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Hypoxia-inducible factors (HIFs) have become key transcriptional regulators of
metabolism, angiogenesis, erythropoiesis, proliferation, inflammation and metastases.
HIFs are tightly regulated by the tissue microenvironment. Under the influence of the
hypoxic milieu, HIF proteins allow the tissue to adapt its response. This is especially
critical for bone, as it constitutes a highly hypoxic environment. As such, bone structure
and turnover are strongly influenced by the modulation of oxygen availability and HIFs.
Both, bone forming osteoblasts and bone resorbing osteoclasts are targeted by HIFs
and modulators of oxygen tension. Experimental and clinical data have delineated
the importance of HIF responses in different osteoclast-mediated pathologies. This
review will focus on the influence of HIF expression on the regulation of osteoclasts
in homeostasis as well as during inflammatory and malignant bone diseases.
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INTRODUCTION

Bone is a highly dynamic tissue that undergoes constant remodeling to adapt to changing functional
and metabolic demands, but also to repair microdamages that naturally occur throughout life. For
example, bone sensitively reacts to loading (e.g., weight-lifting activities) or unloading conditions
(e.g., space flight) by increasing or decreasing bone mass, respectively. In addition, bone also
adapts to meet changing metabolic demands (Zhang et al., 2015; Shahi et al., 2017; Loeffler et al.,
2018), such as during lactation, when bone resorption increases to provide sufficient calcium
for milk production (Kovacs, 2005). Thus, bone remodeling is a finely tuned and dynamic
system that is required to maintain bone mass as well as mineral homeostasis during adulthood
(Al-Bari and Al Mamun, 2020).

Bone remodeling is a temporally and spatially controlled process (Frost, 1963). In adults, about
10% of the bone surface is undergoing remodeling at a given time. The cells that contribute to bone
remodeling are grouped into the basic multicellular unit (BMU) (Hauge et al., 2001; Andersen
et al., 2009). Therein, osteoclasts, which are of hematopoietic origin, resorb bone (Teitelbaum,
2000). This is followed by a reversal phase, in which osteoclasts vacate the bone remodeling area
and allow for osteoblasts, the bone-forming cells, to locate and refill the resorbed area with new
bone matrix (Matsuo and Irie, 2008; Sims and Gooi, 2008). This process is estimated to take about
3 months in humans (Eriksen et al., 1984a,b). It is a coupled process, where osteoclasts regulate
the differentiation and activity of osteoblasts and vice versa. Besides osteoclasts and osteoblasts,
which are the two most important specialized cell types for bone remodeling, several other cell
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types have been shown to contribute to bone remodeling, such as
the osteocytes, which appear to coordinate bone remodeling by
sending signals to the osteoclasts and osteoblasts to regulate their
activity (Sims and Martin, 2015).

In healthy adults, the amount of newly formed bone equals
the amount of resorbed bone, thus, ensuring the maintenance
of bone mass. However, several disease conditions including
estrogen deficiency, chronic inflammation, and malignant disease
lead to uncoupling of bone resorption and bone formation in
which bone resorption exceeds bone formation, leading to bone
loss and fragility (Roodman, 2004; Pacifici, 2008; Redlich and
Smolen, 2012; Klein-Nulend et al., 2015). As such, osteoclasts
play a prominent role in diseases characterized by bone loss
and therefore are the main therapeutic target of anti-resorptive
strategies to treat osteoporosis.

Importantly, both, inflammation and malignancy are
characterized by hypoxia and also physiological bone remodeling
is under the strict control of hypoxia-related signaling
pathways. The latter may be explained by the rather hypoxic
microenvironment of bone niche, with in vivo measurements
in mice demonstrating local oxygen tension as low as 1.3 kPa
(10 mmHg; tissues less than this are generally defined as hypoxic)
(McNamee et al., 2013; Spencer et al., 2014).

