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One of the essential functions of biological neural networks is the processing of
information. This includes everything from processing sensory information to perceive
the environment, up to processing motor information to interact with the environment.
Due to methodological limitations, it has been historically unclear how information
processing changes during different cognitive or behavioral states and to what extent
information is processed within or between the network of neurons in different brain
areas. In this study, we leverage recent advances in the calculation of information
dynamics to explore neural-level processing within and between the frontoparietal
areas AIP, F5, and M1 during a delayed grasping task performed by three macaque
monkeys. While information processing was high within all areas during all cognitive
and behavioral states of the task, interareal processing varied widely: During visuomotor
transformation, AIP and F5 formed a reciprocally connected processing unit, while no
processing was present between areas during the memory period. Movement execution
was processed globally across all areas with predominance of processing in the feedback
direction. Furthermore, the fine-scale network structure reconfigured at the neuron
level in response to different grasping conditions, despite no differences in the overall
amount of information present. These results suggest that areas dynamically form
higher-order processing units according to the cognitive or behavioral demand and
that the information-processing network is hierarchically organized at the neuron
level, with the coarse network structure determining the behavioral state and finer
changes reflecting different conditions.
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Animal nervous systems are often described as “information-processing engines”:
Organisms take in information about the world around them through sensory organs,
learn statistical regularities in the incoming information, and use those to navigate
and interact with their environment. As a distributed network of neurons, information
processing takes place both within and between many different specialized brain areas.
Between-area processing can be further categorized as feedforward processing (from
primary sensory areas to motor areas) and feedback processing (from motor areas back
to sensory areas; Fig. 1A). Despite a growing number of studies demonstrating the
involvement of multiple areas in different behavioral-related processing (1–4), it remains
unclear to what degree information processing in the brain’s network of neurons is
restricted to within specific areas, as opposed to multiareal feedforward and feedback
interactions. Furthermore, it is unclear whether the intraareal and interareal processing
network structure at the neuron level is static or changes dynamically in response to
the demands of particular cognitive or behavioral states. For example, does information
processing within and between areas change for typical monkey behavioral states such as
perception of a fruit, the internal preparation to grasp the fruit, and the actual movement
execution for grabbing the fruit (Fig. 1B)?

Given the technical limitations of whole-brain recording, it is useful to focus on
subsets of areas that display a range of intrinsic, feedforward, and feedback modes of
processing to fully understand how they relate. A natural system is the set of brain areas
known to be involved with perception and movement execution. In macaque monkeys,
the frontoparietal grasping network specifically has been shown to be strongly involved in
visuomotor transformations and the execution of grasping movements and is composed
of the anterior intraparietal area (AIP), the ventral premotor cortex (F5), and the primary
motor cortex (M1) (5–8). Moreover, several studies demonstrated that AIP and F5 are
strongly reciprocally connected, as are F5 and M1 (9–13) suggesting this network to be
a compelling candidate to study intraareal and interareal processing.

When studying the activity of simultaneously recorded neurons, however, information
processing is often vaguely defined. The mathematical fields of information theory and
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Fig. 1. Possibilities of intraareal and interareal information processing with
changes of behavioral states. Information processing associated with object
recognition, movement planning, and execution takes place in multiple,
distinct brain areas of the frontoparietal grasping network. It is unknown
how information processing is distributed over those areas and how that
distribution “updates” as the task progresses. (A) A schematic view of all
possibilities of interareal and intraareal processing of information within and
between consecutive cortical areas. Depicted is the frontoparietal grasping
network (M1, AIP, and F5) investigated in this study and described in more
detail below. Information processing is divided into feedforward, feedback,
and intrinsic processing, as the three major directions indicated by color.
(B) Schematic illustration showing that it is still unclear whether information
processing between and within areas changes for different behavioral states,
illustrated by the example of the perception of a fruit, the internal preparation
to grasp the fruit and the actual movement execution for grabbing the fruit.

the theory of information dynamics offer a general framework
to study information flow and processing. Information dynamics
breaks the concept of information processing into three parts
(14): information storage how much the past activity of a neuron
informs on its future, e.g., LTP or LTD (15), information transfer
how much the past of a source neuron informs a target neuron’s
future, e.g., synaptic communication (16, 17), and information
modification the “nonlinear” computation that occurs when a
neuron integrates distinct streams of information into something
greater than the sum of its parts (18–21).

These three dynamics can be formalized using information
theory (22) (Basic Theory of Information Dynamics). Previous
work using information dynamics to study recorded neuronal
networks found that the degree of information modification
changes during development (21), and in the same developmental
windows, particular patterns of information transfer are “locked-
in” (23). Furthermore, the capacity for information modification
is heterogeneously distributed across neurons of the network
and concentrated in high-degree, rich-club neurons (24–27).
Information transfer (28) has been applied to a variety of neural
recordings (see ref. 16 for a comprehensive review) and allows
researchers to estimate effective network models of interacting
neurons. Finally, active information storage has provided insights
into stimulus–response and preferences in visual processing
systems (15).

Despite the wealth of analyses that have been done using in-
formation theory to investigate neural activity, it has not yet been
widely applied to the problem of behavior-related information
processing at the neural network level. Similarly, differences

in neural information dynamics have not been thoroughly
investigated within and between areas during complex behaviors.
Much of the above-cited work has been done in neural cultures
or anesthetized animals, as opposed to behaving organisms
interacting with a complex environment. To address this gap, we
examined the information dynamics and the associated effective
network structures of neural populations from three cortical areas
(AIP, F5, and M1) in the frontoparietal grasping network of three
macaques. During recordings, monkeys performed a delayed
sensorimotor transformation task involving the transformation
of visual information into movement plans, the memorization
of these movement plans, and finally the required processing to
execute one of two grasping movements (for details, see ref. 29).

