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Abstract
Colon adenocarcinoma (COAD) has a high incidence and death rate. Despite 
the fact that change in fatty acid metabolism promotes tumor growth and metas-
tasis to the greatest degree among metabolite profiles, a thorough investigation 
on the involvement of fatty acid metabolism- related genes (FAMRGs) in COAD 
has yet not been conducted. Here, the clinical data as well as the gene expres-
sion profiles were extracted from The Cancer Genome Atlas (TCGA) database. 
Based on the FAMRG expression data and clinical information, a FAMRG risk 
signature was developed using LASSO as well as multivariate and univariate Cox 
regression analyses. Then, the nomogram was used to create a customized prog-
nostic prediction model, and the calibration and receiver operating character-
istic curves were used to evaluate the nomogram's prediction performance and 
discriminative capability. Lastly, a number of studies were conducted to assess 
the influence of independent FAMRGs on COAD, including unsupervised cluster 
analysis, functional analysis, and drug sensitivity analysis. Three hundred and 
sixty- seven patients were included in this study, and a 12- FAMRG risk signa-
ture was discovered in the training cohort based on a detailed examination of the 
FAMRGs expression data and clinical information. After that, risk scores were 
computed to classify patients into low or high- risk groups, and the Kaplan– Meier 
curve analysis revealed that patients in the low- risk group exhibited an elevated 
overall survival (OS) rate. The FAMRG was shown to be substantially correlated 
with prognosis in multivariate Cox regression analysis and was validated using 
the validation dataset. Then, using the clinical variables and risk signature, we 
developed and validated a prediction nomogram for OS. Functional characteriza-
tion showed a strong correlation between this signature and immune cell infiltra-
tion and immune modulation. Additionally, by evaluating the GDSC database, it 
was determined that the high- risk group exhibited medication resistance to many 
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1  |  INTRODUCTION

With a high incidence rate, colon adenocarcinoma 
(COAD) is the fourth major contributor to cancer- related 
death across the world.1 Although progress has been 
made in diagnosing and treating COAD, mortality is 
still considerably high owing to the absence of markers 
for early detection and prognostic prediction.2 The gold 
standard for the treatment of COAD is radical resection. 
However, it has been observed that the rate of recurrence 
of COAD is significant (almost 50%) within 2 years fol-
lowing radical resection, with 50% of the recurrences 
being deadly. Immunotherapy, particularly suppressors 
of immunological checkpoints such as programmed cell 
death 1 ligand 1 (PD- L1), programmed cell death protein 
1 (PD- 1), and cytotoxic T- lymphocyte antigen- 4 (CTLA4), 
has given potential new options for improving the overall 
survival (OS) of COAD patients.3,4 In recent years, pem-
brolizumab (an anti- PD- 1 monoclonal antibody) was 
proven to have increased effectiveness and long- term 
therapeutic benefit in a subset of patients with COAD 
who had DNA mismatch repair- deficient (dMMR)/mi-
crosatellite instability- high (MSI- H).5 Nonetheless, since 
the clinical effectiveness of these immune checkpoint 
inhibitors has only been shown in a limited number of 
COAD patients, it is very important to identify efficient 
prognostic indicators and additional immune checkpoint 
targets.

The tumor microenvironment (TME) is hypoxic and 
acidic with nutritional shortage, causing tumor cells and 
the surrounding stromal cells to exhibit abnormal metab-
olism.6 Reprogramming the energy metabolism of tumors 
may enhance their fast growth, metastasis, proliferation, 
and survival, and is a newly recognized characteristic of 
cancer.7,8 As previously stated, cancer cells are sensitive to 
the “Warburg effect”, which is characterized by increased 
glycolysis or aerobic glycolysis.9 Along with aberrant glu-
cose metabolism, dysregulation of lipid metabolism has 
received increased emphasis in the past few decades as a 

hallmark of metabolic reprogramming in cancer, partic-
ularly COAD.10 The disruption of lipid metabolism, spe-
cifically for fatty acid metabolism with altered expression 
and activity of lipid- metabolizing enzymes as a result of 
abnormal activation of oncogenic signaling pathways, has 
been widely recognized as a critical factor of metabolic 
reconfiguration within cancer cells and immune cells 
that may lead to the long- term development of COAD.11 
Furthermore, data acquired from several solid tumors 
shows that tumor immunometabolic reprogramming is 
highly essential, which will continue to be a new emphasis 
of COAD research in the future.12– 14 Fatty acids are essen-
tial for energy storage, membrane synthesis, and signaling 
molecule production during oncogenesis.15 It has been 
shown that decoding the molecular mechanism of COAD 
and fatty acid metabolism might aid in the identification 
of new therapeutic targets and the development of suc-
cessful treatment techniques. Wang et al. discovered that 
activating fatty acid oxidation through CPT1A reduces 
anoikis in COAD cells, suggesting that CPT1A is a prom-
ising target for metastatic COAD therapy.16 Nonetheless, 
the regulation mechanism modulating the fatty acid me-
tabolism route in COAD is yet not to be fully explored. As 
a result, identifying fatty acid metabolism- related genes 
(FAMRGs) may open up new options for investigating 
COAD therapy.