Hypoxia-inducible factors (HIF) are heterodimeric
transcription factors, consisting of an oxygen-labile alpha
subunit (HIFα) and a constitutively-stable beta subunit (HIF1β),
that exert pivotal roles in inducing cellular responses to hypoxia
(Wang et al., 1995; Tian et al., 1997). HIF1α and HIF2α are
structurally similar (Loboda et al., 2010). Their stability is
post-transcriptionally regulated by oxygen availability through
the iron-dependent enzymes prolylhydroxylases (PHDs) (Mole,
2010). In well-oxygenated environment, HIFα is subject to
oxygen-dependent hydroxylation at proline residues 564
and/or 402 by PHDs, which leads to binding of the von
Hippel Lindau protein (VHL) and an associated ubiquitin
protein ligase complex. This leads to ubiquitination and
proteasomal degradation of HIFα (Lee et al., 2004). Conversely,
the hydroxylation reaction is inhibited under hypoxic condition,
HIFα subunits are stabilized and translocate to the nucleus,
where they heterodimerize with HIF1β and bind to HRE
located within regulatory elements of HIF target genes (Dengler
et al., 2014). These are involved in multiple processes such as
angiogenesis (Vegf, Pdgf, and Fgf2), erythropoiesis (Epo, Tfr1,
and Cp), metabolism (Glut1, Pdk1, Hk2, Ldha, and Mct4),
proliferation (Tnfa, Ccnd1, and Igf2), inflammation (Il1b, Il6,
and Il17) and metastasis (Met1, Lox1) (Flamme et al., 1997;
Jaakkola et al., 2001; Mahon et al., 2001; Wenger et al., 2005;
Semenza, 2014). Recent studies showed that many other proteins
are involved in the regulation of basal HIF1α levels in an oxygen-
independent manner. Luo et al. (2010) delineated that the heat
shock protein 70 (HSP70) binds via its carboxy-terminus to
HIF1α, leading to recruitment of HSP70-interaction protein
(CHIP), a chaperone-dependent E3 ubiquitin ligase, which
mediates HIF1α ubiquitination and proteasomal degradation.
Additionally, it has been shown that PTEN-PI3K-AKT signaling
axis controls E3 ubiquitin-protein ligase Murine double minute
2 (MDM2), which mediates HIF1α ubiquitination under hypoxic

conditions in a proteasome-dependent manner (Joshi et al., 2014;
Figure 1).

Besides the post-transcriptional regulation of HIF1α protein
stability, HIFα is also regulated at the transcriptional level.
Increased transcription of Hif1a was found in cells after the
stimulation of growth factors (FGF, EGF, and Heregulin),
cytokines (TNF-α, IL-1, and IL-6) and pathogen associated
molecular patterns (PAMP) (LPS and HBx) via the JAK/STAT
and NF-κB signaling pathways (Frede et al., 2006; Figure 1).
Recognition of pathogens by immune cells activates the
mitogen activated protein kinase (MAPK) pathway via pattern
recognition receptors signaling, such as toll like receptors (TLRs)
(Frede et al., 2006), which leads to the induction of NF-
κB and transactivation of Hif1a under normoxia (Rius et al.,
2008). In addition, T cell receptor ligation induces substantial
accumulation of HIF1α mRNA and protein, especially in the pro-
inflammatory T helper 17 (Th17) cell lineage by a mechanism
dependent of STAT3 signaling activation (Dang et al., 2011).
Besides, MYD88-dependent NF-κB activity is crucial for LPS-
induced HIF1α accumulation in dendritic cells (Jantsch et al.,
2011). Taken together, growth factors, cytokines and factors
stimulating PAMP are critical regulators of HIF1α or HIF2α level
in normoxic and hypoxic conditions.

Given the pertinent role of osteoclasts in bone homeostasis
and bone disease, and their regulation via hypoxia signaling,
this review will summarize the current knowledge on the
role of hypoxia signaling on osteoclasts and its potential as
therapeutic target to inhibit osteoclast function in inflammatory
and malignant bone diseases.

