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Abstract

Most models of neural responses are constructed to reproduce the average response to inputs but lack the
flexibility to capture observed variability in responses. The origins and structure of this variability have signifi-
cant implications for how information is encoded and processed in the nervous system, both by limiting infor-
mation that can be conveyed and by determining processing strategies that are favorable for minimizing its
negative effects. Here, we present a new modeling framework that incorporates multiple sources of noise to
better capture observed features of neural response variability across stimulus conditions. We apply this
model to retinal ganglion cells at two different ambient light levels and demonstrate that it captures the full dis-
tribution of responses. Further, the model reveals light level-dependent changes that could not be seen with
previous models, showing both large changes in rectification of nonlinear circuit elements and systematic dif-
ferences in the contributions of different noise sources under different conditions.
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Significance Statement

Current models for neural responses typically focus on accurately estimating a neuron’s average response
to a stimulus but often fail to accurately reflect response variability. Such variability is central to the accuracy
with which neural responses represent inputs and with which they can guide behavior. We present a new
modeling framework that accurately captures observed variability in neural responses and find that multiple
stochastic model elements are necessary to capture this variability. We show that model parameters can be
accurately estimated using ~8 min of data. We then apply the model to retinal ganglion cells, demonstrating
light level-dependent changes in both deterministic and stochastic model elements changes that are either
\obscured or absent using more standard modeling approaches. /

Introduction

Variability in neural responses can reveal aspects of cir-
cuit function that are not apparent from average re-
sponses alone. For example, identifying different sources
of variability can guide the search into potential mecha-
nisms that shape neural responses (Softky and Koch,
1993; Franks et al., 2003; Goris et al., 2014). Variability
also places fundamental limits on the information that can
be encoded in single neurons (Faisal et al., 2005) and
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populations (Abbott and Dayan, 1999; Averbeck et al.,
2006), and limits the accuracy of perception and behavior
(Barlow, 1956; Bays, 2015). Finally, variability shapes how
information flows through neural circuits, including the
strategies used by neural circuits to mitigate the effects of
noise (van Rossum and Smith, 1998; Butts and Goldman,
2006; Brinkman et al., 2016). To advance our understand-
ing of circuit function, it is therefore important to develop
models that provide more accurate predictions of
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variability in neural responses and better reflect the multi-
ple origins of variability in neural circuits.

In order to accurately reflect neural variability, models
must capture features that drive neural responses, as well
as noise in the underlying mechanisms that produces true
randomness. Ultimately, all these elements will be neces-
sary to produce more complete models that disentangle
the contributions of different mechanisms to neural re-
sponses. To date, much work has focused on incorporat-
ing into models additional stimulus features that drive
spiking, dependence on response history, or modulation
from other neurons (Berry and Meister, 1998; Keat et al.,
2001; Slee et al., 2005; Fairhall et al., 2006; Pillow et al.,
2008). Comparatively little work has focused on modeling
the noise inherent in neural responses (Keat et al., 2001;
Churchland et al., 2011; Vidne et al., 2012; Goris et al.,
2014).

In current models, the generation of spikes from a neu-
ron’s inputs is most commonly described as a Poisson
process (Dayan and Abbott, 2001; Schwartz et al., 2006),
potentially with a refractory period or otherwise modu-
lated by response history (Berry and Meister, 1998; Pillow
et al., 2008). However, the assumption that variability in
neural responses takes the form of Poisson noise arising
in spike generation has several limitations. First, it is in-
consistent with the fact that variability in neural circuits
arises from multiple sources at different stages of proc-
essing (Faisal et al., 2008). Second, Poisson noise is of a
particular magnitude: the variance of responses is equal
to the mean. Yet variability can differ in magnitude de-
pending on stimulus conditions and the neural circuit in
question, ranging from sub-Poisson (Berry and Meister,
1997) to strongly super-Poisson (Shadlen and Newsome,
1998). The typical assumption of Poisson noise can lead
to systematic biases in the estimation of underlying circuit
computations, such as receptive fields and nonlinearities
(Pillow and Simoncelli, 2003). These shortcomings sug-
gest the need for new models that incorporate diverse
stochastic elements and can flexibly adapt to match
the strength and statistics of noise observed under differ-
ent stimulus conditions or in different systems. Beyond
simply reproducing observed responses with greater ac-
curacy, such models guide the search for circuit mecha-
nisms driving observed variability (Churchland et al.,
2011; Goris et al., 2014).
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Here, we take the approach of incorporating stochastic
model elements inspired by what is known about the bio-
logical circuitry and likely sources of noise. We present a
model that includes multiple potential sources of noise,
which may arise at different locations relative to a circuit
nonlinearity and which may have distinct effects on the
observed variability in responses. This model allows us to
estimate the strengths of these individual noise sources
and clarify the separate contributions of deterministic and
stochastic model elements. We first demonstrate that this
model can be tractably fit to a dataset of limited size and
that we accurately recover model elements, both the
shape of the nonlinearity and the strength of each noise
source, in a simulated dataset with known model parame-
ters. We then demonstrate an application of this model in
retinal ganglion cells (RGCs). The model captures re-
sponse variability under two different stimulus conditions
and further reveals consistent changes in both the nonli-
nearities and inferred sources of noise that depend on
stimulus condition. The model is suitable for a variety of
systems and allows for comparisons across stimulus con-
ditions, revealing changes that are either obscured or ab-
sent using more standard modeling approaches.

Materials and Methods

Experimental procedures

All animal procedures were performed in accordance
with the Institutional Animal Care and Use Committee at
the University of Washington. Experiments were performed
on whole mount preparations of retina from overnight dark-
adapted C57/BL6 mice (ages 5-20 weeks). All procedures
were conducted under infrared illumination to preserve
dark adaptation. Retinas were mounted ganglion cell-side
up onto a poly-D-lysine-coated coverslip (BD Biosciences)
before being placed in a recording dish that was continu-
ously perfused at 7-9 ml/min with oxygenated Ames bi-
carbonate solution (Sigma) warmed to 31-34 C. Spike
responses were recorded from RGCs using extracellular
or loose-patch recordings with an Ames-filled pipette.
Visual stimuli were presented on an OLED microdisplay
monitor (eMagin) focused onto the photoreceptors.
Stimuli were presented and data acquired using custom-
written stimulation and acquisition software packages
Stage (http://stage-vss.github.io) and Symphony
(http://symphony-das.github.io). On-sustained and
Off-sustained RGCs were targeted for recording
based on their large soma size (>20 um in diameter)
and responses to light increments and decrements. All
recordings were from cells that responded reliably with
more than five spikes to 100-um diameter spots pre-
sented for 500 ms at 20% contrast on a background of
10 R*/rod/s. For both mean light levels (10 and 1000
R*/rod/s), Gaussian noise stimuli were presented as
spatially uniform spots 200 um in diameter at 50%
contrast. The contrast of the spot was changed every
67 ms (four frames at a monitor refresh rate of 60 Hz).
Noise stimuli that were modulated at higher temporal
frequency did not robustly drive cells at 10 R*/rod/s.
Cells were adapted to each new light level for at least
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8 min and until responses to flashed spots stabilized
before recording. For On-sustained cells, five cells
were recorded at both light levels, three cells at only
low light, and one cell at only high light. For Off-sus-
tained cells, two cells were recorded at both light
levels.