Our research aimed to establish a model to predict 
prognosis and direct therapeutic treatment in COAD pa-
tients by classifying them according to their fatty acid me-
tabolism genes. We discovered two groups associated with 
fatty acid metabolism after classifying 367 COAD patients 
according to genes involved in fatty acid metabolism. The 
risk score may then be computed by building a model 
related to fatty acid metabolism using the LASSO- Cox 
approach. This risk score may be utilized in anticipating 
prognosis and immune infiltration. Our findings indicate 
a probable relationship between fatty acid metabolism, 
prognosis, and the immune microenvironment of COAD 
patients.

chemotherapeutic and targeted medicines, including VX.680, gemcitabine, doxo-
rubicin, and paclitaxel. Overall, we have revealed the significance of a FAMRG 
risk signature for predicting the prognosis and response to immunotherapy in 
COAD, and our findings might contribute to an enhanced comprehension of 
metabolic pathways and the future development of innovative COAD therapeu-
tic methods.

K E Y W O R D S

colon adenocarcinoma, fatty acid metabolism, nomogram, prognostic prediction, tumor 
immune microenvironment
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2  |  MATERIALS AND METHODS

2.1 | Data collection

In order to obtain the RNA- seq read count and the as-
sociated clinical information, we used the The Cancer 
Genome Atlas (TCGA) database (available at https://
portal.gdc.cancer.gov). To guarantee the better quality 
of the analysis, samples having a survival duration of 
≥30 days were utilized. In addition, 367 COAD patients 
from the TCGA were enrolled for further investigation. 
Clinical information for COAD patients is presented in 
Table 1.

2.2 | Construction of training 
set and testing set and establishment of 
differentially expressed FAMRGs

We utilized the limma R program to evaluate the dif-
ferentially expressed genes (DEGs) in the TCGA dataset 
in tumor and normal specimens in order to identify the 
differentially expressed FAMRGs (DE FAMRGs) related 
to COAD prognosis. A similar approach was utilized to 
detect the FAMRGs that were differentially expressed be-
tween the groups. For the following analyses, we selected 
the DEGs and FAMRGs with an adjusted p < 0.05 and 
an absolute log2- fold change (FC) >1. We found the DE 
FAMRGs at the points where the DEGs and the FAMRG 

lists intersect. Owing to the low amount of normal colon 
tissue samples available in the TCGA repository, we di-
vided the dataset into training and testing sets at random 
using a ratio of (2:1). The training set was utilized to build 
a possible prognostic signature and the testing set was uti-
lized to validate the signature.

2.3 | Weighted gene co- expression 
network analysis

FAMRGs were used to generate a weight co- expression 
network using the R package “WGCNA”.17 Clustering 
was performed using the topological overlap measure 
(TOM), and gene modules were found. We evaluated each 
module eigengene (ME), obtaining the expression level of 
each module. The cutoff value was set at p < 0.05.

2.4 | Consensus clustering

Consensus clustering utilizing k- means algorithms was 
conducted to identify novel fatty acid metabolism- related 
patterns associated with gene expression (Algorithm 
AS 136: a K- means clustering algorithm). The stabil-
ity and number of clusters were determined utilizing 
the consensus clustering approach implemented in the 
“ConsensuClusterPlus” package. To confirm the stabil-
ity of our clusters, we repeated the above approach 1000 

Covariates Type
Total 
(n = 367) Test Train p- value

Age <=65 150 (40.87%) 43 (35.54%) 107 (43.5%) 0.1786

>65 217 (59.13%) 78 (64.46%) 139 (56.5%)

Gender Female 174 (47.41%) 56 (46.28%) 118 (47.97%) 0.847

Male 193 (52.59%) 65 (53.72%) 128 (52.03%)

Stage Stage I 64 (17.44%) 24 (19.83%) 40 (16.26%) 0.0973

Stage II 148 (40.33%) 56 (46.28%) 92 (37.4%)