With these data, we can estimate the neuron-level information
dynamics in different cognitive and behavioral states, allowing us
to directly assess the relationship between information dynamics
and complex behaviors. Furthermore, by casting patterns of
information transfer as effective connectivity networks, we can
examine the degree of intrinsic, feedforward, and feedback
information processing within and between the three areas and
how changes in behavior alter the information dynamics within
and between them. We found that different behavioral states
were associated with significant reconfigurations of the global
effective network structure, with movement, in particular, being
associated with an increase in the overall information flowing
through the system and an increase in the amount of synergistic
information processing. Within and between the different areas,
we found that 1) information processing was strong both within
and between AIP and F5 during visuomotor transformation; 2)
during memorization of movement plans, information processing
remained high within areas but strongly decreased between AIP
and F5; and 3) globally, information processing was strongest
during movement execution in decreasing order from M1 to
F5 to AIP both within and between areas, showing a more
pronounced pattern in the feedback direction. Moreover, in all
three behavioral states, the network-wide patterns of information
storage and transmission were different for each of the two
different grasping conditions. Together, these findings suggest
that the information-processing structure at the neuron level
changes depending on the behavioral state and task condition.
While state changes are predominantly associated with changes
in information processing between areas, condition changes are
predominately associated with fine-scale reconfiguration of the
network structure.

A. Basic Theory of Information Dynamics. A natural mathemat-
ical framework for assessing these computational dynamics is
information theory (14, 22), which describes how the activity of
interacting elements of a complex system constrains the space
of possible states of the whole system. In practice, for spike
counts of sparse firing neurons, as in the case of the recorded
neurons in this study, this requires counting the distribution
of patterns of states between interacting elements. For example,
when considering the dependency between the spiking activity
of two neurons Xi and Xj, we must count the number of times
Xi = 0 and Xj = 0, how many times Xi = 0 and Xj = 1, how
many times Xi = 1 and Xj = 1, etc, for all 2k combinations.
When considering temporal sequences, the logic is the same: how
frequently the pattern [0, 1, 1] is followed by a 0 instead of a 1 and
so on. A significant advantage of information theory is that, being
based only on marginal, joint, and conditional probabilities of
patterns of events, it is both model-free and sensitive to nonlinear
relationships between interacting elements (30). Information
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theoretic analysis is then “epistemically modest,” as it does
not require presupposing particular generating functions or
relationships. This makes it ideal for complex, nonlinear systems,
such as networks of neurons of brains, where the underlying
generative dynamic is unknown and nonlinearities can play a key
role (31).

Information theory quantifies how knowledge of a variable, or
set of interacting variables, reduces the uncertainty of an observer
watching the system. The central object of study is the entropy
of a random variable, which quantifies an observer’s uncertainty
about the state of a variable under study. For a discrete random
variable X , with support set X , the entropy H(X ) is canonically
given as:

H(X ) = −
∑
x∈X

P(X = x) log(P(X = x)). [1]

When measured in bits (i.e., the base of the logarithm is two),
the entropy of X quantifies the minimum number of yes/no
questions required to completely specify the state of X with total
certainty. Given two variables X and Y , we can calculate the
mutual information between the two as the degree to which
knowing the state of one variable reduces our uncertainty about
the state of the other. Formally,

I(X ;Y ) = H(X )−H(X |Y ), [2]

where H(X |Y ) is the conditional entropy of X given Y . The
difference between our initial uncertainty about X and the
remaining uncertainty after accounting for Y is the amount of
uncertainty about X that Y resolves.

For temporally extended processes, we can break down the
total information structure of the system in three information
dynamics: active information storage, information transfer, and
information modification. Information storage quantifies the
degree to which knowing the past of a variable, or set of variables,
decreases our uncertainty about its immediate future:

AIS(X ) = I(X0:t−1;Xt), [3]

where X0:t−1 is the joint state of all past states of variable X ,
and Xt is the immediate next state. In the context of neurons, a
process that generates nontrivial AIS might be hyperpolarizing a
neuron, which will reduce the probability that it will fire in the
immediate future (15).

For sets of interacting variables, we can generalize the active
information storage to quantify how much information is “trans-
ferred” from a source neuron to a target neuron by determining
how much knowing the past of a prospective “source” variable X
reduces our uncertainty about the future of a “target” variable Y
(above and beyond the information stored in the target):

TE(X → Y ) = I(X0:t−1;Yt |Y0:t−1). [4]

TE(X → Y ) is referred to as the transfer entropy from X to Y .
The canonical example here is that of synaptic communication:
Knowing that an excitatory presynaptic neuron spiked increases
our certainty that the postsynaptic neuron will spike in the near
future. Importantly, the I/O functions of neurons themselves are
highly complex (32), and so, the future behavior of the neuron
may depend on the collective behavior of all the upstream sources,
which can be quantified with the multivariate transfer entropy:

mTE(Z→ Y ) = I(Z0:t−1;Yt |Y0:t−1), [5]

where Z is an ensemble of neurons. Fig. 2A, shows a schematic
representation of how mTE was estimated in this study. To
recover the effect of a single-source neuron on the target
neuron in the context of all other informative sources, we use the
conditional multivariate transfer entropy (33–35):

mTE(X → Y |Z) = I(X0:t−1;Yt |Y0:t−1,Z0:t−1). [6]

Fig. 2B shows two example mTE transfer entropy networks
for two different behavioral epochs, displayed as anatomical
networks. Finally, the third information dynamic, information
modification, refers to information produced when multiple
incoming “streams” intersect and are nontrivially changed. This
is operationalized as the “synergy” (18, 36) (for mathematical
details; SI Appendix, Materials and Methods and Fig. 2C ). As
can be seen from the diagram, the calculation of synergy also
produces additional information dynamics: “redundant” and
“unique” information terms. Synergy can be understood as the
information provided by a set of source neurons about a target
neuron that cannot be extracted from any simpler combination
(i.e., the marginals) and can thus most intuitively be associated
with information processing. Redundancy, in contrast, reflects
the information that is duplicated over both parents and could
be learned by observing one or the other. Unique information is
the part of a target neuron’s activity that can only be expressed
by the spiking of an individual source neuron. While the
existence of synergy in biological neural networks is extremely
well documented (27), evidence that behavioral-related neural
processes can be captured with the computation of synergy is still
lacking.