Data analysis

Linear filters were found by standard reverse-correla-
tion methods: calculating the spike-triggered average and
correcting for autocorrelation in the stimulus. Filters were
smoothed by low-pass filtering with a frequency cutoff of
13 Hz. For each cell, identical filters were used for the
model with Poisson noise [linear-nonlinear-Poisson (LNP)
model] and the multistage noise model. For cells in which
data were collected at two different light levels, separate
filters were calculated at each light level, with filters at
higher light levels being faster and more biphasic than
those at low light, consistent with previous work (Enroth-
Cugell and Lennie, 1975). Throughout this work, filtered
stimulus values are z-scored to make comparisons across
cells and conditions.

Both the filtered stimulus and responses were divided
into time windows of ~60-100ms, in which the average
filtered stimulus was taken as the input to the model and
the spike count was taken as the response. The exact
length of the time window for a cell at a given light level
was determined by the shape of the linear filter and corre-
sponded to twice the width of the filter at half-max. This
duration was chosen to produce minimal correlation be-
tween filtered stimulus values in neighboring bins. Bins of
this length also minimize spike history effects because of
refractoriness, which are expected on shorter timescales.

Models with Poisson noise (LNP models) are given by:

r= Pois(f(xt)), (1)

where r; is the neuron’s response (spike count) in time bin
t, x; is the average filtered stimulus value in time bin ¢, fis
the nonlinearity, and Pois(f(x;)) is a Poisson random vari-
able with mean f(x;). The nonlinearity is parameterized as
a softplus function:

f(x) = B4In(1 +ef**Fs) 1+ g, ()

This is done for consistency with the multistage noise
model presented below, in which the nonlinearity is para-
meterized this way. This function was chosen because it
can capture the range of desired features in a nonlinearity,
from highly rectified to effectively linear. We see little or no
evidence of response saturation at high input values in
our data and therefore did not choose a sigmoidal (satu-
rating) nonlinearity. This parameterization does not re-
duce the model’s ability to capture mean responses: on
repeated stimulus presentations, the correlation coeffi-
cients between actual mean responses and predicted re-
sponses were 0.98 and 0.87 for the example cells shown
at low and high light, respectively, regardless of whether
the nonlinearity was a parameterized softplus function or
was instead a nonparametric function found by locally
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estimated scatterplot smoothing (LOESS), a method of lo-
cally weighted regression. Model parameters for LNP
models are found by maximum likelihood estimation,
using the same routine described below for the multistage
noise model.

Multistage noise model

The model we present here (Fig. 1A) incorporates multi-
ple sources of variability to reflect the varied sources of
noise present in neural circuits:

ry = R[nmult(t . f(Xt + nup(t) + ndown.t]- (3)

ry is the spike count in time bin t, and x; is the average fil-
tered stimulus in time bin t. R rounds and rectifies to pro-
duce a spike count. The nonlinearity f is a softplus
function, parameterized as in Equation 2. There are three
noise sources: two additive and one multiplicative (Fig.
1B). The two additive noise sources are termed “up-
stream” and “downstream” noise to indicate their posi-
tions relative to the nonlinearity. For simplicity, noise
sources are generally taken to be Gaussian (with an ex-
ception noted in the following section):

0.2

. 2 ~ mult
nup,t N(07 a-up) Nt ¢ N<1 5 f(Xt ¥ nup‘t))
Ndownt ~ N(Ov Ugown)' (4)

For noise that fluctuates on fast timescales relative to
data binning, noise is expected to follow Gaussian distri-
butions because of the central limit theorem. When all
sources of noise are Gaussian, the model has seven total
parameters: four that determine the shape of the nonli-
nearity and three that determine the strength of the noise
sources.

Modifications to the multistage noise model

Under some stimulus conditions (high light level, in par-
ticular), the multistage noise model with all Gaussian sour-
ces of noise did not accurately capture responses (Fig.
2A). Such a model will not be able to capture response
distributions like those in Figure 2B, bottom panel, with
predominantly zero responses but a long tail of nonzero
responses. We therefore investigated variations of the
model that might improve predictions. Given that the line-
ar-nonlinear framework accurately captures average re-
sponses on repeated trials (Fig. 2A; also Fig. 3C,D), we
did not expect that the model would be improved by addi-
tional deterministic elements that affect stimulus selectiv-
ity. Adding additional stimulus features that drive spiking
has proven useful in some contexts, but will not improve
the model’s ability to capture the observed response
variability.

We therefore turned our attention to model elements
that could alter the model’s predicted variability. We
tested whether our multistage noise model might be im-
proved by adding response history dependence. In this
model variant, input to the nonlinearity was given by the
sum of the filtered stimulus value, an upstream noise
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Figure 1. Multistage noise model. A, A linearly filtered stimulus
is corrupted by additive noise, passed through a softplus nonli-
nearity that experiences multiplicative noise, and then corrupted
by additional additive noise. Spikes are generated by finding
the nearest nonnegative spike count. B, lllustration of the ef-
fects of potential sources of noise before spike generation.
Color intensity indicates relative probability of responses.
Colored lines above each plot indicate conditional response
distribution for filtered stimulus value indicated by correspond-
ing vertical dashed line. Top, Gaussian additive noise upstream
of the nonlinearity is smeared out by the nonlinearity (dashed
gray and black line), resulting in greater noise in the responses
for areas of greater sensitivity (higher slope) in the nonlinearity.
Middle, Gaussian multiplicative noise at the output of the nonli-
nearity scales with the output of the nonlinearity. Bottom,
Additive noise downstream of the nonlinearity produces distri-
butions that are independent of the nonlinearity input and
output.

value, and the spiking response in the previous time bin
weighted by a factor determined by the optimization (Fig.
2C), resulting in one additional parameter. This slightly
improved the model prediction of average responses,
but resulted in higher predicted variation than that seen
in the data (Fig. 2A). As is the expectation for a Poisson
generalized linear model (GLM), our multistage noise
model attributes a positive weight to the response his-
tory to capture super-Poisson variability, attributing
some amount of variability to this process. Notably, this
is in contrast to what spike history effects are typically
thought to achieve, namely reduced variability via re-
fractory effects (Berry and Meister, 1998; Keat et al.,
2001).
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Because the model predictions are not improved by in-
corporating response history dependence, we next con-
sidered changing the distributions of the noise sources
directly. We used observed features of the responses to
guide our choice of a new noise distribution. Specifically,
at low input values, where the nonlinearity is flat and pro-
duces an output near zero, nearly all noise is expected to
be contributed by the downstream noise source. Whereas
response distributions for these low input values were ap-
proximately rectified Gaussian distributions at low light
(corresponding to purely Gaussian downstream noise
rectified by spike generation), response distributions at
high light were well described by a mixture distribution:

0 with probability 1 — paown -
()

This distribution can account for the large number of
zero responses present at low input values (Fig. 2B). The
mixture distribution can be thought of as representing an
intermittent source of noise: some portion of the time
(given by pgown) this source of noise is present, while the
remainder of the time it is absent. This might reflect the
fact that this source of noise is itself engaged by a noisy
process that takes effect randomly throughout stimulus
presentation. Note that the original model, with purely
Gaussian downstream noise, is a subset of this model.
This modification adds one additional parameter to the
model, for a total of eight parameters.

