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Abstract
The main clinical tool for the diagnosis and treatment of skeletal diseases
such as osteoporosis is the determination of bone mineral density by dual
x-ray absorptiometry. Although this outcome contributes to the
determination of bone strength, the clinical evidence to date suggests that it
does not correlate strongly with fracture incidence. The main reason for this
discrepancy is the fact that several other bone properties, such as material
properties, are not taken into account. This short review summarizes the
reasons why material properties are important in the determination of bone
strength and briefly discusses some of them as well as their influence on
bone’s mechanical performance.
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Bone strength is determined by both the amount and the qual-
ity of its material (mineral, organic matrix, and water). How-
ever, in the clinical setting, the prediction of bone strength, and 
thus the identification of patients at high risk for fragility frac-
ture, relies exclusively on the measurement of the amount of 
mineral present. This is accomplished by bone mineral density 
(BMD) measurements using dual x-ray absorptiometry (DXA) or  
BMD-dependent algorithms, such as FRAX®. Both tools have 
enjoyed widespread use in the field of osteoporosis. The origi-
nal definition of osteoporosis was formulated by Albright and 
Reifenstein as a disease in which there is “too little bone, but 
what there is, is normal”1. For several decades afterwards,  
osteoporosis was viewed as a disease of low bone mass. In 2001,  
the National Institutes of Health changed the definition of oste-
oporosis to “a skeletal disorder characterized by compromised 
bone strength predisposing a person to an increased risk of  
fractures”2. It is now widely appreciated that non-BMD factors 
that determine susceptibility to fractures include small bone size, 
disrupted bone architecture, excessive rate of bone remodeling, 
loss of osteocyte viability with age, increased cortical poros-
ity, and falls as well as changes in the quality of the bone matrix 
and the maturity of its mineral and delayed repair of fatigue  
micro-damage. In spite of this advanced understanding, esti-
mates of bone strength and hence fracture risk still rely exclu-
sively on mineral quantity measurements. The fact that BMD 
is only one of many other determinants of an individual’s frac-
ture risk3,4 is highlighted by the significant overlap in BMD 
between patients who do sustain fragility fractures and those who  
do not5–7. Moreover, for a given bone mass, an individu-
al’s risk to fracture increases exponentially with age8,9. Many 
investigators have shown that mechanical variables directly 
related to fracture risk are either independent10 or not totally 
accounted for by bone mass11–15. Epidemiological evidence also  
demonstrates considerable overlap of BMD values between 
fracture and non-fracture groups, strengthening the notion that 
low bone quantity alone is an insufficient cause of fragility  
fractures16–18. This holds true even in the case of algorithms 
such as FRAX® which rely heavily on BMD measurements9,19,20.  
A similar discrepancy is evident when osteoporosis therapies 
are evaluated on the basis of BMD gains. In fact, when actual 
reduction in fractures is considered instead of fracture risk, 
only a very small portion of the observed fracture reduction  
is accounted for by this metric21–23. Based on these observa-
tions, the necessity for a better understanding of what alterations 
result in fragility fractures becomes self-evident, all the while  
keeping in mind that BMD does contribute to the mechani-
cal properties of bone and is the only clinically approved  
measure to date.

The first step in reassessing an improving fracture risk esti-
mation would be to appreciate what properties contribute to 
the determination of bone strength. As stated earlier, the three 
main constituents of bone are mineral, organic matrix, and 
water. It is logical then to postulate that, at the material level,  
fragility fracture is the result of alterations in the quantity or  
quality (or both) of one or more of these three components.  
Bone mechanical competence is determined by three often 
inversely related attributes: stiffness, toughness, and strength24,25. 