A

C

B

Fig. 2. Information dynamics: inference of multivariate transfer entropy
(mTE) transfer entropy networks and triadic synergy. (A) Schematic view
explaining the intuition behind the multivariate transfer entropy. Spike events
were first binned in nonoverlapping 5-ms windows, and three history bins of
all neurons were used to predict each target neuron’s future. Red squares
illustrate three examples of immediate future time points we intend to
predict. Green squares illustrate three history spike bins of the target neuron,
whereas the orange squares represent three history spike bins of all other
neurons that may inform on the future of the target neuron. Note that the ac-
tual transfer entropy algorithm takes all time points into account, not only the
three examples of immediate future time points illustrated in this schematic
view. (B) Two example mTE transfer entropy networks for two different
behavioral epochs, displayed as anatomical networks. The individual nodes
reflect the anatomical positions of all simultaneously recorded neurons, the
line shadings represent the relative amount of information transfer between
neurons, the boxes reflect the implanted multielectrode arrays, and the thick
black lines reflect the sulci of the cortex as shown with more detail in Fig.
3B. (C) Visualization of the triadic partial information decomposition. (Left)
Schematic view of all possible sets of three neurons of the depicted neural
network. Note that only all possible triads of the significant mTE networks
were used to estimate triadic synergy (SI Appendix, Materials and Methods).
(Right) Venn diagram illustrating how the total information of two source
neurons informing a target neuron can be decomposed into a redundant
part, two unique parts, and the synergistic part.
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1. Results

A. Behavioral Task and Single Neuron Recordings. To study
behavior-related neural information processing within and be-
tween areas, we utilize data recorded from three monkeys (S, Z,
and M). Monkeys were trained to perform a delayed grasping
task (Fig. 3A). The task was divided into four epochs: 1) an
initial fixation epoch, which was the same for all conditions; 2)
a cue epoch, in which the monkeys were either instructed or
free to choose to grasp a target with one of two possible grip
types (power or precision grip; monkey M was only trained to
perform the instructed context); 3) a memory epoch, in which
the monkeys had to prepare and remember the corresponding
grip type, and 4) a movement epoch, in which the monkeys
performed the corresponding grip type (for details, SI Appendix,
Materials and Methods). All monkeys performed the task with
high accuracy percentage trials correct (±SD) for monkey S:
95 ± 1%, monkey Z: 98 ± 3%, and monkey M: 94 ± 2%,
indicating that all monkeys performed the task as well as both
grasping conditions in a similar manner.

While monkeys performed the task, we simultaneously
recorded large populations of well-isolated neurons from the
ventral premotor cortex (area F5), the anterior intraparietal

area (AIP), and for one monkey from the hand area of
the primary motor cortex (M1). For this purpose, two 32-
channel microelectrode arrays were chronically implanted per
area resulting in 128 recorded channels for monkeys S and Z and
192 recording channels for monkey M (see surgical pictures for
all three monkeys in Fig. 3B). For all following analyses, we used
four recording sessions from monkey S with on average 82.8 ±
5.7 SD neurons, three sessions from monkey Z with on average
53 ± 5.6 SD neurons, and three sessions from monkey M with
on average 134.3± 23.7 SD neurons. Depicted in Fig. 3C is the
spiking activity of all simultaneously recorded neurons during a
precision condition trial of a representative recording session of
monkey M. Neurons of all three areas were active during the task,
and even behavior-dependent modulations are evident for some
neurons, especially during the movement period. For a more
systematic evaluation of behavior-dependent modulations, we
calculated the average firing rates per neuron over the time course
of the task separately for the two grasping conditions (see Fig. 3D
for two representative neurons per area with precision condition
and power condition preference, respectively). The majority of
neurons in all three areas show strong and reliable task- and
condition-dependent modulations in the firing rate. Yet, average

A

B

C
E

D

Fig. 3. Behavioral task, electrode array implantation, and behavioral dependent firing rate modulations. (A) schematic view of the behavioral task is shown.
Monkeys were placed in front of a grasping box with a masked monitor that was superimposed on the handle of the box. Monkeys were trained to execute one
of two distinct grip types (precision grip or power grip) depending on the visual cue. Each trial of the task was initialized by the monkeys placing both hands on
handrest buttons and fixating a red disc, followed by the cue epoch, in which one of the displayed cues was presented. After the cue offset, the monkeys had to
continue fixing the red disc and prepare and memorize the appropriate movement. Finally, by turning off the red disc, monkeys were instructed to execute the
appropriate grip type within a limited amount of time. (B) Surgical view of implanted floating microelectrode arrays in monkey M (Left), monkey Z (Middle), and
monkey S (Right). Monkeys were implanted with two floating microprobe arrays per area (4 to 6 total, 32 electrodes each), in the cortical areas AIP, F5, and M1
of the frontoparietal grasping network. (C) Spike raster of all simultaneously recorded neurons of monkey M for one example precision condition trial. Spiking
of all neurons is color-coded by area (M1 yellow, F5 red, and AIP blue). (D) Average firing rates of six representative neurons (two per area) over the time course
of the task, separately for the two grasping conditions (solid line: precision condition; dashed line: power condition). Neurons in the Top row show stronger
firing rates for the precision condition, whereas neurons in the Bottom row prefer the power condition. Shaded error bars represent SE across trials. (E) Top row:
Average firing rate across all neurons for all recording sessions and monkeys separated by area and grip condition (solid line: precision condition; dashed line:
power condition). Shaded error bars represent SE across recording sessions of all three monkeys. Bottom row: Same as in (D) but for average modulation rate.
The modulation rate is the absolute difference in firing rate to baseline.
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firing rates across all neurons per area showed only weak task- and
no condition-dependent modulations (Fig. 3 E , Top row). This
apparent discrepancy can be explained by a similar number of
neurons with increased firing rates for both grasping conditions.
To test this assumption, we estimated the average modulation
rate across all neurons per area. The modulation rate is estimated
as the absolute difference in the firing rate from baseline, in this
case, fixation epoch. As expected, the average modulation rate
strongly increased during all three behaviorally relevant epochs
(cue, memory, and movement) for both grasping conditions in
all three areas (Fig. 3 E , Bottom row). Note that the similar level
of the modulation rate for both grasp conditions provides further
evidence that monkeys performed both grasping conditions
in a similar manner. Together, these results suggest that all
areas are involved in task-dependent information processing.
However, task-dependent changes in firing rates are only an
indirect indicator of information processing. Furthermore, the
mere presence of changes in the firing rate does not provide any
evidence about whether and how information processing changes
for different behavioral states between and within areas.

