi-
nant antibody isotype induced by vaccination was IgG2,
suggesting that a Th-1-like response was generated. Unlike
the clear association between IgG2 and type I cytokines such
as IFN-c in mice and humans, little is known about this
association in dogs. Experimental evidence using the canine
model suggests that immune responses (Th1 versus Th2) are,
however, linked to isotype production. For example, animals
infected with and protected against visceral leishmaniasis
(Th1 response) or Salmonella (also a Th1 response) mount a
higher IgG2 than IgG1 response [35,36]. Our data [34] show
that dogs immunized with irradiated hookworm larvae
demonstrated a stronger production of IgG1 (also supported
by [37]) which accompanied IL-4 production, implying a Th2
cytokine response in dogs is accompanied by the same
immunoglobulin isotypes seen in humans and mice. Based on
the current data, we cannot conclude that a Th-1 response to
APR-1 is required to obtain protection; however, it does not
inhibit the development of a protective memory response. It
should also be considered that successful immunity to the
different developmental stages of hookworms might require
very different immune response phenotypes, not unlike those
seen in schistosomiasis [38]. Further studies will explore the
effects of vaccination with APR-1 formulated with different
adjuvants and co-factors (e.g., cytokines) that will promote a
Th2 response.
Hematophagous helminths require blood as a source of

nutrients to mature and reproduce. Female schistosomes
ingest 13 times as many erythrocytes and ingest them about
nine times faster than male worms [39]. Moreover, mRNAs
encoding Hb-degrading proteases of schistosomes are over-
expressed in female worms [40]. Although similar studies have
yet to be performed for hookworms, female hookworms are
bigger than males and lay up to 10,000 eggs per day, implying
that they have a greater metabolism and therefore greater
demand for erythrocytes. Ac-APR-1 degrades Hb in the gut
lumen of the worm, and it is therefore not surprising that
interruption of the function of APR-1 via the action of
neutralizing antibodies has a deleterious effect on the
establishment of worms, particularly females and their
subsequent egg production. We observed a similar (although
not as pronounced) phenomenon when dogs were vaccinated
with the cysteine hemoglobinase, Ac-CP-2, followed by
challenge infection with A. caninum L3 [22]. Vaccination with
CP-2, however, did not result in reduced adult worm burdens
or reduced blood loss, essential attributes of an efficacious
hookworm vaccine.
Vaccination of livestock and laboratory animals with

Table 1. Reduction in Cleavage of the Fluorogenic Substrate o-
Aminobenzoyl-IEF-nFRL-NH2 When 1.0 lg of Recombinant Ac-
APR-1 Was Pre-Incubated with 0.2 lg of IgG Purified from Sera of
Dogs Vaccinated with APR-1/AS03 or AS03 Alone (Control)

Protease and

Treatment

Corrected Relative

Fluorescence Units

Mean Percent

Reduction in Cleavage

of IEF-nFRL-NH2

APR-1 þ buffer 362 6 13 0

APR-1 þ a-APR-1 IgG 104 6 24 71

APR-1 þ control IgG 340 6 41 6

APR-1 þ pepstatin 0 100

Percent reductions caused by incubation of APR-1 with IgGs were determined using 1.0 lM pepstatin as positive

(100% reduction) control. Baseline was set at zero using the relative fluorescence of the positive control.

DOI: 10.1371/journal.pmed.0020295.t001
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aspartic proteases of other nematodes, as well as trematode
helminths, has resulted in antifecundity/antiembryonation
effects. Immunization of sheep with the intestinal brush
border complex, H-gal-GP, confers high levels of protection
(both antiparasite and antifecundity) against H. contortus and
at least three different protease activities, including aspartic
proteases, have been detected in this extract [16,41].
Immunization of sheep with aspartic protease-enriched
fractions of H. contortus membranes resulted in 36%
reduction in adult worms and 48% reduction in fecal egg
output [17]. Vaccination of sheep with denatured H. contortus
proteases or recombinant proteases expressed in bacteria,
however, did not confer protection, suggesting that con-
formational epitopes are important in protection [17].
Vaccination of mice with recombinant aspartic protease of
the human blood fluke, Schistosoma mansoni, resulted in 21%–
38% reduction in adult parasites after challenge with
infective cercariae; however a reduction in eggs deposited
in the liver (the cause of most pathology in schistosomiasis)
was not detected [42]. Protective efficacy of aspartic proteases
has been observed against fungal pathogens as well. Vacci-
nation of mice with secreted aspartic proteases of Candida
albicans, known virulence factors in candidiasis, protected
animals against a lethal challenge infection and inhibited
colonization of fungi in the kidneys [43]. Moreover, passive
transfer of serum from vaccinated animals conferred pro-
tection, pointing towards an antibody-mediated protective
mechanism.