OSTEOCLASTS AND THEIR
REGULATION BY HYPOXIC SIGNALING
PATHWAYS

Osteoclasts originate from the erythromyeloid progenitors
during embryogenesis and throughout life fuse with
hematopoietic stem cells to produce long-lived, multinucleated
cells that are capable to resorb bone (Jacome-Galarza et al.,
2019). Mononuclear cells also appear to dissociate again
from multinucleated osteoclasts, suggesting that osteoclasts
are undergoing constant remodeling themselves. Receptor
activator of NF-κB ligand (RANKL) is the key cytokine driving
osteoclastogenesis. Upon binding to its receptor RANK, RANKL
induces differentiation, fusion, and life span of osteoclasts via the
activation of pathways downstream of TRAF6 including MAPK,
NF-κB, and PI3K/Akt (Nakagawa et al., 1998; Kong et al., 1999;
Yahara et al., 2020). These pathways culminate in the activation
of NFATc1, AP-1, and NF-κB transcription factors, which induce
the expression of typical osteoclastic genes such as cathepsin
K or tartrate-resistant acid phosphatase (TRAP). RANKL is
mainly produced by cells from the osteogenic lineage (i.e.,
osteoblasts and osteocytes) together with its natural antagonist
osteoprotegerin (OPG). OPG is able to bind RANKL and prevent
it from binding to RANK and thus initiating osteoclastogenesis.
Therefore, the RANKL/OPG ratio is crucial for predicting the
osteoclastic milieu of the environment. Once osteoclasts are
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FIGURE 1 | Regulation of HIFα stabilization in normoxia and hypoxia conditions as well in an oxygen independent pathway. In normoxia, HIFα is hydroxylated by
prolyl hydroxylase domain (PHD) protein. The proline-hydroxylated HIFα is then recognized by von Hippel-Lindau E3 ubiquitin ligase (VHL) and subjected to be
degraded via proteasome. In hypoxia, HIFα becomes stable and dimeries with HIF-1β. After translocation to the nucleus, the HIF heterodimer binds the hypoxia
response element (HRE) of target genes to regulate transcription. Besides, NF-κb and STAT3 signaling activation induce Hifa mRNA transcription under normoxia or
hypoxia.

formed they attach tightly to the bone matrix via integrins,
most prominently αvβ3, and seal off the environment from the
area that will be resorbed. Within this sealing zone, osteoclasts
acidify the environment and secrete matrix-degrading enzymes
such as cathepsin K into the resorption lacunae to resorb
the mineralized and organic components of bone. Until
recently, osteoclasts have been proposed to undergo apoptosis
after bone resorption. However, newer concepts suggest that
osteoclasts may recycle (parts) of themselves to fuse with
new osteoclast syncytia and engage in new remodeling cycles
(McDonald et al., 2019).

Hypoxia is a critical stimulator of osteoclastogenesis in mouse
and human cell culture systems. Early studies have shown that
low oxygen tension (2% O2) increases osteoclast differentiation
and bone resorption in vitro (Arnett et al., 2003; Muzylak
et al., 2006; Bozec et al., 2008), while hyperoxia suppresses
osteoclastogenesis (Al Hadi et al., 2013; Yu et al., 2020). In an
effort to analyze whether HIF1α was responsible for the pro-
osteoclast effects, HIF1α protein was expressed in osteoclasts
in vitro (Leger et al., 2010). However, in this study, osteoclast
generation was inhibited by expression of a constitutively
active form of HIF1α, suggesting that other hypoxia-responsive
factors may contribute to osteoclastogenesis (Leger et al.,
2010). Another study that investigated the potential of hypoxia
mimetic PHD inhibitor dimethyloxallyl glycine (DMOG) to
rescue ovariectomy-induced bone loss similarly found no effect
of DMOG on osteoclast activity (Peng et al., 2014). Finally,
Hulley et al. (2017) have shown that activation of HIF1α via
deficiency of PHD2 does not affect osteoclast differentiation,
but impairs bone resorption in vitro, suggesting that HIF1α

may affect the bone resorbing activity of osteoclasts. However,
it should be noted that in vivo, PHD2 +/− mice showed
normal serum levels of CTX, a bone resorption marker, despite

low bone mass (Rauner et al., 2016), suggesting that rather
defective osteoblast function contributed to the low bone mass.
HIFs are the canonical substrates for PHD-mediated protein
hydroxylation. Increasing in vitro evidence indicates that PHD
may also have alternative targets such as IKK-β, p105, p53, and
FOXO3a (Cockman et al., 2019; Lee, 2019). However, the role
of these non-HIF substrates in osteoclastogenesis under hypoxia
is still elusive. Besides, neither osteoclast-specific knockout
nor treatment with a HIF1α inhibitor altered bone mass or
osteoclast numbers under physiological conditions, but in states
of estrogen or testosterone deficiency, when osteoclasts are
activated, HIF1α deficiency prevented bone loss by suppressing
osteoclast activation (Miyauchi et al., 2013; Tando et al., 2016).
Overall, direct effects of HIF1α on osteoclastogenesis during
physiology appear negligible. However, metabolically, osteoclasts
require oxidative phosphorylation during differentiation, while
for bone resorption, osteoclasts rely on energy production via
glycolysis (Czupalla et al., 2005; Jin et al., 2014; Lemma et al.,
2016). As HIFs activate glycolysis, this may in part explain
the stronger effect of HIF1α activation on osteoclastic bone
resorption rather than differentiation. In fact, HIF1α has been
identified as a critical metabolic switch to turn on anaerobic
respiration to rapidly increase ATP production in osteoclasts
(Morten et al., 2013).