B. Information Dynamics. Behavior-dependent changes in in-
formation dynamics were estimated by computing AIS, condi-
tional mTE , and triadic synergy between the continuous spike

counts (nonoverlapping 5-ms windows) of all simultaneously
recorded neurons (SI Appendix, Materials and Methods). All three
measures were computed over the time course of the task with
a sliding window of 800 ms and separated by the grasping
condition (incremental step size of 100 ms). The result is an
array of windows: 23 time windows × 2 grasping conditions).
Note that in order to reduce the influence of behavior-dependent
firing rate changes, the AIS and the mTE measures were
significance-tested with conservatively estimated surrogate data
(shuffling spikes within 25-ms windows and recomputing the
corresponding measure; for details, SI Appendix, Materials and
Methods). In addition, all values (AIS, mTE , and synergy) were
normalized by dividing by the Shannon entropy of the receiver
neuron, following (27), which provides a control for variable
firing rates.

For a first assessment of differences in information dynamics
during behavioral changes, we compared the average values of
the three basic normalized information dynamics per behavioral
epoch across both grasping conditions, all neurons and areas (Fig.
4 A–C ). Kruskal–Wallis ANOVA found a small, but significant
difference between all four behavioral states for AIS (H =
67, P = 4.27 × 10−15). The effect size change in AIS values,
however, was very small: The highest value was 0.014 ± 0.024
(in the fixation condition), while the smallest was 0.012± 0.021

A

D

E

F

G

B C

Fig. 4. Behavioral state–dependent changes of information dynamics. All displayed information dynamics are averaged across all neurons of all three brain
areas and the recording sessions of all three monkeys. (A–C) The differences in AIS (Left), mTE (Middle), and synergy (Right) between the four behavioral states
of the task averaged across all sliding windows per task epoch and both conditions. There is no significant difference for AIS over time; however, mTE and
synergy show increases during the movement epoch. (D–F ) Time-resolved dynamics of AIS, mTE, and synergy over the time course of the task separately for the
two grasping conditions (solid, power condition; shaded, precision condition). Shaded error bars represent SE across recording sessions of all three monkeys.
Color-coded are the four behavioral epochs of the task (window contains 200 ms or more of the next epoch). (G) Distribution of synergy/redundancy bias across
all significant effective neural connections for all four behavioral states, averaged across all sliding windows per task epoch. All states are, on average, synergy
biased, even though the movement period is associated with a distinct increase in the proportion of redundant information.
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(Cohen’s D = 0.1). This suggests that during the movement
condition, the degree to which information is being “stored” in
individual neurons is decreased, possibly in favor of information
flowing from source neurons to target neurons. There was a
stronger, significant difference in mTE between behavioral states
(H = 1555.649, P < 10−20). Here, the lowest averagemTE was
observed in the fixation period (0.005 ± 0.007), and the highest
was observed in the movement period (0.013 ± 0.02, Cohen’s
D = 0.46). The strongest significant difference was found with
synergy (H = 1520.213, P < 10−20), with the smallest synergy
being seen in the memory condition (0.001 ± 0.002) and the
highest, as expected, being seen in the movement state (0.002±
0.003, Cohen’s D = 0.54). Time-resolving information dynamics
over all time windows and for both grasping conditions (Fig. 4D–
F ) show that the distributions of all three information dynamics
were largely similar within behavioral states and between condi-
tions. The only exception was the memory state, where the mTE
and the synergy started to increase before the onset of movement.
This is unsurprising since movement-related processing in
cortical motor areas precedes movement onset by at least the
amount of neuronal distance to the arm and hand (37, 38).
B.1. Redundancy/synergy bias. The measure of information mod-
ification (synergy) also reveals an additional set of information-
processing “modes,” formalized by the partial information
decomposition (PID) framework (39, 40), which reveals two
different ways in which information can flow through a system:
a redundancy-dominated mode, where information is duplicated
and sent through many channels simultaneously or a synergy-
dominated mode, where information is distributed over higher-
order combinations of multiple channels. These distinct modes
may be thought of as different “ways” that the nervous system
can distribute, process, and represent information.

We can assess which of these modes dominates the overall
joint mutual information I(S1, S2;T ) by normalizing the value
of each atom (i.e., the portion of the joint-MI that is redundant,
unique, or synergistic) by the total mutual information. Note
that this normalization is different from the one reported above
(where the value of every information dynamic is normalized
by the entropy of the receiver neuron). We found that the
distribution of information flow across all significant effective
triads was synergy dominated during all behavioral states (Fig.
4G). Furthermore, we found that the effective connection-
wise values of synergy, redundancy and the ratio of the two
remained relatively constant across the first three behavioral states
(i.e., fixation, cue, memory). The transition from memory to
movement, however, was associated with a marked increase in
the relative redundancy of information flow across the network
of neurons (1 = −74.4 ± −27.3%, U = 10084455.0, P <
10−10). No other transition (fixation→ cue or cue→memory)
was significant, despite the very large number of samples in each
distribution. This indicates that the transition from “cognitive”
states to motor states is associated with a particular increase in
the relative dominance of redundant information communicated
within the network.