I {N~N(O7(r§own) with probability Dyown
downit —

Estimating model parameters from data

In brief, a combination of C++ and MATLAB code was
used to find the maximum likelihood estimate of model
parameters. What follows is the likelihood function for this
model, broken down to reflect each step in the model for
clarity. The full likelihood function can be found by plug-
ging functions from preceding steps into Equation 9.

Let Puo, Pt and Pgown denote the probability distribu-
tions of each noise source. To calculate the likelihood of
an observed spike count ry, first the distribution reflect-
ing the input plus upstream noise is passed through
the nonlinearity f. P, is shifted by (or equivalently cen-
tered on) the observed input x;. The distribution of out-
puts from the nonlinearity A is:

Xr) _df;j)f)\).

The distribution P, is a distorted version of P, that
spreads out where the derivative of the nonlinearity is
large (derivative of the inverse is small) and com-
presses where the derivative of the nonlinearity is
small (derivative of the inverse is large). See Miller and
Childers (2012) for a more thorough treatment of
transformations of probability distributions. Note that
this equation holds for monotonically increasing
nonlinearities.

After multiplicative noise is applied, the distribution is
given by the following:

PAL) =Py (F (1) - ©)
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Figure 2. Modifications to the multistage noise model. A, RGC average response and response SD on repeated trials, with
predictions from three model variants: Gaussian downstream noise, Gaussian downstream noise with response history, and
Gaussian mixture downstream noise (without spike history). B, Model variation with data-driven modification of the down-
stream noise distribution. Model architecture as in Figure 1A. Top, Data for a single cell at high light (same as Fig. 3B), with
points corresponding to input values less than 2 SDs below the mean in black. Bottom, Distribution of points highlighted in
top panel, with best-fit rectified Gaussian and rectified Gaussian mixture distributions. C, Model variation that incorporates
response history dependence. Input to the nonlinearity is given by the filtered stimulus value plus the weighted spike re-

sponse in the previous time bin plus the upstream noise.

Py(y) :/x Pa(A) - Pruly — A)dA. @)

—00

This is similar to a convolution, except that the standard
deviation of P, increases with A. This has the effect of
spreading the distribution more for larger values of A
where the multiplicative noise distribution is wider.

The distribution after downstream noise is given by the
following:

P(z) /_w Py(y) - Paoun(z — y)dly. ®)

This reflects a simple convolution of Py with the down-
stream noise distribution.

Finally, we integrate to obtain the probability of observ-
ing integer spike counts:

05
Pz(Z)dZ ry = 0
Pr(x:,rt) = 7305 . ©
/ Pz(z)dz >0

+—0.5

We treat each observed response r; as independent of
responses at other times. The full likelihood L is therefore
simply the product of Pg(x;, ;) (the probability of an individ-
ual observation at time t) over all time points:

L =[] Patx,ro). (10)

Note that the total recording time most strongly determines
the number of data points available for fitting (along with the
time window chosen for binning), rather than the number of
spikes recorded, as is often the case for other models.
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The maximum likelihood estimate of parameters was
found using the Nelder-Mead method (implemented by
MATLAB’s fminsearch function). This provided the best
performance among several optimization methods tested.
A small modification to the fminsearch function allowed
for bounds on parameters (fminsearchbnd, John D’Errico).
Bounds were used only to ensure that impossible regions of
parameter space (e.g., negative SDs for noise sources) were
not explored, rather than to constrain the optimization to a
subset of desired parameter values. As this problem is not
guaranteed to have a unique solution, for each dataset
we began the optimization from 5 to 10 different
randomized initial conditions. For noise parameters,
initial conditions were drawn randomly from a uniform
distribution of possible values. For nonlinearity param-
eters, parameters found by least-squares fitting were
perturbed randomly by =40% to set initial conditions.
This amount of perturbation allowed for variability
while ensuring that the initial conditions produced a
plausible shape for the nonlinearity. The solution with
the highest likelihood was reported. Although it is not
necessary to perform this procedure to estimate pa-
rameters of the model with Poisson noise, the same
procedure was used to make a fair comparison with
the multistage noise model.

Several steps were taken to speed evaluation of the likeli-
hood function. Equation 7 was evaluated at individual points
using custom C++ code that makes use of the quadratic
adaptive integration package (integration_gag) of the
GNU Scientific library (https://www.gnu.org/software/
gsl/). The full function of Equation 7 was approximated
with Chebyshev polynomials using the Chebfun pack-
age for MATLAB (Driscoll et al., 2014; http://www.
chebfun.org/). Machines running the Ubuntu operating
system with multiple cores (16 or 40) were used to run

eNeuro.org
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Figure 3. Recordings from RGCs at two different light levels, with predictions from models with Poisson noise. A, B, Example re-
sponses of On-sustained RGCs to presentation of alternating repeated and random noise sequences; 50% contrast, mean light
level 10 R*/rod/s and 1000 R*/rod/s, A, B, respectively. C, D, RGC responses to repeated presentations of the same noise sequence
(gray) and best-fit linear-nonlinear model with Poisson noise (yellow). Top, Mean measured responses and predictions. Bottom, SD
of measured responses and predictions. E, F, Neural responses to non-repeated noise sequences plotted as a function of filtered
stimulus values. Yellow line indicates best-fit nonlinearity for a linear-nonlinear model with Poisson noise. G, H, Distributions of neu-
ral responses (gray) from corresponding gray boxes in E, F. Yellow distributions are those predicted by the LNP model.

the optimization in parallel with the Parallel Computing
Toolbox in MATLAB.

Code accessibility

The code described in the paper is freely available
online at https://github.com/aiweber/Multistage_noise_
model. The code is also available as Extended Data 1.
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Calculation of signal-to-noise ratio (SNR)

In several figures, we indicate the level of each
noise parameter that corresponds to an SNR of 0.5 to
provide intuition for the strength of each noise source.
Because the contribution of a single noise parameter
to the overall SNR will depend on both the strength of
other noise sources as well as the shape of the nonli-
nearity, here we calculate SNR for each noise source
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individually (i.e., with other noise sources set to zero)
and using either the true nonlinearity (in the case of si-
mulated data) or the estimated nonlinearity (in the
case of retinal data).

We calculate the SNR as follows:

Eg[Varr|s]]
where the innermost expectation (numerator) and var-
iance (denominator) are taken over all responses r, condi-
tioned on the stimulus s. The outer variance (numerator)
and expectation (denominator) are then taken over the
stimulus distribution.

Jensen-Shannon divergence (JSD)

The JSD is a measure of similarity of probability distri-
butions (Lin, 1991), which we use to assess how closely
response distributions produced by our model match ex-
perimentally observed response distributions. It is a sym-
metric modification of the Kullback-Leibler divergence
and guaranteed to have finite value for all probability
distributions.