Importantly, there is strong evidence that HIF1α controls
osteoclastogenesis via the regulation of the RANKL/OPG ratio
and also IL-33 levels in osteoblasts (Wu et al., 2015; Kang et al.,
2017; Zhu et al., 2019) and osteocytes even under physiological
conditions (Stegen et al., 2018).

In contrast to HIF1α, HIF2α appears to have direct effects on
osteoclasts. Overexpression of HIF2α in progenitors increased
osteoclast numbers and marker gene expression in vitro (Lee
et al., 2019) by upregulating TRAF6 expression. Moreover,
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osteoclast-specific knockout of HIF2α increased bone mass
by decreasing osteoclast numbers (Lee et al., 2019). However,
also in case of HIF2α, osteoblast-mediated regulation of
osteoclastogenesis via RANKL/OPG seems to play an important
role as osteoblast-specific knockout of HIF2α also decreased
osteoclast numbers in vivo.

Taken together, HIFs appear to play a more prominent role
in osteoblast-to-osteoclast communication rather than directly
affecting osteoclastogenesis. Moreover, activation of hypoxia
signaling pathways may be more relevant in disease states
than during physiological bone remodeling. In the following
sections, we will discuss the role of hypoxia-related proteins in
inflammatory and malignant diseases.

ROLE OF HYPOXIA IN THE REGULATION
OF OSTEOCLASTS IN RHEUMATOID
ARTHRITIS AS A PROTOTYPICAL
INFLAMMATORY DISEASE

Rheumatoid arthritis (RA) is a systemic autoimmune disorder
that manifests as chronic inflammation and joint tissue
destruction (Komatsu and Takayanagi, 2012). Macrophages,
T lymphocytes and B lymphocytes are crucial cells in the
development and progression of RA (Ma and Pope, 2005; Cope
et al., 2007; Marston et al., 2010). Oxygen tension in the synovial
fluid of RA patients (range from 18 to 33 mmHg, equivalent to
2 to 4%) was found lower than in healthy controls (range from
69 to 89 mmHg, equivalent to 9 to 12%) (Giatromanolaki et al.,
2003; Muz et al., 2009). In addition, tissue oximeters were used
to confirm that hypoxia is a feature of RA synovial tissue and
correlates with the intensity of the inflammatory process during
RA development (Quinonez-Flores et al., 2016). HIFs (HIF1α

and HIF2α) could therefore interfere with joint inflammation,
angiogenesis and cartilage destruction in RA (Westra et al.,
2010; Quinonez-Flores et al., 2016). Different aspects of RA
are influenced by the expression of HIFs in stromal cells and
immune cells. Hypoxia induces vascular cell adhesion molecule-
1 (VCAM1) and stromal cell-derived factor-1 (SDF-1) expression
in synovial fibroblasts and promotes lymphocyte homing to
joints of RA patients (Hitchon et al., 2002; Hu et al., 2016).
Studies have also shown that NF-κB-HIF1α pathway activation
drives the migration and invasion of synovial fibroblasts by
increasing the expression of MMP2 and MMP9 (Lee et al., 2012).
Interestingly, HIF2α was expressed mainly in fibroblast-like
synoviocytes (FLS) of RA synovium and regulated the production
of RANKL and several catabolic factors such as matrix-degrading
enzymes (MMP3, MMP9, MMP12, MMP13, and ADAMTS4),
chemokines (CCL2, CCL5, CCL7, CXCL1, CXCL2, CXCL4,
CXCL5, and CXCL10) and inflammatory mediators (COX2 and
iNOS) (Huh et al., 2015). Moreover, HIF2α expression in FLS
controls IL-6 induction and enhances Th17 cell differentiation
during RA pathogenesis (Ryu et al., 2014). Also the induction
of IL-1, TNF-α, and IL-33 was reported to be increased in FLS
via HIFs, which subsequently was reflected by T cell functions
with expansion of Th1 and Th17 cells (Sarkar et al., 2010;

Samarpita et al., 2018), but also B cell autoantibody production.
By a feedback loop by TNF-α, IL-33 manages the control of
HIF. Besides HIF2α, also HIF1α increases IL-6 production in
RA. Further evidence shows that HIF1α is highly expressed
in Th17 cells and that loss of HIF1α in Th17 cells impairs
their differentiation and IL-17 production, suggesting that HIF1α

expression in Th17 cells might control synovial inflammation
in arthritis (Dang et al., 2011). Finally, HIF1α participation in
collagen-induced arthritis has been demonstrated by studying
conditional HIF1α deletion in B cells, which results in less
IL-10-producing B cells and exacerbated Th17 cells mediated
inflammation (Meng et al., 2018; Figure 2).