Stage III 102 (27.79%) 24 (19.83%) 78 (31.71%)

Stage IV 53 (14.44%) 17 (14.05%) 36 (14.63%)

T T1 8 (2.18%) 1 (0.83%) 7 (2.85%) 0.3974

T2 64 (17.44%) 25 (20.66%) 39 (15.85%)

T3 253 (68.94%) 83 (68.6%) 170 (69.11%)

T4 42 (11.44%) 12 (9.92%) 30 (12.2%)

M M0 278 (75.75%) 95 (78.51%) 183 (74.39%) 0.5391

M1 53 (14.44%) 17 (14.05%) 36 (14.63%)

Unknown 36 (9.81%) 9 (7.44%) 27 (10.98%)

N N0 219 (59.67%) 82 (67.77%) 137 (55.69%) 0.0837

N1 85 (23.16%) 23 (19.01%) 62 (25.2%)

N2 63 (17.17%) 16 (13.22%) 47 (19.11%)

T A B L E  1  Baseline characteristics of 
patients with COAD in TCGA database

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
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times [ConsensusClusterPlus: a class finding tool with 
confidence evaluation and item tracking].

2.5 | Constructing and validating the 
prognostic signature

COAD patients were classified into training and test co-
horts according to the 2:1 ratio at random. An investiga-
tion into the link between each training cohort's FAMRG 
expression and OS was conducted using a single- variable 
Cox regression analysis. Then, using the R package “glm-
net,” these FAMRGs were re- examined using LASSO pe-
nalized Cox proportional hazards regression in order to 
pick the most accurate risk model. In order to determine 
the risk score for each patient, the equation below was 
utilized: risk score = (h0t)∑ (coefi * Expi), where coefi de-
notes the coefficient of each FAMRG, Expi denotes each 
FAMRG expression value, and h0t indicates the baseline 
hazard function. The patients were divided into two risk 
groups based on the median risk score. Furthermore, the 
Kaplan– Meier techniques from the R survminer package 
were utilized to create the survival curve, and the differ-
ences between the two risk groups were determined using 
the log- rank test. In the meantime, the R package “surviv-
alROC” was utilized to create a time- dependent receiver 
operating characteristic (ROC) curve and the area under 
the curve (AUC) was obtained to examine the accuracy of 
the prognostic risk signature. To validate the prediction 
ability of the prognostic signature, risk scores were com-
puted in the testing cohort using the similar aforemen-
tioned prognostic equation, and Kaplan– Meier survival 
and ROC curve analyses were performed utilizing the me-
dian risk score as the cutoff value.

2.6 | Independence of the 
FAMRGs signature

By using the FAMRG features of OS and relevant clinical 
information, we utilized univariate Cox regression analy-
sis to assess independence. The statistical significance 
threshold was set at p < 0.05.

2.7 | Constructing and validating  
the nomogram

The column line diagram works by creating a multifac-
tor regression model (Cox regression, logistic regression, 
etc.), scoring each influencing factor's contribution to the 
model's outcome variable (the magnitude of the regression 
coefficient), adding the individual scores to get the total 

score, and finally calculating the predicted value. All inde-
pendent prognostic factors were assessed by multivariate 
Cox regression analysis after being identified through uni-
variate Cox regression analysis. Then, the “rms” R pack-
age (https://cran.r- proje ct.org/web/packa ges/rms/index.
html) was utilized to construct the nomogram on the 
basis of all filtered prognostic indicators. Subsequently, 
we evaluated the discrimination of the nomogram, and 
the calibration plot curve analysis was performed.

2.8 | Gene set variation analysis (GSVA)

The “GSVA” R package was utilized to conduct GSVA 
on the gene profiles to assess the differences in biologi-
cal processes between groups with high-  and low- risk 
scores. GSVA, which is an unsupervised and nonparamet-
ric approach, can be used to determine the variations in 
pathways or biological processes based on an expression 
matrix sample. The reference gene set was derived from 
the “c2.cp.kegg.v7.1.symbols” gene sets in the molecular 
signatures database (https://www.gsea- msigdb.org/gsea/
msigdb). A threshold of FDR <0.05 showed an enrich-
ment pathway that was statistically significant.

2.9 | Gene set enrichment analysis 
(GSEA)

The pathway research began with a differential expression 
analysis of all genes to identify samples with high-  or low- 
risk scores using the R software “DESeq2”. It was decided 
to employ the GSEA technique, which was founded on the 
HALLMARK gene sets, in conjunction with the R- based 
“clusterProfiler” tool to find the signaling pathways that 
the DEGs are engaged in. It was determined that the path-
ways were statistically significant when FDR <0.05 and 
p < 0.05 were both met.