JSD(P,Q) = % D (P,R) + Da (Q,R)), (12)

where R:%(PJrQ) and Dg; is the Kullback-Leibler
divergence:

DMsz—Zp@m%%%) (13)

Results

Neural responses in many systems, including the retina,
show non-Poisson variability and large changes in vari-
ability between stimulus conditions. Our goal is to under-
stand the origins of this observed variability and how the
contributions of different sources of variability change
across conditions. Previous models typically capture
mean responses well but do not accurately reflect re-
sponse variability. We propose that variability can be bet-
ter described by a model that incorporates multiple
stochastic elements that represent plausible sources of
noise in the biological circuit. Further, the relative contri-
butions of these sources of noise suggest possible mech-
anisms giving rise to observed variability. We show that
such a model can be tractably fit to data and then use the
recorded responses of a well-studied neural population,
retinal ganglion cells, as a benchmark for evaluating the
model.

Before proceeding, it is important to clarify the distinc-
tion between variability and noise. Noise refers to incon-
sistency in responses that arises because of stochastic
processes and is considered to obscure the signal of in-
terest. Noise is therefore generally (although not always)
unfavorable from the perspective of neural coding. Noise
can be considered a subset of variability, which more
broadly refers to some inconsistency in a neuron’s
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response and hence could include uncontrolled experi-
mental variables, such as behavioral state or temperature.
In the context of neural recordings, we refer to stochastic
biological processes as producing noise but generally dis-
cuss variability in neural responses, as the sources of the
variation are not fully known at the level of neural outputs.
Variability in model responses arises entirely from sto-
chastic model components, and hence we refer to it as
noise.

Observed variability in neural responses deviates from
Poisson and depends on light level

We observed that responses of RGCs exhibit variability
that consistently deviates from Poisson variability and de-
pends on light level. We first recorded responses from
On-sustained RGCs of the mouse at two different levels
of ambient illumination while presenting spatially uni-
form Gaussian noise stimuli (200-um diameter spot,
50% Weber contrast, centered on the soma; Fig. 3A,B).
On-sustained ganglion cells were chosen because they
are easily identified by their large soma size and charac-
teristic responses to light increments. We were there-
fore able to target a single cell type with a high degree
of accuracy. At the lower level of illumination (10 R*/
rod/s) responses are primarily rod-mediated, while at
the higher level of illumination (1000 R*/rod/s) re-
sponses are primarily mediated by cones (Dedek et al.,
2008; Cowan et al., 2016).

Cells were presented with alternating repeated and ran-
dom noise sequences. Average responses to repeated
presentations of the same noise sequence are shown in
Figure 3C,D. These responses serve as an important
benchmark for evaluating the accuracy of a model, as
they provide direct estimates of average responses and
response variability that do not rely on any model
assumptions.

We then characterized the ganglion cell responses as a
function of linearly filtered stimulus values, a common
simplification that often captures response selectivity in
ganglion cells well (Chichilnisky, 2001; Kim and Rieke,
2001). We first used standard reverse-correlation meth-
ods to compute the linear filter that best relates the stimu-
lus to the observed responses. Applying this filter to the
stimulus yields the best linear prediction of responses,
often called the “generator signal.” Figure 3E,F show
RGC responses in a short time window (~100 ms) plotted
against the average filtered stimulus in the same time win-
dow at low and high light, respectively. In both cases, it is
apparent that the average response increases as a func-
tion of the filtered stimulus values, although there is a
great deal of variability in responses to a given input.

We next found the nonlinear function that best predicts
the neural response (spikes in a small time window) as a
function of the filtered stimulus. We parameterized the
nonlinearity as a softplus function; this choice does not
reduce the accuracy with which responses are predicted
relative to a smoothed, nonparametric estimate of the
nonlinearity (Materials and Methods). We first made use
of the most common assumption for neural response vari-
ability: that spike responses follow Poisson distributions.
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Figure 3C,D show that while this LNP model produces ac-
curate estimates of the average responses on repeated
trials (R=0.98 and R = 0.87 for low and high light, respec-
tively), it does not accurately capture the response vari-
ability across trials, particularly at high light. Figure 3G,H
similarly show that the response distributions over a small
range of filtered stimulus values are not well-described by
Poisson statistics, but rather show super-Poisson vari-
ability. Deviations from Poisson statistics have been well-
documented in a number of previous studies (Berry and
Meister, 1998; Pillow et al., 2005), although retinal re-
sponses generally show sub-Poisson rather than super-
Poisson variability.

Not only do response distributions show deviations
from Poisson predictions at both light levels, but the devi-
ations are qualitatively different in each of these cases.
Comparing across the two light levels, it is apparent that
the distribution of responses for a given filtered stimulus
value is very different, even when the mean output of the
nonlinearity is similar. Compare, for example, Figure 3Giii
and Hiii, where the predicted output of the nonlinearity is
similar (approximately five spikes). In particular, there is a
far greater probability of observing zero spikes at high
light compared with low light. Such a difference reflects
underlying changes in how the circuit is operating in these
two conditions, changes that may not be apparent by fo-
cusing only on mean responses and that cannot be ac-
counted for by any model in which spikes are taken to
follow Poisson statistics. In these models, the response
distribution is entirely determined by the mean, and hence
any two stimuli that produce the same mean responses
would produce identical response distributions. A model
that could provide insight into changes in circuit function
under these conditions thus ought to have the flexibility to
capture different distributions of responses for identical
input values.

Model of variable neural responses with multistage
noise

These observations indicate that variability in neural re-
sponses is driven by mechanisms that cannot be accu-
rately modeled by simple Poisson noise. To help identify
which mechanisms might account for this variability, we
sought a model that would more accurately reflect the po-
tential sources of variability at multiple circuit locations to
account for observed response distributions. Because the
linear-nonlinear framework accurately captures average
responses to repeated white noise sequences, we built
on these deterministic elements to allow for differences in
response variability.

One likely candidate for model improvement is depend-
ence on response history. If response history is able to
modify input to the nonlinearity, it can effectively alter the
level of variability in responses such that a model with
Poisson noise and response history dependence, such as
Poisson GLMs, may exhibit sub-Poisson or super-
Poisson variability in its outputs (Berry and Meister, 1998;
Keat et al., 2001; Weber and Pillow, 2017). However, even
if a Poisson GLM were able to accurately capture re-
sponse distributions, it would do so in a way that does not
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reflect known sources of noise in biological circuits: by
positing Poisson noise at the output step and attributing
all deviations from Poisson variability to the effects of
spike history. Much of the variability in the retinal output
signals, however, is inherited from sources in upstream
circuits (Murphy and Rieke, 2008; Ala-Laurila et al., 2011;
Freed and Liang, 2014). Moreover, GLMs encounter a
practical problem when fitting datasets with high variabili-
ty, as we see here at high light. Super-Poisson variability
is achieved by positive spike history terms, where a spike
at some previous time increases the probability of a spike
at the current time. In practice, this can lead to runaway
firing in the model (Weber and Pillow, 2017).

Predicted response variability can also be altered by in-
corporating stochastic elements other than noise in spike
generation. We sought to modify the linear-nonlinear
model framework in this way, incorporating noise at differ-
ent locations within the model. These stochastic model ele-
ments more accurately reflect that noise arises in several
elements of neural circuits, rather than simply spike genera-
tion (Faisal et al., 2008). In fact, spike generation in the retina
and elsewhere in the nervous system is near-deterministic
(Bryant and Segundo, 1976; Mainen and Sejnowski, 1995;
Murphy and Rieke, 2006). In the retina specifically, noise is
known to arise at several distinct stages of processing, in-
cluding within the photoreceptors (Schneeweis and
Schnapf, 2000; Ala-Laurila et al., 2011; Angueyra and Rieke,
2013; Field et al., 2019) and at the bipolar cell output synap-
ses (Freed, 2000; Dunn and Rieke, 2006; Borghuis et al.,
2009; Freed and Liang, 2014).