Load-bearing materials have to reconcile several sometimes 
opposing mechanical properties. Stiffness measures the ability 
of the material to withstand deformation, and strength is defined 
as the highest stress the material can bear before the onset of 
permanent deformation and damage. Toughness quantifies 
how much energy has to be put into the system before it fails.  
More exactly, it measures the energy needed to propagate a 
crack through the system. It is clear that a (natural) load-bearing  
material like bone should combine all three parameters: large 
stiffness and strength are necessary to give stability to the 
body and allow efficient locomotion, while high toughness is  
needed to maintain the integrity of the bone as otherwise 
cracks could easily propagate and bones would break at the 
slightest impact. Unfortunately, it is one of the main conun-
drums of materials science that it is not easy to fabricate a  
material that is strong, stiff, and tough at the same time26. 
Most homogeneous materials are either stiff and strong or 
tough, but they rarely combine all three properties27. Typi-
cal examples from materials science are ceramics and metals.  
Ceramics are very strong and stiff but break easily. This is 
explained by the nature of covalent bonds that form these mate-
rials. These bonds are strong and highly directed, but they are 
non-reversible and cannot be re-distributed. Metals, on the  
other hand, are much softer and less strong but show a higher 
toughness than ceramic structures. This is due to the non-
directed and reversible metallic bond that allows efficient stress  
relaxation via movement of dislocations28.

To overcome these limitations, nature has developed several 
strategies to fabricate materials that combine high stiffness, 
strength, and toughness. One main strategy is to build highly  
anisotropic composite materials that are hierarchically structured 
over many length scales combining materials with opposing  
properties29. All different levels mutually interact with each 
other and possess certain strengthening and toughening mecha-
nisms. In the following, we will briefly discuss these mecha-
nisms on the lowest level of hierarchy (the molecular level) in  
the example of bone. On the nanoscale, bone is a compos-
ite made of the organic protein collagen and the inorganic  
mineral hydroxyapatite that is a calcium phosphate. Whereas  
collagen is not very stiff and strong but is very tough, hydroxya-
patite is hard to deform and is very strong; but as a ceramic,  
hydroxyapatite does not have a very pronounced toughness.

Nature has developed efficient ways to arrange collagen and 
hydroxyapatite so that the resulting composite bone has high 
stiffness and toughness30. This is achieved through a hierarchi-
cal structuring of bone over many length scales while special 
mechanisms of strengthening and toughening apply on each  
single level31. Roughly, the different levels of hierarchy are, 
first, the macroscopic level of trabecular or osteonal bone 
characterized by geometry and topology; second, the level of 
bone material with mechanical properties that differ because  
of different values of mineralization32,33; third, the lamellar 
structure of mineralized collagen fibrils that is very efficient in 
crack deflection34,35. Finally, the level of the organic-inorganic  
composite of triple-helical collagen fibrils and hydroxyapatite  
crystals is arranged in a staggered manner36,37. In particular, the  
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distribution of loads in bone is such that the deformation is not 
homogeneously distributed in the material and its hierarchical 
layers. The deformation of the composite on the macroscopic 
scale is always larger than the deformation of the molecular  
bonds37,38. All of these levels are strongly interrelated and depend 
on each other.

In this review, we will focus on the lowest level of hierarchy and 
the toughening mechanisms on this length scale. On this scale, 
bone is a nano-composite of soft but tough collagen molecules 
and stiff but brittle plate-like crystals of hydroxyapatite. One 
part of the toughening comes from the geometric arrangement 
of constituents. The triple-helical collagen molecules of length 
of about 300 nm self-assemble in a staggered manner with  
an axial period of about 67 nm39. The different triple helices 
are strongly cross-linked10,41. Because the length of the mol-
ecule and the period are not integer multiples of each other, the 
staggering leads to the emergence of tight overlap and less-
dense gap regions, where mineralization is believed to start42.  
From a mechanical point of view, this particular spatial  
arrangement of soft organic matrix and stiff mineral phase 
leads to the formation of shear stresses in the matrix (amount 
of force per unit area perpendicular to the collagen fibers), 
while the mineral particles are loaded in tension. The geometric  
arrangement of mineral particles, especially their lateral  
distance and length, is critical for their mechanical behavior36. 
Furthermore, the small size of crystallites effectively prevents the 
occurrence of cracks and flaws, helping the material to gain its  
theoretical strength43.