2.10 | Tumor microenvironment (TME)  
analysis

To investigate the TME in COAD, we used the CIBERSORT 
technique to calculate the amounts of infiltration of 22 dif-
ferent types of immune cells based on all genes' expression 
levels. We begin by uploading all gene expression data to the 
CIBERSORTx online portal. Following that, the LM22 sig-
nature was used to execute the algorithm for 1000 permuta-
tions. Further analysis was performed on COAD specimens 
with an output p- value <0.05. Additionally, the stromal and 
immunological scores were determined using the R pack-
age “estimate”. Single sample GSEA (ssGSEA) analysis 

https://cran.r-project.org/web/packages/rms/index.html
https://cran.r-project.org/web/packages/rms/index.html
https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
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was subsequently conducted to estimate the abundance of 
28 immune infiltration cells using the R package “GSVA”. 
Additionally, the TIMER 2.0 (Tumor Immune Estimation 
Resource) database was used to look into the association be-
tween mutant genes and COAD immune infiltration levels.

2.11 | Therapeutic sensitivity with 
prognostic signature

Subsequently, data on the gene bulk expression profiles 
of cancer cell lines and drug responsiveness (as deter-
mined by IC50 value) were obtained from the Genomics 
of Drug Sensitivity in Cancer (GDSC) database. GDSC has 
the most comprehensive collection of publicly available 
information on cancer cells' drug sensitivity and molec-
ular indicators of therapeutic response.18 Then, we used 
the LIBSVM program in R to estimate the IC50 value for 
each medication using default settings and a linear kernel. 
Finally, we compared the medication sensitivities of high-  
and low- risk groups to see if there were any differences.

2.12 | Statistical analysis

Statistical analyses on the data were carried out using the 
R programming language (version 4.0.4) and the R pack-
age. Wilcoxon test (Mann– Whitney test) was employed 
to evaluate continuous variables, while chi- square or 
Fisher's exact was employed to assess categorical vari-
ables. K- M and log- rank tests were used to find the dif-
ference in survival. p < 0.05 was set for all of the statistics 
that were done.

3  |  RESULTS

3.1 | Acquisition of data

We obtained transcriptome information from the TCGA 
database for 398 colon cancer tissues and 39 paraneoplas-
tic tissues. Three hundred and sixty- seven patients with 
complete follow- up time and clinical information were 
added to the study (baseline information). The Genecards 
database was used to identify fatty acid- related genes and 
GIFtS >30 and Score > 10 were the inclusion criteria, and 
886 genes were finally included.

3.2 | Identification of disease subtypes

WGCNA suggested that the blue module genes were most 
significantly associated with colon cancer (cor = −0.87), 

and in order to reveal the correlation between fatty acid- 
related genes expression levels and COAD prognosis, 
we clustered the tumor sample using the “Consensus 
Cluster Plus” program based on the genes in the blue 
module (Figure  1A,B). We identified two COAD sub-
types (Figure 1C– F). The Kaplan– Meier survival analysis 
illustrated that COAD patients in the C1 group exhib-
ited a more favorable prognosis (Figure  2A,B). Results 
from the Estimate algorithm indicated that the stromal 
and ESTIMATE scores were greater in the C2 group 
(Figure  2C). The MCP- Counter score indicated that the 
C1 group had a greater T- cell count, while the monocytes, 
endothelial cells, and fibroblasts were elevated in the C2 
group (Figure  2D– G). In addition, differential gene ex-
pression analysis suggested that there were a large num-
ber of differential genes between C1 and C2 groups, and 
there were significant differences in STAGE staging, TNM 
staging (Figure 2H). GSVA suggested that there were dif-
ferences in many sets of pathways between C1 and C2 
groups, especially containing fatty acid metabolic path-
ways (Figure 2I). This implies that the genes in the blue 
module are of great exploration value. Overall, our results 
suggest that COAD grouping is feasible.