In our new model, we incorporated three potential sour-
ces of noise into a linear-nonlinear cascade framework to
reflect the varied sources of noise present in neural cir-
cuits (Fig. 1A). Noise arising at different circuit locations,
before and after the nonlinearity, will have distinct effects,
even if both sources of noise are additive and drawn from
the same distribution. The sources of noise in the model
are intended to capture different features of experimentally
observed variability (stimulus-dependence or -independ-
ence, additive or multiplicative effects) while remaining trac-
table to fit to data. Changes in the relative magnitude of
these different noise sources can give rise to models that
produce different response distributions even when the
mean output is identical.

In this multistage noise model (Fig. 1A), the filtered stim-
ulus first encounters additive noise, which we refer to as
upstream noise (n,,) to indicate its position relative to the
nonlinearity in the model. After the corrupted input is
passed through the nonlinearity, it encounters multiplica-
tive noise (nmur), in which the output of the nonlinearity is
multiplied by a random noise value. This is followed by an-
other source of additive noise downstream of the nonli-
nearity (Ngown). The output of this step is a continuous,
unbounded prediction of the response in the time window
of interest. Rather than introducing an additional noisy
spike generation step, we take the nearest nonnegative
integer as the predicted spike count. This deterministic
method of spike generation reflects the fact that spike
generation itself accounts for little of the variability ob-
served in neural responses (Bryant and Segundo, 1976;
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Mainen and Sejnowski, 1995; Murphy and Rieke, 2006).
Note that this model allows us to estimate both the shape
of the nonlinearity and the strengths of each noise source
(unlike, for example, LNP models or GLMs, in which the
noise component of the model is fixed).

In some cases, the model nonlinearity will be strongly
determined by a single nonlinearity in the biological cir-
cuit. In the retina, for example, rectification at the bipolar
to ganglion cell synapse dominates the nonlinearity ob-
served in the ganglion cell’'s responses (Schwartz and
Rieke, 2011; Grimes et al., 2014). However, the nonlinearity
does not necessarily reflect a particular biophysical feature
of the circuit (e.g., rectification at a particular synapse or an
individual cell’s spike threshold). It nevertheless provides a
useful description of the circuit’s selectivity to the preferred
stimulus feature: stronger nonlinearities and steeper slopes
are indicative of greater selectivity to the feature given by
the linear filter. Providing an accurate estimate of this nonli-
nearity is therefore informative of circuit function, even when
it does not correspond to a particular location in the circuit.

The effects of each noise source on response variability
are illustrated in Figure 1B. Each panel shows the distribu-
tion of model outputs (shown before spike generation for
clarity) when only a single source of noise is present, with
subpanels above illustrating the conditional distributions at
filtered stimulus values marked by dashed vertical lines.
For simplicity, all sources of noise depicted are Gaussian,
although outputs of the model are not Gaussian-distributed
because of effects of the nonlinearity and spike generation.

Although the magnitude of upstream noise is independ-
ent of the input, its effects are magnified by regions of
high sensitivity (high slope) in the nonlinearity and elimi-
nated by flat regions (far left). The effects of multiplicative
noise scale with the output of the nonlinearity. Because
the noise is multiplied by the output of the nonlinearity,
larger output values result in greater variability. This is
similar to Poisson noise, where output variance equals
the mean output, although this multiplicative source of
noise has greater flexibility in that output variance scales
with the mean by a constant factor (not constrained to be
1). Both upstream and multiplicative noise therefore result
in variability that depends on the input: response variabili-
ty due to upstream noise scales with the derivative of the
nonlinearity, and response variability due to multiplicative
noise scales with the output value of the nonlinearity itself.
Downstream noise is independent of the input and thus
results in equally variable responses across all regions of
the nonlinearity. In summary, the three sources of noise
produce different signatures of variability in the responses
that can be uniquely identified.

Demonstration of the effects of each source of noise
in the model

To demonstrate the effects of each noise source in the
multistage noise model, we simulated data from three
models with identical deterministic properties but each
with one of the non-Poisson noise sources described
above. For comparison, we then fit a model that assumes
Poisson noise to demonstrate the errors produced by a
mismatch between the actual and assumed location of
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noise. Systematic errors are expected in this case, but we
demonstrate the specific issues that arise for the three dif-
ferent types of noise in the multistage noise model to pro-
vide intuition for the results that follow.

If only additive Gaussian noise upstream of the nonli-
nearity is present and an LNP model is fit to the resulting
responses (Fig. 4A-C), the inferred nonlinearity will be
less sharply rectified (i.e., more linear) than the true under-
lying nonlinearity that produced the data. Noise added to
a filtered stimulus will make responses to that input, on
average, more similar to nearby inputs, having the effect
of “smearing” out the nonlinearity. Response distributions
will be poorly fit across all filtered stimulus values.

Note that for an LNP model, the nonlinearity in the
model is identical to the mean predicted response, so the
yellow lines in the left and right panels of Figure 4B are
identical. For other models, such as a model with additive
noise upstream of the nonlinearity, the true model nonli-
nearity (black, right panel) does not necessarily trace out
the mean responses (gray, left panel) predicted by the
model.

If only multiplicative Gaussian noise is present, the in-
ferred nonlinearities and response distributions may be
well approximated by Poisson noise (Fig. 4D-F). In both
cases, the variance of responses scales with the output.
In the example depicted, the multiplicative noise scales
with 1.5 times the output of the nonlinearity and is thus
slightly super-Poisson, hence the clear discrepancy in
Figure 4Fii. The nonlinearity has a small vertical offset
such that even negative input values produce a small pos-
itive nonlinearity output. This small positive output then in-
teracts with multiplicative noise to create variability in the
observed spike counts at these low input values.

If only additive Gaussian downstream noise is present
(Fig. 4G-I), the inferred nonlinearity will exhibit a promi-
nent vertical offset at low input (filtered stimulus) values.
At higher input values, responses are Gaussian-distrib-
uted and Poisson noise approaches Gaussianity, so there
is little effect on the estimated nonlinearity. (If downstream
noise were non-Gaussian, however, there would be a
greater discrepancy between response distributions.) At
low input values, mean responses fall well above zero
even when the true nonlinearity is zero. This occurs be-
cause downstream noise is rectified and hence produces
nonnegative spike counts and a vertical offset of the esti-
mated nonlinearity.

These examples demonstrate the impact that assump-
tions about noise can have on the inferred shape of the
nonlinearity: incorrect assumptions can lead to strongly
biased estimates of the nonlinearity operating in the
circuit.