Almost all of the pathology and morbidity of human
hookworm infection results from intestinal blood loss caused
by large numbers of adult hookworms. Depending on host
iron and protein stores, a range of hookworm intensities,
equivalent to burdens of 40 to 160 worms, is associated with
Hb levels below 11 g�dl�1, the World Health Organization
threshold for anemia. In Tanzania, Nepal, and Vietnam where
host iron stores are generally depleted, there is a direct
correlation between the number of adult hookworms in the
intestine and host blood loss [1,44]. Therefore the optimal
hookworm vaccine will be one that either prevents L3 from
developing into adult blood-feeding hookworms, or one that
blocks the establishment, survival, and fecundity of the adult
parasites in the intestine [3,45]. Achieving both goals will
likely require a vaccine cocktail comprised of an L3 antigen,
such as ASP-2 now under clinical development [46,47], and an
adult gut protease, such as APR-1.

An effective hookworm vaccine need not attain 100%
efficacy. Unlike many unicellular organisms that reproduce
asexually within the host, nematodes need to sexually
reproduce. Therefore, small numbers of adult worms will
generate fewer eggs to contaminate the environment, and
subsequently reduce transmission. More importantly, because
hookworms are blood feeders, a partial reduction in adult
worm burden equates to a decrease in pathology, notably
iron-deficiency anemia [44]. Mathematical modeling of
schistosomiasis in China showed that elimination of the
parasite could be attained using an antifecundity vaccine that
targets egg output with 75% efficacy [48], and it is likely that a
similar scenario applies to long-term elimination of soil-
transmitted helminths such as hookworms. An orthologue of
Ac-APR-1 has been reported from the major human hook-
worm, N. americanus [23]. Na-APR-1 is structurally and
antigenically very similar to Ac-APR-1 and also functions as

a hemoglobinase [23]. For this reason, we believe that APR-1
is now the major vaccine antigen from the adult stage of the
parasite, and as such, Na-APR-1 should undergo process
development and enter into Phase I clinical trials as a vaccine
for human hookworm infection. This vaccine strategy is now
being implemented for a larval hookworm antigen, with
Phase 1 human trials using ASP-2 formulated with Alhydrogel
already underway [49]. Based on the data reported here, APR-
1 may also be selected for downstream process development,
manufactured under good clinical manufacturing processes,
and tested in the clinic.

Supporting Information

Accession Numbers
The GenBank (http://www.ncbi.nlm.nih.gov/Genbank) accession num-
bers for the gene products mentioned in this paper are Ac-APR-1
(U34888) and Na-APR-1 (AJ245459).

Acknowledgments

This work was supported by a grant from the Bill and Melinda Gates
Foundation awarded to the Sabin Vaccine Institute. AL is supported
by a Career Development Award from the National Health and
Medical Research Council of Australia. JMB is supported by an
International Research Scientist Development Award (1K01
TW00009) from the Fogarty Center. For technical assistance and/or
helpful advice, we thank Yan Wang, Lilian Bueno, Azra Dobardzic,
Reshad Dobardzic, Andre Samuel, Sonia Ahn, Aaron Witherspoon,
Clay Winters, Estelle Schoch, John Hawdon, and Philip Russell. We
would like to acknowledge Joe Cohen and Sylvie Cayphas of
GlaxoSmithKline Biologicals (Rixensart, Belgium) for providing
AS03 and technical assistance with formulation.

References
1. Hotez PJ, Brooker S, Bethony JM, Bottazzi ME, Loukas A, et al. (2004)

Hookworm infection. N Engl J Med 351: 799–807.
2. Bethony J, Chen J, Lin S, Xiao S, Zhan B, et al. (2002) Emerging patterns of

hookworm infection: influence of aging on the intensity of Necator infection
in Hainan Province, People’s Republic of China. Clin Infect Dis 35: 1336–
1344.

3. Loukas A, Constant SL, Bethony JM (2005) Immunobiology of hookworm
infection. FEMS Immunol Med Microbiol 43: 115–124.

4. Albonico M, Smith PG, Ercole E, Hall A, Chwaya HM, et al. (1995) Rate of
reinfection with intestinal nematodes after treatment of children with
mebendazole or albendazole in a highly endemic area. Trans R Soc Trop
Med Hyg 89: 538–541.