Altogether, HIF1α and HIF2α indirectly regulate osteoclast-
induced bone erosion through the control of the pro-
inflammatory milieu. However, it remains unclear whether there
is a direct involvement of these factors in osteoclasts under
inflammatory conditions. Several therapeutic agents use the
hypoxic milieu to get activated and to deliver the therapeutic
agents to hypoxic cells on a site specific. However, the off-
target effects might be an important challenge since hypoxic
conditions also appear physiologically (Phillips, 2016). Several
agents targeting the HIF pathway, such as specific HIF inhibitors,
showed promising results in cancers or in hypoxia-related
diseases (Fallah and Rini, 2019). Regarding RA, it has been
suggested that local administration of these compounds could
avoid their early systemic degradation. Another promising route
may be achieved via delivery carriers for example via the delivery
of gene therapy targeting HIFs. However, before these therapies
approach clinics, several challenges still need to be addressed.
In RA, downstream targets of HIFs have been therapeutically
targeted, such as antibodies against VEGF, or small molecules
against its receptor. In preclinical studies, these approaches
showed a significant reduction of inflammation, particularly in
the early phase of inflammatory RA development (Lu et al.,
2000; De Bandt et al., 2003; Maruotti et al., 2014). Based
on the above-mentioned studies, it is evident that HIFs are
promising targets for RA.

ROLE OF HYPOXIA IN THE REGULATION
OF OSTEOCLASTS IN OSTEOLYTIC
BONE DISEASE

Bone metastases are incurable, cause pathological fractures,
hypercalcemia and reduce the quality of life (Macedo et al.,
2017). Initially, the hypoxic bone microenvironment provides an
excellent soil for tumor cells to thrive. Once homed, these cells
start producing a variety of cytokines and growth factors that
activate cells, including osteoclasts (Maurizi and Rucci, 2018).
In turn, this will lead to bone absorption and destruction of the
microenvironment, which eventually stimulates the proliferation
of tumor cells. As such a vicious cycle between tumor cells and
osteoclasts is established (Huang et al., 2020). Although osteolytic
lesions have been observed in several cancer types, it has been
especially detected in breast cancers; a tumor with great avidity
for bone metastasizing in up to 80% of stage IV breast cancer
patients (Brook et al., 2018). These tumor cells typically produce
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FIGURE 2 | HIFs involvement in the regulation of osteoclastogenesis in arthritic joint. HIFs expression induce the secretion of a number of cytokines from synovial
fibroblast and macrophages that enhance osteoclastogenesis. In addition, hypoxia stimulates IL-6 production by synovial fibroblast and macrophages, thereby
increasing Th17 differentiation from naïve CD4 T cells. However, HIFs activation in Breg cells inhibit Th17 differentiation via suppressive factor IL-10.

parathyroid hormone related protein (PTHrP), which stimulates
calcium release from bone (Poole and Reeve, 2005), just like PTH.
Interestingly, the expression of PTHrP is driven by HIF2α, but
not HIF1α, and is not only confined to metastatic tumor cells, but
has also been detected in chondrocytes where it is also induced
by HIF1α (Browe et al., 2019). PTHrP stimulates osteoblasts to
generate RANKL, simultaneously preventing OPG production
(Huang et al., 2004). RANKL and RANK have also been shown to
be produced by tumor cells in a HIF1α-dependent manner (Tang
et al., 2011), suggesting that osteolysis is potentially also feasible
through an interaction between the tumor cells and osteoclasts.
As mentioned before, in this setting, osteoclastogenesis is
driven forward due to an enhanced RANKL/OPG ratio. The
consequence is enhanced bone resorption and release of other
growth factors including TGFα and PDGF, both stimulating
tumor growth and eventually also osteolysis (Janssens et al.,
2005). Nevertheless, there are also other reports suggesting
RANKL is not HIF-dependent. In that respect, deletion of PHD2
and PHD3 in osteoblast (progenitors) (Osx:cre line) resulted
in increased bone volume as a consequence of OPG induction,
whereas RANKL levels were not changed (Wu et al., 2015). This
finding was also confirmed using a VHL knock-out strategy in
primary osteoblasts (Shao et al., 2015) and by us, showing that
PHD2 deletion in osteoblasts (Osx:cre line) causes high bone
density (Rauner et al., 2016; Stegen et al., 2016). Although more
research will be necessary to unravel the background of these
opposing results, hypoxia and hypoxia pathway proteins have an
impact on stromal cells of the bone/bone marrow environment
that directly regulate bone homeostasis and therefore probably
also osteolytic lesions.