Estimating multistage noise model parameters

One key feature of the linear-nonlinear model with
Poisson noise is its simplicity to fit to data, requiring only
standard reverse correlation methods to find the linear
filter and least-squares estimate of the nonlinearity
(Chichilnisky, 2001). Given the relative complexity of our
proposed multistage noise model, it is unclear whether it
is tractable to fit to data or whether there is a unique set of
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Figure 4. Summary of the effects of different sources of noise. A, Model schematic as in Figure 1, except with only a single source
of noise: Gaussian additive noise upstream of the nonlinearity. B, Left, Simulated data (gray dots) with only additive Gaussian up-
stream noise. The mean responses predicted by a linear-nonlinear model with Poisson noise (yellow) closely track the mean re-
sponses in the simulated data (gray). Right, The nonlinearity inferred by the LNP model (yellow) is systematically biased from the
nonlinearity used to generate the data (black). C, Distributions of responses (gray) from corresponding gray boxes in B compared
with those predicted by the LNP model (yellow). D-F, Same as A-C, except with only multiplicative Gaussian noise at the output of
the nonlinearity. G-I, Same as A-C, except with only additive Gaussian noise downstream of the nonlinearity.

parameters that best characterize a given dataset. To an-
swer these questions, we generated simulated data from
the multistage noise model with known parameters and
then estimated parameters of the simulated data to deter-
mine whether they were accurately recovered. We

July/August 2021, 8(4) ENEURO.0191-21.2021

generated simulated datasets of a size corresponding to
only ~8min of data collection (5000 points, correspond-
ing to roughly 8 min of data assuming a linear filter width
of 100 ms), generally shorter than the recordings we have
from RGCs to which we wish to fit the model.
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Figure 5. Model parameters can be accurately recovered from simulated data. A, Nonlinearities used to generate four example da-
tasets (gray) and nonlinearities recovered by fitting the multistage noise model (red). Insets, Distributions of responses at the input
value indicated by the dashed vertical line for the dataset (gray) and multistage noise model (red). B, True (gray) and recovered (pur-
ple, blue, green) parameters for the four example datasets. The upper limit on each vertical axis corresponds to an SNR of 0.5 when
the respective noise source is the only one present. C, Average absolute error of inferred nonlinearities, weighted by the input distri-
bution, for all 30 simulated datasets. D, Error in estimated noise parameters for simulated datasets. Points are shown for all cases
in which the corresponding source of noise contributed at least 20% of the total noise. Error bars denote SD.

We used a maximum likelihood approach to estimate
model parameters. In order to reduce computation time,
we first approximated the likelihood function and then
used standard optimization methods to find the maximum
of this function. Importantly, parameters for both the non-
linearity and noise are estimated simultaneously, as these
interact to determine the likelihood. As demonstrated
above, incorrect assumptions about the structure of noise
in a circuit can bias estimates of the nonlinearity.

Because the likelihood function is non-convex, optimi-
zation is not guaranteed to arrive at the maximum
likelihood set of parameters. We therefore begin our
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optimization at several different initial conditions (5-10)
and select the parameters that result in the overall great-
est likelihood (Materials and Methods). In practice, initial
conditions often converge to similar parameter estimates,
suggesting that the likelihood does not have many deep
local minima. Using this procedure, we find that we are
able to estimate model parameters with a high degree of
accuracy.

We begin with a model in which all sources of noise are
Gaussian distributed. Recall that the model still produces
highly non-Gaussian spike counts in this case. Figure 5A,
B show four example datasets: one where each source of

eNeuro.org



eMeuro

noise dominates (top three rows) and one where all sour-
ces of noise contribute (bottom row). We are able to re-
cover the nonlinearity that generated the data with high
precision, as well as the sources of noise present in the
data. We can therefore reconstruct with high precision the
full distribution of responses at any given input value (Fig.
5A, insets).

To test the generality of these conclusions, we gener-
ated 30 simulated datasets with varying parameters,
including both steep and shallow nonlinearities and differ-
ent combinations of dominant noise sources. In these da-
tasets, we can recover the nonlinearity that produced the
data with a high degree of accuracy (Fig. 5C). The error in
the recovered nonlinearities for the multistage noise
model is nearly always <0.3 spikes on average; that is, for
a given set of parameters the absolute difference between
the output of the true nonlinearity and the recovered nonli-
nearity is <0.3 spikes averaged across the range of possi-
ble inputs. Across all parameter sets, the mean error in
the recovered nonlinearity is 0.17 spikes and is always
<1% of the total range of outputs. By comparison, the av-
erage error in the recovered nonlinearity under the as-
sumption of Poisson noise is 1.06 spikes. As expected,
the error under the Poisson assumption is markedly great-
er than the multistage noise model because the data are
generated from models with different noise structure than
the model used for fitting. Nonetheless, the Poisson noise
case provides a useful point of reference for the error we
might expect if incorrect assumptions are made about
noise in fitting experimental data.

In addition to recovering the nonlinearity, the multistage
noise model estimates the strength of each noise source
to within 20% of its true value for all noise sources that
contribute meaningfully to the response (Fig. 5D). Noise
sources that contributed <20% of the total noise were ex-
cluded. These values are often estimated with large error
(when measured as percentages), but do not markedly
impact overall response variability because they are small
in absolute terms. In summary, for a range of parameter
values with a modestly sized dataset, we can accurately
recover both the nonlinearity and the sources of noise
that produced the data.

Application of multistage noise model to RGCs: low
light

We next fit the model to ganglion cell responses at low
light levels (10 R*/rod/s) to determine whether it accu-
rately captures observed response variability. For the ex-
ample cell shown in Figure 6, the mean responses
predicted by the multistage noise model are nearly identi-
cal to those predicted by a model with Poisson noise,
shown for both for the full dataset as a function of filtered
stimulus (Fig. 6A) and for responses to repeated presenta-
tions of the same noise sequence (Fig. 6D). Nonlinearities
extracted by the two models are also nearly identical (Fig.
6B). Recall that for the multistage noise model, the model
nonlinearity does not necessarily trace out the mean re-
sponses predicted by the model, although they are similar
here.
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When we consider the full distribution of responses,
however, we see that the multistage noise model outper-
forms a model with Poisson noise. More specifically, a
Poisson approximation is somewhat suitable at higher
and lower filtered stimulus values (Fig. 6EiEiii). The
Poisson approximation fails more obviously near the cen-
ter of the input distribution (Fig. 6Eii), where inputs are
most probable (i.e., where most of the data lie).

We then applied this model to additional cells (n = 8), all
exposed to the same level of ambient illumination (10 R*/
rod/s). Results are summarized by plotting the JSD be-
tween the predicted and actual response distributions at
three different input levels. JSD is a measure of difference
between two probability distributions; lower JSD indi-
cates better correspondence between two distributions.
Across all filtered stimulus values, the JSD between the
data and predictions from the multistage noise model is
systematically lower than the data and the Poisson noise
model (Fig. 6F).

Estimating parameters for a variant of the model

The multistage noise model accurately captures aver-
age responses and response variability in the low light
condition when all noise sources in the model are
Gaussian. At high light, however, Gaussian noise sources
were unable to account for the observed response distri-
butions, particularly the long tail of nonzero responses at
low input values (Figs. 2B, 3Hi). We found that modifying
the noise distributions (specifically the downstream noise
distribution), provided better fits to the response distribu-
tions than alterations of other model components (Fig. 2;
Materials and Methods). In the modified model, down-
stream noise is Gaussian-distributed with probability
Paown and zero otherwise. This mixture distribution can be
thought of as representing an intermittent source of noise
that is present with probability pgown. The original model,
with purely Gaussian downstream noise, is a subset of
this model.