5. Miller TA (1965) Effect of age of the dog on immunogenic efficiency of
double vaccination with x-irradiated Ancylostoma caninum larvae. Am J Vet
Res 26: 1383–1390.

6. Miller TA (1965) Influence of age and sex on susceptibility of dogs to
primary infection with Ancylostoma caninum. J Parasitol 51: 701–704.

7. Miller TA (1965) Persistence of immunity following double vaccination of
pups with x-irradiated Ancylostoma caninum larvae. J Parasitol 51: 705–711.

8. Goud GN, Zhan B, Ghosh K, Loukas A, Hawdon JM, et al. (2004) Cloning,
yeast expression, isolation and vaccine testing of recombinant Ancylostoma-
secreted protein 1 (ASP–1) and ASP-2 from Ancylostoma ceylanicum. J Infect
Dis 189: 919–929.

9. Mendez S, Zhan B, Goud GN, Ghosh K, Dobardzic A, et al. (2005) Effect of
combining the larval antigens Ancylostoma secreted protein 2 (ASP-2) and
metalloprotease 1 (MTP-1) in protecting hamsters against hookworm
infection and disease caused by Ancylostoma ceylanicum. Vaccine 23: 3123–
3130.

10. Hotez PJ, Ashcom J, Zhan B, Bethony J, Loukas A, et al. (2003) Effect of
vaccination with a recombinant fusion protein encoding an astacin-like
metalloprotease (MTP-1) secreted by host-stimulated Ancylostoma caninum
third-stage infective larvae. J Parasitol 89: 853–855.

11. Brooker S, Bethony JM, Rodrigues L, Alexander N, Geiger S, et al. (2005)
Epidemiological, immunological and practical considerations in develop-
ing and evaluating a human hookworm vaccine. Expert Rev Vacc 4: 35–50.

12. Williamson AL, Brindley PJ, Knox DP, Hotez PJ, Loukas A (2003) Digestive
proteases of blood-feeding nematodes. Trends Parasitol 19: 417–423.

13. Dalton JP, Brindley PJ, Knox DP, Brady CP, Hotez PJ, et al. (2003) Helminth
vaccines: From mining genomic information for vaccine targets to systems
used for protein expression. Int J Parasitol 33: 621–640.

14. Tort J, Brindley PJ, Knox D, Wolfe KH, Dalton JP (1999) Proteinases and
associated genes of parasitic helminths. Adv Parasitol 43: 161–266.

PLoS Medicine | www.plosmedicine.org October 2005 | Volume 2 | Issue 10 | e2951016

Vaccination with Hookworm Hemoglobinase



15. Knox DP, Redmond DL, Newlands GF, Skuce PJ, Pettit D, et al. (2003) The
nature and prospects for gut membrane proteins as vaccine candidates for
Haemonchus contortus and other ruminant trichostrongyloids. Int J Parasitol
33: 1129–1137.

16. Knox DP, Skuce PJ, Newlands GF, Redmond DL (2001) Nematode gut
peptidases, proteins and vaccination. In: Kennedy MW, Harnett W, editors.
Parasitic nematodes: Molecular biology, biochemistry and immunology.
New York: CAB International. pp. 247–268

17. Smith WD, Skuce PJ, Newlands GF, Smith SK, Pettit D (2003) Aspartyl
proteases from the intestinal brush border of Haemonchus contortus as
protective antigens for sheep. Parasite Immunol 25: 521–530.

18. Smith WD, Newlands GF, Smith SK, Pettit D, Skuce PJ (2003) Metal-
loendopeptidases from the intestinal brush border of Haemonchus contortus
as protective antigens for sheep. Parasite Immunol 25: 313–323.

19. Geldhof P, Claerebout E, Knox D, Vercauteren I, Looszova A, et al. (2002)
Vaccination of calves against Ostertagia ostertagi with cysteine proteinase
enriched protein fractions. Parasite Immunol 24: 263–270.

20. Don TA, Jones MK, Smyth D, O’Donoghue P, Hotez P, et al. (2004) A pore-
forming haemolysin from the hookworm, Ancylostoma caninum. Int J
Parasitol 34: 1029–1035.

21. Williamson AL, Lecchi P, Turk BE, Choe Y, Hotez PJ, et al. (2004) A multi-
enzyme cascade of hemoglobin proteolysis in the intestine of blood-feeding
hookworms. J Biol Chem 279: 35950–35957.