Another component that provides the bone material with remark-
able properties consists of sacrificial bonds. The soft matrix in 
bone (and in many other biological materials) consists mainly 
of proteins. Proteins are heteropolymers consisting of amino 
acids. The bonds along the backbone of a protein are covalent in 
nature, but proteins also often contain cross-links that are addi-
tional bonds connecting distant parts of the same or different  
molecules. These cross-links are used to carefully tailor the 
mechanical properties of the structures. In biological materials, 
these cross-links are often weaker than the covalent bonds that hold  
the structure together. Thus, upon loading, these bonds rup-
ture before the covalent backbone fails; it can be said that these 
bonds sacrifice themselves44. When the cross-links open, they 
reveal what is called the hidden length: that is, the part of the 
polymer that was previously shielded from being loaded by the  
cross-links. After cross-link opening, the hidden length is 
allowed to expand, dissipating large amounts of energy. This  
process considerably enhances the toughness of the material. 
Furthermore, typical sacrificial bonds are reversible. This means 
that they may reform once the load is released and the material  
shows self-healing capabilities45. Consequently, although irre-
versible deformation takes place when the soft glue layer  
between mineral platelets is sheared, the material can heal and 
regain its original mechanical properties when the load is released. 
In bone, sacrificial bonds are coulombic in nature46. Divalent 
ions, like calcium, might cross-link negatively charged proteins  
like osteopontin44,47. Computational studies have shown that  
disorder in the arrangement of sacrificial bonds needs to be  

introduced in order to obtain a tough material but that  
perfectly ordered structures lead to a stiff and strong but very  
brittle material48 (Figure 1).

Evaluating the health status or efficacy (or both) of drugs on 
the basis of BMD values exclusively also raises the follow-
ing conundrum. Bone strength depends on both the amount 
and quality of bone49. Under physiologic conditions, resorp-
tion removes poor-quality bone which then is replaced with 
new and good-quality bone. But if the quality of the new bone 
made to replace the one removed during bone remodeling  
(turnover) is poor, decreasing the resorption rate with a drug 
may in and of itself have no benefit. Bone turnover rates change 
as a function of subject age, health status, and treatment. 
This results in a change of the number of the bone-relevant  
cells such as osteoblasts, osteocytes, and osteoclasts. Yet changes 
in cell numbers are not the only variation. Output/cell also 
may change. For example, osteoblastic output diminishes as a 
function of aging because of factors such as oxidative stress. 
Thus, with aging or disease (or both), bone material properties  
may vary because of turnover changes or changes in cel-
lular output (or both). The former are routinely established 
by histomorphometry. The latter require utilization of either  
molecular biology techniques or techniques that can nor-
malize for tissue age, such as microspectroscopic ones50.  
It should be kept in mind, especially when evaluating oste-
oporosis therapies, that, in addition to the therapies’ direct 
effects on cells, there may be indirect ones as well. For  
example, teriparatide acts on the Wnt signaling pathway and 
is likely to have direct effects on the cells and their output51,52. 
On the other hand, bisphosphonates not only induce increased  
osteoclast apoptosis but also adsorb onto the apatite mineral 
surfaces, altering the zeta potential of these surfaces53. Cells, 
including osteoblasts, recognize and react to such changes54–56.  
Similarly, strontium (part of strontium ranelate therapy) incorpo-
rates into the apatite crystals, substituting for calcium ions, thus 
rendering nutritional calcium intake as well as serum calcium 
levels as important regulators of any strontium treatment57.  
Moreover, since strontium is incorporated into the crystals at 
forming surfaces, there is no indication for a change in human  
bone tissue quality at the nanoscale after a 36-month treat-
ment for postmenopausal osteoporotic women with strontium  
ranelate58,59.

It becomes abundantly clear from the previous discussion that 
mineral content is but one of the many contributing param-
eters in the determination of bone strength. Below, we list some 
of the bone properties that are known to affect bone mechani-
cal performance but that are not measured by everyday clinical  
techniques.

Although the determination of BMD is a routine procedure, it 
ignores the amount of organic matrix present within the bone 
volume analyzed, yet the organic matrix plays an important 
role in alleviating impact damage from peak stresses to mineral 
crystallites and to matrix/mineral interfaces by behaving like 
a soft padding and homogenizing stress distribution within the  
bone composite36,43. As a matter of fact, in a rodent model, the  
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commonly reported spectroscopically determined mineral/
matrix ratio correlates better with bending stiffness as com-
pared with BMD alone61. To the best of our knowledge, the 
two techniques that simultaneously and directly measure both 
mineral and organic matrix quantity are thermogravimetric  
analysis and vibrational spectroscopic techniques. The former 
is a rather destructive approach, as the bone needs to be ashed. 
The latter requires a biopsy, although recent advances may make  
the in vivo analysis of bone feasible in the not-too-distant future50.