In order to determine whether parameters of this model
with modified downstream noise (which has one addition-
al parameter) could also be recovered, we again gener-
ated simulated data from this model and used the same
procedures to estimate model parameters. (The likelihood
function is slightly altered because of the change in down-
stream noise distribution, but model fitting procedures
are otherwise identical to the previous model.) Results for
three example datasets and summary results across 12
simulated datasets are presented in Figure 7. As with the
previous model, both nonlinearity and noise parameters
can be recovered with high accuracy. For simplicity, we
show the SD of the downstream noise distribution

(w/Pdowngiown)’ but both parameters can be individually

recovered with similar accuracy.

Application of model to RGCs: high light

We next fit the model to RGC responses at high light
levels (1000 R*/rod/s). The nonlinearities inferred by the
new model and a model with Poisson noise are markedly
different, with the multistage noise model inferring a much
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Figure 6. Multistage noise model accurately captures responses of RGCs at low light. A, Mean responses predicted by both a line-
ar-nonlinear model with Poisson noise (yellow) and multistage noise (red) are similar for this example cell and accurately predict the
mean responses from the data (black). Error bars denote SEM. B, Model nonlinearities for the LNP and multistage noise model are
similar. C, Noise values for each noise source in the multistage noise model. All noise sources contribute to observed variability. D,
Average responses of example cell from A for repeated trials of the same noise sequence (gray). Shaded area indicates boot-
strapped 98% confidence intervals on the mean. Predictions of trial-averaged responses are similar for both models. E,
Distributions of responses from gray boxes in A. F, JSD between the distributions of responses from data and the multistage noise
model, plotted against JSD between distributions from data and the LNP model, shown for eight different ganglion cells (circles,
square for example cell in A-E). Columns correspond to the ranges of filtered stimulus values indicated by gray boxes in A.

more sharply rectified nonlinearity (Fig. 88). Again, predic-
tions of the average responses are nearly identical for
both models (Fig. 8A,D), despite the differences in nonli-
nearities. Note that although the mean responses pre-
dicted by both models for large input values appear to fall
below the cloud of points, these are actually accurate pre-
dictors of the mean responses because of the number of
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zero responses at large input values (Fig. 8A). For the cell
shown, both upstream and downstream noise sources
contribute to the observed variability (Fig. 8C).

The predicted distributions of responses for the multi-
stage noise model are in close correspondence with
the data, whereas Poisson distributions provide a poor
approximation across input values (Fig. 8E). The
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Figure 7. Model parameters can be accurately recovered from simulated data where downstream noise is drawn from a mixture dis-
tribution. A, Nonlinearities used to generate example datasets (gray) and nonlinearities recovered by fitting the multistage noise
model (red). Insets, Distributions of responses at the filtered stimulus value indicated by the dashed vertical line for the dataset
(gray) and multistage noise model (red). B, True (gray) and recovered (purple, blue, green) parameters for the three example data-
sets. C, Average absolute error of inferred nonlinearities, weighted by the input distribution, for all 12 simulated datasets. D, Error in
estimated noise parameters for simulated datasets. Points are shown for all cases in which the corresponding source of noise con-

tributed at least 20% of the total noise. Error bars denote SD.

multistage noise model is able to capture the large num-
ber of observed zero responses, unlike a model with
Poisson noise. Model variants that incorporate additional
stimulus features or response history, rather than multiple
noise sources, are unable to account for the observed re-
sponse distributions (Fig. 2; Materials and Methods).
Across a population of cells (n=6), the multistage noise
model predicts the distribution of responses better than
the Poisson noise model across all input levels (Fig. 8F).

Comparison of model features at low and high light
levels

We next sought to determine whether the model re-
vealed systematic differences between ganglion cell re-
sponses, in either the nonlinearity or noise, when ambient
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illumination changes. Changes in these features may re-
flect changes in which circuit elements are engaged or
adaptive changes in how particular circuit elements pro-
cess inputs. In order to make fair comparisons between
the two conditions, we fit data at both light levels using
the multistage noise model with a mixture distribution for
downstream noise.

For On-sustained RGCs, nonlinearities were consis-
tently more sharply rectified at high light compared with
low light, both for individual cells recorded at both light
levels (Fig. 9A) and across the population of cells (average
ratio high-to-low 12.95; p <0.001, Wilcoxon rank-sum;
Fig. 9B). Curvature was quantified by taking the maximum
of the second derivative of the nonlinearity. There is no
possible scaling of the vertical or horizontal axis that over-
lays the nonlinearities in the two cases, ruling out the
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strapped 98% confidence intervals on the mean. Predictions of trial-averaged responses are similar for the multistage noise model
and LNP model. E, Distributions of responses from gray boxes in A. F, JSD between the distributions of responses from data and
the multistage noise model, plotted against JSD between distributions from data and the LNP model, for six different ganglion cells
(circles, square for example cell in A-E). Columns correspond to the ranges of filtered stimulus values indicated by gray boxes in A.

possibility that this change is simply because of differen-
ces in dynamic range or differences in the effective
contrast experienced by the cell under these two condi-
tions. In comparison, nonlinearities found assuming
Poisson noise also show significantly stronger rectifica-
tion at high light but are far more similar under the two
conditions (ratio high-to-low 2.52; p=0.01, Wilcoxon
rank-sum; Fig. 9C,D). Further, these nonlinearities are
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far less sharply rectified than those found using the mul-
tistage noise model (compare scale of vertical axes in
Fig. 9B,D). We also recorded two Off-sustained cells,
which show similar trends to the On-sustained cells,
with nonlinearities more strongly rectified at high com-
pared with low light (Fig. 9A,B). These changes were
not apparent in Off-sustained cells when assuming
Poisson noise (Fig. 9C,D).
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tive and downstream noise.

All three sources of noise present in the multistage noise
model are needed to account for ganglion cell responses
(Fig. 9E). There are no systematic differences in the magni-
tude of the upstream noise source across light levels (n=5
cells with data at both light levels; average ratio low-to-high
1.56; p=0.31, Wilcoxon signed-rank). Multiplicative noise,
on the other hand, is lower at high light levels for all cells in
which paired data are available (average ratio low-to-high
6.15; p=0.06, Wilcoxon signed-rank). The inferred strength
of the downstream noise source is higher at high light levels
for all cells with paired data (average ratio low-to-high 0.33;
p =0.06, Wilcoxon signed-rank). The two Off-sustained cells
did not show consistent changes in upstream or down-
stream noise parameters, but multiplicative noise increased
strongly in both cells at high light (ratio low-to-high 0.23 and
0.03; data not shown).

Discussion
A large body of work directly investigates the variability
inherent in neural systems to inform our understanding of
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circuit function (Churchland et al., 2011; Goris et al., 2014;
Gordus et al., 2015; Lin et al., 2015; Metzen et al., 2015;
Zylberberg et al., 2016). Motivated by this, we have devel-
oped a new model that provides an improved representa-
tion of variability in a neuron’s response by incorporating
multiple stochastic elements, representing various loca-
tions and types of noise present in neural circuits. The
new model reduces bias in estimating circuit nonlinear-
ities compared with oft-used models and provides
estimates of multiple sources of variability at different lo-
cations within a circuit. The model reveals that changes in
ambient light level produce systematic differences in both
retinal circuit nonlinearities and sources of noise.