Interestingly, the impact of hypoxia signaling in bone
can also influence the growth and dissemination of external

tumors finally ending up in the bone. Devignes and colleagues
elegantly showed that HIF-induced CXCL12 production in
osteoblast progenitors directly promotes systemic tumor growth
and dissemination. In fact, mice conditionally deficient for
HIF1α in osteoprogenitors displayed reduced CXCL12+ cells
whereas VHL deficiency resulted in the opposite outcome
(Devignes et al., 2018). The chemokine CXCL12/stromal cell-
derived factor 1 alpha (SDF1) has not only been shown
in a variety of different tumor types (Shi et al., 2020),
but also plays a central role in the bone marrow niche
where it controls hematopoietic stem cell quiescence in
conjunction with its receptor CXCR4. In the context of
breast cancer cell dissemination, this signaling appears to
work via CXCR4 on the tumor cells, underscoring local
hypoxic signaling in the BM niche exerting control on
distant tumors, impacting growth and metastasis (Xu et al.,
2015). This suggests that targeting CXCL12/CXCR4 would be
beneficial, but different experimental approaches reveal case-
by-case differences (Zielinska and Katanaev, 2020). Indeed,
although systemic CXCR4 inhibition might be beneficial in
breast cancer growth, deficiency of CXCR4 in osteoclasts
was shown to enhance osteoclastogenesis, which in turn may
again promote bone metastasis and stimulate the vicious cycle
(Zielinska and Katanaev, 2020).

Conversely, hypoxia in a variety of different tumors outside
the bone/bone marrow area can also affect the bone and
its environment by enhancing future colonization of tumor
cells and even promoting pre-osteolysis. First indications
for this paradigm were reported almost two decades ago,
as researchers found a clear correlation between HIF1α

expression in primary breast cancers and the presence of
(micro)metastasis in the bone marrow of these patients
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(Woelfle et al., 2003). HIF1α-induced lysyl oxidase (LOX), a
copper-dependent amine oxidases, is such a molecule that can
cause tumor cell dissemination and tumor driven osteolytic
lesions (Bondareva et al., 2009). At the same time, it promotes
RANKL-dependent differentiation of osteoclasts, while inhibiting
osteoblast differentiation (Reynaud et al., 2017). This suggests
that LOX secreted by tumor cells induces osteoclastogenesis
thereby creating a pre-metastatic niche that would favor tumor
homing and growth. Interestingly, LOX induction itself also
enhances HIF1α expression, underscoring the synergism between
LOX/HIF in regulating the adaptation of tumor cells to hypoxia
(Pez et al., 2011) and beyond.

CONCLUSION

The role of hypoxia and HIFs is evident in bone physiology
and in numerous pathophysiological diseases where osteoclasts
are activated and induce bone loss. However, the exact role of
HIF1α or HIF2α in osteoclast remains quite vague and largely
appear to be mediated indirectly via other cells like stromal
cells. However, they should be taken into consideration when
thinking of the indirect pathway of osteoclast activation, notably
by their function in the immune cells, in particular in Th17/Treg
cells or in macrophages. Therefore, HIF inhibitors would likely

target osteoclast activation and secondary bone loss in numerous
diseases. As example, a recent study discovered an increased
bone mass in mice treated with HIF1α inhibitor 2ME2 (Miyauchi
et al., 2013). However, it still remains inconclusive whether HIF
inhibitors would act the same way in human bone diseases as in
murine models. Future studies on HIF signaling and its clinical
relevance may improve our understanding of the role of HIF in
osteoclastogenesis and eventually lead to effective treatments for
human diseases involving bone homeostasis.
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