Bone water content has recently attracted renewed interest 
as it has been shown to contribute to the overall toughness of 
bone, acting like a plasticizer62–65. This indirectly emphasizes 
the importance of proteoglycans in the determination of bone  
strength66. Proteoglycans are non-collagenous components 
of the bone extracellular matrix and are characterized by 
the presence of one or more glycosaminoglycan polymers 
attached to a protein core67. They play multiple roles in bone  

tissue, contributing to the organic matrix assembly and the  
negative modulation of both organic matrix mineralization and  
remodeling rates68–71. In older (in terms of tissue age) bone  
tissue, glycosaminoglycans are responsible for preventing  
mineralization of the perilacunar matrix around the osteocyte  
lacunae and the canaliculi in compact lamellar bone72.  
Finally, an important chemical property of proteoglycans is their 
capacity to swell by binding large amounts of water (through  
their GAG chains) and fill in spaces73.

Bone mineral crystallites are poorly crystalline and highly sub-
stituted apatite crystals74. These crystal lattice substitutions 
impact the crystal solubility and its size and shape. Healthy 
bone consists of crystallites whose size and shape fall within 
a definite range. Values outside this range have been associ-
ated with clinical conditions associated with bone fragility, 
such as osteoporosis and fluorosis49,75–77, in agreement with  
theoretical studies36,43.

Figure 1. Microscopic toughening mechanisms of sacrificial bonds in bone. (A) Schematic of possible kinds of sacrificial bonds in the 
glue layer between mineralized collagen fibrils: connecting different parts of the same protein (1), connecting different polymers (2), and 
connecting a protein and a mineral plate (3). Reproduced with permission from the Nature Publishing Group60. (B) These cross-links are 
probably coulombic in nature. Divalent ions (calcium) may form coulombic bridges between negatively charged proteins. Reproduced with 
permission from the Royal Society46. (C) Mineral particles are arranged in such a way that the glue layer mostly experiences shear. Computer 
simulation studies indicate that the arrangement of sacrificial bonds in this layer has a large impact on mechanical behavior. Whereas an 
ordered arrangement results in an elastic but brittle material (unrealistic high values of the elastic modulus of up to 2800 GPa and low 
toughness of 5 MJ/m3 for cross-link densities (ρ) of 4.62 e/nm2), the same number of cross-links but randomly arranged leads to a less stiff 
but highly ductile material (elastic modulus of 5 GPa and toughness of 275 MJ/m3). Note the different scaling of the stress and strain axis for 
the different arrangements. Modified with permission from the American Chemistry Society (https://pubs.acs.org/doi/10.1021/nl901816s)48. 
Further permissions related to the material excerpted should be directed to the ACS.
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Bone enzymatic intermolecular collagen cross-links are para-
mount to fibril organization. Mineralizing type I collagen under-
goes extensive post-translational modifications41. Covalent 
enzymatic intermolecular cross-links are tissue type– rather 
than collagen type–specific41. Elevated trivalent cross-link 
density is associated with more brittle-like performance by  
collagen fibrils78. Alterations in collagen cross-links are 
enough to impact the mechanical proficiency of bone even 
if restricted at microanatomical locations, without simul-
taneous alteration in either mineral quantity or quality79,80. 
The type and amount of enzymatic collagen cross-links are 
inversely correlated with stiffness, maximum force to failure,  
maximum energy to failure, and fracture toughness79,80. In 
humans, collagen cross-links at actively bone-forming trabecular  
surfaces strongly correlate with fracture incidence, even in cases 

where incidence is divergent from the predicted fracture risk  
based on BMD and biochemical markers81–84.

In summary, bone material properties are important deter-
minants of bone strength yet are not accounted for by any of 
the clinically available diagnosis tools. Developing tools that 
will measure bone material properties in the clinical setting is 
of great importance in complementing existing ones such as 
BMD by DXA. Such new tools will improve the calculation  
of fracture risk.
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