C. Interareal Analysis. Given the behavior-dependent changes
in information dynamics over the course of the task, we next
examined the degree to which the different types of information
processing change within and between areas. To compare
information dynamics of the different types within and between
areas, we computed the average mTE and synergies for all neuron
pairs within each area and also between all pairs of areas separately
in the forward and backward directions. Depicted in Fig. 5 are

the time-resolved average mTE and synergy dynamics over all
time windows and grasping conditions for all areas and area
combinations across all neuron pairs, recording sessions, and
monkeys. The dynamics of both synergy and mTE are highly
similar; consequently, we will not describe them separately in this
section and instead refer to the overall pattern of “information
processing.” Overall information processing was highest within
areas, followed by directly connected areas, and weakest between
AIP and M1. Encouragingly, the overall information processing
reflects the known anatomical connection strength, which we
interpret as providing validation of our methods.

In AIP, despite an overall high level of information processing,
there was surprisingly little change over the course of the task.
In F5, in contrast, information processing increased during
movement execution after remaining largely constant during
the more “cognitive” behaviors. The increase in information
processing during movement was even higher in M1, while
information processing was lower during all other epochs in
comparison to the other two areas. Between areas, the amount
of information processing was surprisingly similar in both the
feedforward and feedback directions, suggesting processing in
both directions to be of equal importance for the visuomotor
transformations and the execution of grasping movements. There
were, however, significant differences between the different
interareal combinations. Areas AIP and F5 showed increased
interareal information processing around the cue epoch, in
contrast to processing within both areas (which remained largely
constant), suggesting that the processing between these areas
is of particular importance for the transformation of visual
information into movement plans. Apart from the already-
high level of information processing within areas, no interareal
connection showed an increased level of information processing
during the memory epoch, suggesting that the act of “holding
information in memory” is an area specific, rather than a global
process. In contrast, all interareal combinations showed a strong
increase in information processing during movement execution,
suggesting the control of movement execution to be a rather
globalized process not limited to M1.

In addition to the condition-dependent changes in synergistic
processing, the PID framework allows us to also explore the
redundant and unique information atoms (SI Appendix,Materials
andMethods). For a better comparison between the different types
of information processing, we averaged information processing
for the three most important behavioral epochs of interest—cue,
memory, and movement—to assess how different types of infor-
mation flowed through the system. SI Appendix, Fig. S1 shows
the relative average amount of mTE , synergistic, redundant, and
unique information for all areas and interareal pairs, displayed as
adjacency matrices for better comparability. As we have already
observed in the comparison of mTE and synergy, temporal
dynamics of all information types are generally similar. On closer
inspection, however, small differences between the information
types become apparent. During the visuomotor transformation
around the cue epoch, synergistic and redundant information
processing between AIP and F5 was stronger relative to the two
other types of information processing. During memory, low levels
of mTE , synergistic, and redundant information processing were
present between AIP and F5, in contrast to unique information.
Presented as adjacency matrices, the aforementioned global
information-processing patterns during movement execution
become clearly apparent. Furthermore, it becomes clear that all
types of information processing during movement execution are
more intense in the feedback direction than in the feedforward
direction.
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A

B

Fig. 5. The information dynamics of mTE and synergy within and between the areas AIP, F5, and M1. All displayed information dynamics are averaged across
all neural connections within each area or between each area pair and all recording sessions of all three monkeys. Since both mTE and synergy are directed
measures, the information dynamics between areas can be separated into the feedforward and feedback directions. (A) Strength of normalized multivariate
transfer entropy over time and separately for both conditions (solid, precision condition; dashed, power condition) within areas (within circles) and between
areas (different source and target areas; arrows indicate the feedforward and feedback direction). Shaded error bars represent SE across recording sessions
of all three monkeys. We can see that the degree of information processing varies greatly between areas for different behavioral states. The arrangement of
areas and interactions corresponds to Figs. 1 and 7. (B) The same as (A), but for normalized triadic synergy.

Taken together, these results suggest that 1) processing
between areas in the feedback direction is essential for this sup-
posedly simple task and 2) that the extent to which information
is processed between areas depends strongly on behavioral state,
in contrast to information processing within areas.
C.1. Network dynamics. To assess how information processing
changes over time and across conditions in fine detail, we next

analyzed the information transfer network structure (41, 42). To
capture the changes in the network structure, we calculated the
network measures: 1) network density, the ratio of connections to
neurons; 2) the clustering coefficient, an indicator of how densely
directly connected neurons are interconnected; and 3) the rich-
club coefficient, an indicator of connection density of strongly
connected neurons (SI Appendix, Materials and Methods). By
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D E

Fig. 6. Differences in the effective network structure between behavioral states and grasping conditions. All displayed network measures are averaged across
all recording sessions of all three monkeys. (A–C) Temporal dynamics (estimated based on the sliding windows) for the three measures of network topology
separately for both grasping conditions (solid, precision condition; dashed, power condition): network density (A), normalized global clustering coefficient (B),
and the normalized rich-club coefficient (C). Shaded error bars represent SE across recording sessions of all three monkeys. The network density increased
dramatically in the movement epoch but remained constant during all “cognitive” states. In contrast, the networks showed a transient reconfiguration during
the cue epoch: increasing the hierarchical rich-club structure and becoming more clustered. (D and E) Pairwise cosine similarity matrices of AIS neuron-level
and mTE connection-level values over all time windows of both conditions. Gray lines indicate the boundaries of similar information network structure clusters
as determined with a clustering algorithm. Note that the fixation and cue epoch clusters of both conditions belong to one cluster, indicated by the red box
around the off-diagonal part of the cluster. Also note that the inferred clusters map onto boundaries between different behaviors.