Comparison of inferred nonlinearities and noise with
experimental observations

The changes we observe in nonlinearities across light
levels are consistent with previous work, with increasing
rectification at higher light levels (Grimes et al., 2014). Yet
the nonlinearities that we infer with the multistage noise
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model are generally more strongly rectified than those re-
ported elsewhere and more strongly rectified than those
found when assuming Poisson noise. Without explicitly
accounting for certain kinds of noise, nonlinearities esti-
mated from model fitting will appear more linear than the
actual nonlinearity operating in the circuit. For example, if
there is noise present upstream of a nonlinearity, it is ex-
pected that this noise will smear out the observed nonli-
nearity at the level of the outputs (as in Fig. 4B). Previous
work has generally not attempted to disentangle the con-
founding effects of noise on the estimated nonlinearity.
By allowing noise to be attributed to multiple potential cir-
cuit locations, the multistage noise model separates the
effects of noise and deterministic model elements. This
results in more sharply rectified estimates of nonlinearities
than previously reported. These estimated nonlinearities
provide better constraints on the operation of underlying
circuit mechanisms and may reflect the dominance of
particular mechanisms that are expected to be strongly
rectified.

Our results show that all three noise sources in the
model are required to account for ganglion cell response
variability. A great deal of work points to a variety of ori-
gins of the noise in the retinal circuitry. Noise arising with-
in the photoreceptors, and even in particular elements of
the phototransduction cascade, has been studied exten-
sively (Baylor et al., 1980; Schneeweis and Schnapf,
2000; Ala-Laurila et al., 2011; Angueyra and Rieke, 2013;
Field et al., 2019). Other work points to several pieces of
the retinal circuitry, particularly the bipolar cell output syn-
apses, as significant sources of noise (Freed, 2000; Dunn
and Rieke, 2006; Borghuis et al., 2009; Freed and Liang,
2014).

The relative contributions of different noise sources in
the retinal circuitry could change with ambient light level,
and we indeed see that the strength of different noise
sources in the model varies systematically with light level.
The two light levels tested here engage different retinal
circuits before convergence at the RGC, which may
change the relative contributions of noise sources directly
or by altering the location and degree of nonlinearities in
the circuitry, thereby effectively changing the location of
noise relative to the nonlinearity (Field and Rieke, 2002;
Grimes et al., 2014). Although the sources of variability
in our model do not directly correspond to elements of
the retinal circuitry, the observation of greater multipli-
cative noise at lower light levels is consistent with the
fact that rod-mediated signals must traverse an addi-
tional synapse. Multiplicative noise in our model, which
is present at the output of the nonlinearity and has
strength that scales with nonlinearity output, is most
similar to noise expected from stochastic vesicle re-
lease at synapses. Synaptic noise, which results largely
from randomness in vesicle release, is often taken to be
multiplicative or follow Poisson statistics (Rao et al.,
1994; Freed, 2000; Moreno-Bote, 2014). In both cases,
the variance in output scales with the output strength.
This scaling of variance with mean has been previously
observed in both On and Off ganglion cells in mouse
retina (Murphy and Rieke, 2008).
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Limitations and extensions

LNP models and Poisson GLMs have gained wide-
spread use in part because of their simplicity to fit to
data. The model presented here is considerably more com-
plex, although each of these additional components proved
necessary to capture the full distribution of neural re-
sponses. Model parameters must be found via optimization
on a relatively complex likelihood function and are not guar-
anteed to be unique. However, we find in practice that differ-
ent initial conditions typically converge to the same set of
parameters.

The work presented here captures the responses of a
neuron to only a single temporal feature of the stimulus,
and a spatially uniform stimulus was chosen to eliminate
the need for spatial selectivity in the model. Selectivity to
multiple spatiotemporal stimulus features, as has been
observed in several systems (Rust et al., 2005; Slee et al.,
2005; Fairhall et al., 2006), could be incorporated with
straightforward extensions of the model. For example, if
pathways that result in selectivity to two temporal features
are assumed to converge before the nonlinearity, selectiv-
ity to these features can be incorporated by simply pro-
viding a weighted combination of these two features as
the input to the model, adding one additional model pa-
rameter. Selectivity to spatial features of the stimulus is
also relatively straightforward to incorporate if one as-
sumes that the receptive field is composed of multiple
identical spatial subunits (i.e., each subunit is character-
ized by the same nonlinear function). This model would re-
quire additional parameters to characterize the relative
weighting of each subunit. Subunit models of RGC re-
sponses typically require only four to six subunits to cap-
ture responses well, suggesting that this addition is likely
to be computationally tractable (Turner and Rieke, 2016;
Shah et al., 2019).

A useful extension of this model would operate at finer
timescales, predicting individual spikes rather than spike
counts within a window of time (~100 ms). Predicting re-
sponses in longer windows reduced the need for incorpo-
rating response history dependence. Indeed, we found
that incorporating dependence on the response in the
previous time bin did not improve our model predic-
tions. However, refractory and other spike history ef-
fects would be necessary to make predictions at finer
timescales. History dependence has been shown to im-
prove model accuracy in a number of contexts, includ-
ing in the retina (Berry and Meister, 1997; Pillow et al.,
2005; Jolivet et al., 2006; Mensi et al., 2012). In particu-
lar, including refractory effects can help account for
sub-Poisson variability, which is observed under certain
stimulus conditions (Berry and Meister, 1998). Some
models have even included two stochastic elements
along with history dependence, although simplifying as-
sumptions about the shape of the nonlinearity and/or
the time course of history dependence are generally
made (Keat et al., 2001; Vidne et al., 2012). Although
adding additional history dependence is a conceptually
straightforward extension of the model, it would require
several additional parameters to characterize depend-
ence on spike history.
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Ideally, the model ought to optimize parameters of stim-
ulus and spike history filters at the same time as nonli-
nearity and noise parameters. In the present study, we
found linear filters using standard reverse correlation
methods. Simultaneous optimization of these filters would
require the addition of multiple new parameters, which
could substantially slow optimization. Careful parameter-
ization of these filters, incorporation of statistical priors, or
additional simplifying assumptions may be required for
this approach to be computationally tractable.

The general framework presented here could be easily
modified to make use of different distributions for each
noise source. We presented two slightly different ver-
sions, which incorporated different but closely related dis-
tributions for downstream noise. One could similarly
modify upstream or multiplicative noise distributions, as
called for by different datasets. Parameter inference will
to some extent depend on these choices in model selec-
tion. We find, however, for the two models presented here
that inferred nonlinearities are generally robust to this dis-
tinction and that inferred noise parameters change in
small but systematic ways.

In conclusion, the model presented here holds several
advantages over models that include a single source of
variability. First, it is able to more accurately recover the
nonlinearity in circuits in which noise is not dominated by
a single source. Second, it provides better predictions of
overall variability and has the ability to attribute variability
to different sources. Given the importance of noise in
shaping the flow of information through a circuit, it is im-
portant that a model capture features of this variability in
the neural responses. This work opens the door to two
potentially fruitful lines of future work: (1) extending the
model to include additional features of stimulus and his-
tory dependence, and (2) conducting additional experi-
ments to more closely link the sources of variability in the
model to features of the biological circuit.
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