22. Loukas A, Bethony JM, Williamson AL, Goud GN, Mendez S, et al. (2004)
Vaccination of dogs with a recombinant cysteine protease from the
intestine of canine hookworms diminishes the fecundity and growth of
worms. J Infect Dis 189: 1952–1961.

23. Williamson AL, Brindley PJ, Abbenante G, Prociv P, Berry C, et al. (2002)
Cleavage of hemoglobin by hookworm cathepsin D aspartic proteases and
its potential contribution to host specificity. FASEB J 16: 1458–1460.

24. Hotez PJ, Ashcom J, Bin Z, Bethony J, Williamson A, et al. (2002) Effect of
vaccinations with recombinant fusion proteins on Ancylostoma caninum
habitat selection in the canine intestine. J Parasitol 88: 684–690.

25. Stoute JA, Slaoui M, Heppner DG, Momin P, Kester KE, et al. (1997) A
preliminary evaluation of a recombinant circumsporozoite protein vaccine
against Plasmodium falciparum malaria. RTS,S Malaria Vaccine Evaluation
Group. N Engl J Med 336: 86–91.

26. Shifrine M, Taylor NJ, Rosenblatt LS, Wilson FD (1978) Comparison of
whole blood and purified canine lymphocytes in a lymphocyte-stimulation
microassay. Am J Vet Res 39: 687–690.

27. Williamson AL, Brindley PJ, Abbenante G, Datu BJ, Prociv P, et al. (2003)
Hookworm aspartic protease, Na-APR-2, cleaves human hemoglobin and
serum proteins in a host-specific fashion. J Infect Dis 187: 484–494.

28. Bungiro R, Cappello M (2004) Hookworm infection: New developments and
prospects for control. Curr Opin Infect Dis 17: 421–426.

29. Stassens P, Bergum PW, Gansemans Y, Jespers L, Laroche Y, et al. (1996)
Anticoagulant repertoire of the hookworm Ancylostoma caninum. Proc Natl
Acad Sci U S A 93: 2149–2154.

30. Cappello M, Vlasuk GP, Bergum PW, Huang S, Hotez PJ (1995) Ancylostoma
caninum anticoagulant peptide: A hookworm-derived inhibitor of human
coagulation factor Xa. Proc Natl Acad Sci U S A 92: 6152–6156.

31. Chadderdon RC, Cappello M (1999) The hookworm platelet inhibitor:
Functional blockade of integrins GPIIb/IIIa (alphaIIbbeta3) and GPIa/IIa
(alpha2beta1) inhibits platelet aggregation and adhesion in vitro. J Infect
Dis 179: 1235–1241.

32. Roche M, Layrisse M (1966) The nature and causes of ‘‘hookworm anemia’’.
Am J Trop Med Hyg 15: 1029–1102.

33. Girod N, Brown A, Pritchard DI, Billett EE (2003) Successful vaccination of
BALB/c mice against human hookworm (Necator americanus): The immuno-
logical phenotype of the protective response. Int J Parasitol 33: 71–80.

34. Fujiwara RT, Loukas A, Mendez S, Williamson AL, Bueno LL, et al. (2005)
Vaccination with irradiated Ancylostoma caninum third stage larvae induces a
Th2-like response in dogs. Vaccine. In press.

35. de Oliveira Mendes C, Paraguai de Souza E, Borja-Cabrera GP, Maria Melo
Batista L, Aparecida dos Santos M, et al. (2003) IgG1/IgG2 antibody
dichotomy in sera of vaccinated or naturally infected dogs with visceral
leishmaniosis. Vaccine 21: 2589–2597.

36. Chabalgoity JA, Moreno M, Carol H, Dougan G, Hormaeche CE (2000)
Salmonella typhimurium as a basis for a live oral Echinococcus granulosus
vaccine. Vaccine 19: 460–469.

37. Boag PR, Parsons JC, Presidente PJ, Spithill TW, Sexton JL (2003)
Characterisation of humoral immune responses in dogs vaccinated with
irradiated Ancylostoma caninum. Vet Immunol Immunopathol 92: 87–94.

38. Pearce EJ, MacDonald AS (2002) The immunobiology of schistosomiasis.
Nat Rev Immunol 2: 499–511.

39. Lawrence JD (1973) The ingestion of red blood cells by Schistosoma mansoni. J
Parasitol 59: 60–63.

40. Hu W, Yan Q, Shen DK, Liu F, Zhu ZD, et al. (2003) Evolutionary and

biomedical implications of a Schistosoma japonicum complementary DNA
resource. Nature Genet 35: 139–147.