analyzing information transfer at the network level with neuron
resolution, we observed that the onset of the cue is associated with
a transient reconfiguration of the network structure (Fig. 6 A–C ).
While the total amount of information transfer and connections

across the networks did not significantly change in response to cue
onset (Figs. 4E and 6A), the normalized clustering coefficient was
significantly increased during the cue epoch for both grip types
A (precision grip) and B (power grip cluster-based surrogate test,
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P < 10−20 for all windows and all grip types, see Methods)
(29, 43). Similarly, for both grip types, the normalized rich-
club coefficient was significantly higher during the cue epoch for
both grip types (Fig. 6C ; cluster-based surrogate test, P = 0.002
for Grip A and P = 0.048 for Grip B). We can also see a
significant increase in the normalized rich-club coefficient for
both grip types during the movement epoch (P < 10−20 for all
windows and all grip types). Together, these results suggest that
the transition from a passive cognitive state (fixation, memory)
to an active cognitive state (perception of a visual cue or motor
execution) is associated with marked changes to the information-
processing network structure. Furthermore, these changes are lost
when considering average information dynamics of individual
neurons (Fig. 4 D–F for comparison). For example, an increase
in the rich-club coefficient is seen in both the cue epoch and
during the movement epoch, suggesting that the presence of
rich-club structure is particularly important for active states.
Interestingly, the emergence of a rich-club structure as well as an
increased cluster coefficient occurs during the cue epoch without a
corresponding change in the total amount of information transfer
of the network, suggesting that it might be a true reallocation of
a fixed quantity of computational resources.
C.2. AIS and mTE similarity clustering. In addition to various
behavioral states, monkeys also performed two different grasping
conditions. Although all analyses above did not reveal any
differences in processing between the two grasp conditions
(Figs. 4 D–F , 5, and 6 A–C ), the possibility remains that
differences in the information dynamics exist at the of fine-
grained network level with neuron resolution, which are lost
at any larger scale. For this purpose, we examined condition-
dependent differences in the AIS values across neurons and
mTE values across network connections. For both measures,
we estimated the cosine similarity between the neurons and
connections, respectively, of all time windows of all behavioral
states and for both grip types averaged across all recording sessions
of all monkeys. The resulting cosine similarities are depicted as
similarity matrices (Fig. 6 D and E). For both matrices, the
values on the diagonal represent the similarity over time of first
the precision grip (A) and then the power grip condition (B).
The off-diagonal values thus represent the similarity between
conditions over time. Over the time course of the task in both
conditions, the AIS values across neurons and the mTE network
structure were most dissimilar between the movement period
and all other epochs. On closer examination, however, there
are also differences between the fixation and cue epoch and
the memory epoch. In direct comparison of both conditions,
we can observe that the AIS values across neurons and the
mTE-networks were most similar during the fixation epoch.
Following fixation, the similarity of the networks decreased and
condition-dependent difference became apparent during the cue,
memory, and movement epoch. Note that despite the similarity
of network reconfiguration of both conditions over time, the
fine-grained information dynamics at the network level are highly
dissimilar during the movement period. To verify behavioral state
and condition differences, we used a multiresolution consensus
clustering (MRCC) algorithm (44). MRCC is an unsupervised
community detection algorithm that in this case identifies groups
of AIS and mTE values over time and across conditions of
increased similarity (see the squares along the diagonal in Fig.
6 D and E). MRCC revealed that all but the combined fixation
and cue epoch of both conditions (see the red squares in Fig. 6
D and E) formed separate clusters. The across-condition fixation
and cue cluster is to be expected because the fixation epoch is
the only epoch that is independent of the behavioral condition.

Thus, this result confirms that the AIS values across neurons
and the mTE network structure are 1) not statistically different
during fixation and 2) statistically different during all other
epochs. Note that the across-condition cluster also comprises
the cue epoch, which is probably due to the large sliding window
size of 800 ms. Interestingly, the independent condition-specific
clusters identified by the MRCC algorithm showed a similar
temporal structure for both conditions resembling behavioral
states such as memory and movement. Taken together, despite
no significant condition-dependent differences on average, both
AIS and mTE showed significant differences at the neuron
and connection levels, respectively. Thus, these results suggest
that the fine-grained structure of the information dynamic
networks reconfigures for different conditions, forming distinct
“information-processing architectures.”

D. Relating Structure & Functional InformationDynamics. Pre-
vious studies performed on organotypic brain slices showed that
synergistic information dynamics were highest between neurons
with a high degree (24–26). Yet, the meaning of synergistic
processes in neural networks remains unclear. Therefore, it is
important to scrutinize this relationship in the intact brain during
behaviorally relevant processing. To assess this, we correlated
each of the information dynamics for every neuron against
local network measures (SI Appendix, Fig. S2; local clustering
coefficient and in-strength, as a proxy for local rich club). The
in-strength, the sum of all directed in-coming transfer entropies,
quantifies the total amount of information that flows into a
target neuron. In-strength is high when a neuron receives a lot of
information from the rest of the system and low when a neuron
is more segregated from the rest of the network. The clustering
coefficient quantifies whether a given neuron’s neighbors tend
to also be connected, forming a dense, local environment. It
can be thought of as reflecting how locally integrated part of a
network is. We found no significant relationships between either
in-strength or local clustering coefficient and neuron-level AIS
(SI Appendix, Fig. S2 A and B). However, we found a strong,
significant correlation between the in-strength of a neuron and
the averagemTE flowing into it (SI Appendix, Fig. S2C, r = 0.86,
P < 10−10). While this is unsurprising, it is not entirely trivial:
A low in-degree neuron and a high in-degree neuron might have
the same in-strength, but different average incoming transfer
entropies. Similarly, we found a strong, significant correlation
between the average mTE of a neuron and its local clustering
coefficient (SI Appendix, Fig. S2D, r = 0.44, P < 10−10),
which indicates that the information processing occurring in a
single neuron is informed by the local connectivity pattern of that
neuron’s neighbors. Finally, we found strong, significant corre-
lations between synergy and both in-strengths (SI Appendix, Fig.
S2E, r = 0.657, P < 10−10) and local clustering coefficient (SI
Appendix, Fig. S2F, r = 0.653, P < 10−10). As with the transfer
entropy results, these results show that a neuron’s location in the
effective connectivity network relative to other neurons informs
the type of information processing it predominately performs.