41. Knox DP, Smith WD (2001) Vaccination against gastrointestinal nematode
parasites of ruminantsusing gut-expressed antigens.Vet Parasitol 100: 21–32.

42. Verity CK, McManus DP, Brindley PJ (2001) Vaccine efficacy of
recombinant cathepsin D aspartic protease from Schistosoma japonicum.
Parasite Immunol 23: 153–162.

43. Vilanova M, Teixeira L, Caramalho I, Torrado E, Marques A, et al. (2004)
Protection against systemic candidiasis in mice immunized with secreted
aspartic proteinase 2. Immunology 111: 334–342.

44. Stoltzfus RJ, Dreyfuss ML, Chwaya HM, Albonico M (1997) Hookworm
control as a strategy to prevent iron deficiency. Nutr Rev 55: 223–232.

45. Hotez PJ, Zhan B, Bethony JM, Loukas A, Williamson A, et al. (2003)
Progress in the development of a recombinant vaccine for human
hookworm disease: The Human Hookworm Vaccine Initiative. Int J
Parasitol 33: 1245–1258.

46. Bethony J, Loukas A, Smout M, Brooker S, Mendez S, et al. (2005)
Antibodies against a secreted protein from hookworm larvae reduce the
intensity of infection in humans and vaccinated laboratory animals. FASEB
J. E-pub ahead of print.

47. Goud GN, Bottazzi ME, Zhan B, Mendez S, Deumic V, et al. (2005)
Expression of the Necator americanus hookworm larval antigen Na-ASP-2 in
Pichia pastoris and purification of the recombinant protein for use in human
clinical trials. Vaccine 23: 4754–4764.

48. Williams GM, Sleigh AC, Li Y, Feng Z, Davis GM, et al. (2002) Mathematical
modelling of schistosomiasis japonica: Comparison of control strategies in
the People’s Republic of China. Acta Trop 82: 253–262.

49. Hotez P, Bethony J, Bottazzi ME, Brooker S, Buss P (2005) Hookworm: ‘‘The
great infection of mankind.’’ PLoS Med 2: 0177–0181.

Patient Summary

Background Hookworms are parasites of the intestines. They can infect
many animals, including dogs, cats, and people. Worldwide, about one
person in five has a hookworm infection. Most of these one billion
people live in tropical countries. Hookworm is not spread from person to
person, because at one stage of its lifecycle, the parasite needs to be in
the soil. In areas where hookworm is common, people who have contact
with soil that contains human feces are at high risk of infection; because
children play on soil and often go barefoot, they have the greatest risk.
Infection leads to blood loss and a decrease in the amount of iron, and
this causes anemia (i.e., because of a lack of iron, the blood cannot carry
oxygen efficiently). There are effective drugs to treat the infection, but
they do not prevent the patient from becoming re-infected. Making a
vaccine against hookworm is therefore a priority. Some vaccines for use
in animals have already been developed, but their effectiveness is limited
to one stage of the hookworm’s lifecycle. The aim is to find a vaccine that
works against more than one of the stages that the parasite passes
through in its lifecycle.

What Did the Researchers Do and Find? The researchers focused on
two enzymes the parasite needs in order to live. Building on earlier
research and using a species of hookworm that affects dogs, the
researchers aimed to make these enzymes the ‘‘target’’ of a vaccine.
They first vaccinated dogs, then infected them with hookworm. These
dogs had fewer parasites than dogs that had not been vaccinated. Most
importantly, vaccinated dogs were protected against blood loss, and
most did not develop anemia. Laboratory tests confirmed that the target
enzymes had been damaged.

What Do These Findings Mean? This is the best result so far for a
hookworm vaccine used in dogs. The authors believe that, as well as
reducing parasite numbers, the vaccine reduces the ability of the
parasite to take in blood, which would explain the reduction in anemia.
The researchers have called for trials to begin with a vaccine targeted
against similar enzymes in the species of hookworm that most
commonly affects humans.

Where Can I Get More Information Online? The US Centers for Disease
Control have a fact sheet on hookworm:
http://www.cdc.gov/ncidod/dpd/parasites/hookworm/factsht_hookworm.
htm.
The Sabin Vaccine Institute has an overview of the Human Hookworm
Vaccine Initiative:
http://www.sabin.org/hookworm.htm.
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