2. Discussion

In this work, we have used information theory to study behavior-
related changes in patterns of information processing in neural
networks spanning multiple brain areas of the macaque fron-
toparietal grasping network. We investigated 1) how information
processing changes during different cognitive and behavioral
states over the course of a behavioral task, 2) to what degree
information processing is restricted to within specific areas,

PNAS 2023 Vol. 120 No. 2 e2207677120 https://doi.org/10.1073/pnas.2207677120 9 of 12

https://www.pnas.org/lookup/doi/10.1073/pnas.2207677120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2207677120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2207677120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2207677120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2207677120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2207677120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2207677120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2207677120#supplementary-materials


or distributed between areas, 3) to what degree this interareal
processing structure is fixed or changes dynamically for different
behavioral states, and 4) whether behavioral condition-dependent
differences are present at the fine-grained information-processing
network structure. For this purpose, we estimated different
types or components of “information processing” referred to
as “information dynamics” (45): the active information storage
(how the past activity of a single neuron informs on its
future), transfer entropy (how the past of a set of source
neurons informs on a single target neuron’s future), and the
information modification/synergy (information from the joint-
state of multiple sources about a target’s future that is irreducible
to any simpler combination of sources).

We found that information processing of different types
changes during different cognitive and behavioral states. Further-
more, the degree of information processing taking place within a
single area, as opposed to between areas, strongly depended on the
behavioral state. During visuomotor transformation, areas AIP
and F5 formed a processing unit (Fig. 7A). During memory, this
unit unexpectedly fell apart, despite the amount of information
processed within each area remaining constant (Fig. 7B). Finally,
the highest level of information processing occurred during the
movement execution. In contrast to the two previous behavioral
states, movement execution appeared to be a global process with
the greatest amount of computation occurring between all areas,
especially M1 (Fig. 7C ). Movement execution-related processing
between areas was more pronounced in the feedback direction
suggesting that online feedback to earlier areas is an essential
part of movement execution. While the average information-
processing dynamics were the same for different conditions
across the different cognitive and behavioral states, significant
condition-dependent differences became apparent at the fine-
scale network level with neuron resolution. Our results suggest
that connected areas can dynamically form functional units that
together enable the required cognitive or behavioral state, while
fine-grained reconfigurations of the network structure reflect
different behavioral conditions. These ensembles of areas are
flexible: multiarea units can subsequently fall apart to reform
into other multiarea processing units according to the cognitive
and behavioral demands.

This work unifies previous findings about information dy-
namics, behavior-related neural population dynamics, and the
structure of networks of neurons. Prior work on information

A B C

Fig. 7. Variable feedforward and feedback dynamics during different behav-
ioral states. Here, we can see how different cognitive and behavioral epochs
are associated with different patterns of information processing within and
between areas. During the cue and early memory epoch, when monkeys
are transforming the information from their environment into a movement
plan, strong interareal information processing is present between AIP and
F5 in both the feedforward and feedback directions. In contrast, during the
memory epoch where monkeys have to retain the instructed movement,
information processing was primarily present within areas. Finally, during
the execution of the movement, information was processed globally within
and between areas, outgoing from M1, with dominance of processing in the
feedback directions.

dynamics has demonstrated the existence of synergistic processing
in dissociated cultures (20, 25): Synergistic dynamics can be
sensitive to local network structure (46) and vary over time (21).
Similar analyses have been done for AIS (15) and TE (16, 17),
although until now it has been a mystery how these different
modes of processing relate to cognition and behavior.

Previous work on frontoparietal neural rate dynamics has
demonstrated that neural populations respond to movement
preparation as well as movement execution, but with independent
dynamics for both processes (37, 47, 48). Therefore, preparation-
related information must be “transformed” into movement
execution-related information. However, analyses of population
dynamics do not allow a direct estimate of computation.
Historically, the amount of information processed was either
estimated based on correlation analyses (49) or indirectly inferred
via an artificial neural network model (50). Prior work on
the inference of network connectivity at the neuron level has
demonstrated the presence of strong interareal and intraareal
connectivity and an area spanning rich club of neurons (29), but
its behavioral relevance was elusive.

We found significant cognitive and behavioral state-related
changes to information-processing architecture. Both mTE and
synergy significantly increased in the movement epoch, while
synergy additionally increased during the cue epoch (Fig. 4).
The observed increase in information processing in both epochs
is in agreement with the cognitive and behavioral require-
ments: During the cue epoch, monkeys must actively observe
and integrate instructions, while during the movement epoch,
monkeys must actively move arm and hand to grasp the target
with the required grip type. In contrast to these active periods,
monkeys must remain still during fixation and memory epochs,
which suggests a lower degree of information processing during
these steady periods. This assumed relationship between the
estimated amount of information processing and the behavioral
requirements is further supported by the finding that the mTE
effective network dynamics vary between active and steady states
(Fig. 6 B and C ). In particular, the presence of an effective
rich-club network structure distinguished active and steady states
(no significant rich-club during steady states, significant rich-
club during active states). Surprisingly, active and steady states
were not accompanied by systematic differences in the average
population rate and modulation rate (Fig. 3E), suggesting that
the observed changes in processing are due to reconfiguration of
the effective network structure.

Not only did information network dynamics resemble the
cognitive and behavioral states, but the increase in information
processing and network dynamics preceded the movement onset.
The so-called internal movement onset in the brain, however, has
been shown to precede the real movement onset (37, 38) simply
because nerve signals take time to arrive at the appropriate arm
muscles, and arm muscle potentials need time to build up to
lift the arm and hand. Therefore, the observed mismatch of
information processing with the movement epoch also further
supports the assumed relationship between information dynam-
ics and behavior. Although the lack of significant differences
in average information processing between conditions seems
disappointing at first glance, it further validates our findings.
Both grasp conditions have equally salient cues, can be assumed
to be equally difficult to prepare for, and presumably require a
comparable amount of effort to perform. Given these facts, it
is not surprising that the total amount of information required
for both was similar. A similar level of information processing
between the two conditions serves as cross-validation of our
results. Thus, our findings suggest that the estimated information
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dynamics at the network level capture the true behaviorally
relevant processing or at least parts of it.

Given the evidence that information theory allows us to
capture the underlying processing in the frontoparietal network
of neurons, three questions arise: 1) Why is information processed
between areas and not exclusively within areas? 2) Why do
the areas that form a processing unit change depending on the
behavioral state? 3) How are different multiarea processing units
formed?

Regarding the first question, there exist compelling evidence
that large populations of neurons in multiple areas are modulated
in a similar way during the same cognitive or behavioral task (1–
4). This high degree of correlated activity or information is made
possible by the strongly reciprocal connection of mammalian
cortical areas (51, 52). Additionally, there is strong evidence
coming from neuroimaging that the pattern of correlated activity
is constantly changing despite static connectivity (53, 54). These
results suggest that the cortex should be viewed more as a single
interconnected network of neurons than as a structure divided
into areas. Consequently, information is likely to be globally
communicated and presumably also processed. Our results of
strong processing in both the feedforward and feedback directions
provide evidence for this proposal. A more global integration may
also allow for greater flexibility and the integration of more factors
simultaneously than a classical hierarchical processing structure.

Regarding the second question, it may be beneficial to flexibly
recombine processing from multiple areas according to behavioral
demand. For the given task, first visual information must be
transformed into a movement plan. It has been demonstrated
that areas AIP and F5 are involved in visuomotor transformation,
but M1 is not (5, 6, 8). Therefore, it makes sense that AIP and
F5 form a processing unit during visuomotor transformation not
involving M1. Neurons of both areas also show elevated and
prolonged activity during memory periods (5, 6). Surprisingly,
we found that the processing units of AIP and F5 fell apart during
memory, although memory may require less “processing” and
something more akin to “storage” (not to be confused with the
measure of AIS reported here). A large number of studies have
shown that mainly M1, but also F5, is involved in movement
execution (8, 37, 55, 56). In a recent study, a mechanism has been
proposed for how a movement plan is translated into movement
execution in the premotor and motor cortices (57). Our finding
of high levels of information processing within and between
M1 and F5 during movement execution is consistent with this
hypothesis. In contrast, little is known about the involvement of
area AIP in movement execution. Only a single study showed
that the movement trajectories from the whole arm and hand
can be decoded from AIP during movement execution (7). Thus,
our results suggest that the number of cortical areas involved
in the required processing for movement execution is larger
than previously thought. We speculate that the strong feedback
processing might be necessary to align precise details of the
movement with different sensory areas, the evaluation of the
movement, or learning.

Regarding the third question, a one study has explored how
dynamic communication is established between cortical areas
(58). However, most results about dynamic communication
capture cofluctuations of different brain signals and reveal
little about multiarea processing units. Nevertheless, oscillatory
synchrony has been proposed as a coordinative mechanism for
interareal communication (29), which might also be involved in
the dynamic formation of multiarea processing units.

Another intriguing finding is that condition-dependent dif-
ferences were present in the fine-scale network structure of

information processing starting during the cue epoch until the
end of the tasks, despite no significant differences in the average
amount of information processing (Fig. 6 D–F and SI Appendix,
Fig. S2). As mentioned before, both grasp conditions have equally
salient cues, can be assumed to be equally difficult to prepare,
and require a comparable level of effort to perform. Therefore, a
similar average level of information processing may be expected.
On the other hand, it is also evident that information processing
must be different for the two grasping conditions. Consequently,
the observed differences in the processing network structure
at the neuron level most likely reflect the distinct, fine-scale
neuronal computations underlying different conditions. Thus,
the methods described here provided a powerful tool to study
neural computations in the network during different cognitive
and behavioral processes. In this study examining the behavioral
state and condition-dependent differences in the information-
processing network structure, it becomes apparent that behavioral
state differences are larger than condition-dependent differences.
Moreover, the network state during fixation as well as during cue
and memory of both conditions is more similar to each other than
the network state during movement execution of both conditions.
We suggest that the active execution of a movement leads
to a much more drastic change in the information-processing
structure than different cognitive states. In contrast, the finer but
distinct differences between conditions remained relatively stable.
Taken together, these results suggest a hierarchy in information
processing in which the coarse network structure determines the
behavioral state and finer changes in the network structure reflect
different conditions.

In total, information dynamics represents an appealing frame-
work with which to explore the brain as an integrated whole
and can be easily adapted to assess computational processes at
multiple scales. Given the extensive public data available to
neuroscientists, we are optimistic that information dynamics
can provide insights into the relationship between the brain,
behavior, computation, and dynamics. In particular, information
dynamics marries two well-established frameworks in modern
neuroscience: computational approaches and dynamical systems
approaches (38, 50, 57, 59–61). Sometimes called “compu-
tational mechanics” (62), information dynamics analysis can
provide a bridge between approaches to provide insights that
may not be obvious from either one.

Materials and Methods

Neural activity was recorded simultaneously from many channels in two female
and one male rhesus macaque monkeys (animals S, Z, and M; body weight 9, 7,
and 10 kg, respectively). Detailed experimental procedures have been described
previously (29, 63). All procedures and animal care were in accordance with
German and European law and were in agreement with the Guidelines for the
Care and Use of Mammals in Neuroscience and Behavioral Research (National
Research Council, 2003). The behavioral task is described in SI Appendix,
section 2.A. The electrode implantation and data recording is described in
SIAppendix, section 2.B. The data preprocessing of the neural signals is described
inSIAppendix, section 2.C. The sliding window analysis for information dynamics
is described in SI Appendix, section 2.D. The calculation of AIS andmTE network
dynamics is described in SI Appendix, section 2.E and F. The similarity analysis of
mTE and AIS is described in SI Appendix, section 2.G. The calculation of synergy
as part of the partial information decomposition is described in SI Appendix,
section 2.H.

Data,Materials, and Software Availability. All study data are included in the
article and/or SI Appendix. Previously published data were used for this work; B.
Dann, J. A. Michaels, S. Schaffelhofer, H. Scherberger, Uniting functional network
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topology and oscillations in the fronto-parietal single unit network of behaving
primates. ELife, 5, e15719 (2016). https://doi.org/10.7554/eLife.15719.
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