3.3 | Construction and evaluation of the 
prognostic model

TCGA- COAD patients were classified at random into 
training and test groups in a 2:1 ratio. Univariate Cox re-
gression was utilized to detect 15 prognosis- related genes 
in the training dataset using the genes in the blue module 
(Figure 3A). Twelve key FAMRGs were further screened 
out utilizing LASSO- Cox regression analysis (Figure 3B). 
The coefficient of each FAMRG was calculated to build a 
risk score model (Figure 3C). We utilized the median risk 
score as the threshold and allocated 367 patients into two 
groups: high-  and low- risk groups. Low- risk patients had a 
significantly longer OS than those in the high- risk group, 
according to Kaplan– Meier curves (Figure  3D– F). The 
AUCs of 1- , 3- , and 5- year OS anticipated by the model 
were 0.813, 0.691, and 0.795, respectively, validating the 
prediction ability of the signature with satisfactory speci-
ficity and sensitivity (Figure 3G– I). The PCA suggested a 
high degree of discrimination between the low-  and high- 
risk groups. We obtained similar outcomes using the same 
method for the test dataset (Figure  3J– L). A univariate 
Cox regression revealed that risk score and clinical fea-
tures such as TNM staging and age were strongly associ-
ated with OS, and we then performed a multifactorial Cox 
analysis and discovered that 12- FAMRG signature was 
an independent prognostic marker for COAD (p < 0.001), 
implying that our signature could be a good complement 
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to conventional pathological staging (Figure 4A,B). After 
that, we developed a nomogram that included information 
such as STAGE staging, age, and risk score (Figure 5A). 
For 1- , 3- , and 5- year OS, the projected AUCs were 0.774, 
0.791, and 0.765, correspondingly (Figure 5B). The predic-
tion model's calibration curves and ROC findings jointly 
revealed that the model performed better in terms of pre-
diction (Figure 5C– E).

3.4 | Relativity between risk score and 
clinicopathological features

A risk score difference analysis was performed to thor-
oughly investigate the correlation between clinical vari-
ables and the risk scores. The findings indicated that risk 
scores had greater value in the age over 65 years group. In 
addition, as the STAGE staging increased, the risk scores 
of patients were also greater. Consistent results were also 
obtained in TNM staging (Figure 6A– E).

3.5 | Molecular characteristics of the 
prognostic signature

GSEA was conducted on the low-  and high- risk groups to 
clarify the potential biological mechanisms and signaling 

pathways correlated with risk scores. The DEGs in the 
high- risk group were largely abundant in cancer and 
tumor metastasis- related pathways, according to the data, 
including allograft rejection, epithelial- mesenchymal 
transition, aptical_junction, inflammatory response, inter-
feron_gamma_response, ECM receptor, cytokine recep-
tor, and focal adhesion signaling pathways (Figure 7A,C). 
The DEGs in the low- risk group, on the other hand, were 
primarily predominant in metabolic response- related 
pathways, including fatty acid metabolism and oxidative 
phosphorylation signaling (Figure 7B,D).

3.6 | Association between risk score and 
immune infiltration features

To identify the value of the TME of this signature, we dif-
ferentially analyzed the tumor purity, and the stromal, im-
mune, and ESTIMATE scores between the high- risk and 
low- risk groups. The outcomes illustrated that in the low- 
risk group, stromal score, immune score, and ESTIMATE 
score were elevated while the tumor purity was reduced, 
indicating a presence of more immune components in 
TME in this group (Figure  8A– D). Moreover, the risk 
score was positively associated with the stromal, immune, 
and ESTIMATE scores, and negatively associated with the 
tumor purity (Figure 8E– H).

F I G U R E  1  Weighted gene co- expression analysis and subgroups of COAD defined by the most significant FAMRGs filtered by 
WGCNA. (A) A dendrogram of gene clusters was created, with each cluster being represented by a different color. (B) Correlation analysis 
between gene cluster profiles and COAD. p- value and Pearson coefficient are denoted by the numbers within and outside the brackets, 
respectively. (C– F) Consensus score matrix for the TCGA cohort when K = 2. Two samples had a higher likelihood of clustering together if 
they exhibited a higher consensus score in separate interactions.
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In addition, we then conducted a differential analysis 
of immune checkpoint genes, HLA genes, pyroptosis- 
associated genes, and ferroptosis- associated genes. The 
findings indicated that the high- risk group expressed 
more HLA and immune checkpoint genes, while the low- 
risk group expressed more pyroptosis- associated genes 
and ferroptosis- associated genes (Figure 9A– D).

The CIBERSORT algorithm may be used to determine 
the relative abundance of different types of cells in mixed 
cell populations. Therefore, we employed a combination 
of the normalized COAD patient gene expression matrix 
and the LM22 feature matrix to assess the 22 human im-
mune cell infiltrations. The total of all predicted immune 
cell type scores for each sample was equivalent to 1 for 
each sample. In addition, each sample was screened using 
the “genfilter” package, with a p- value cutoff of <0.05. 
We subsequently used “limma” difference analysis of the 

final output of CIBERSORT. The results indicated an ele-
vated abundance of Macrophages M0, Macrophages M1, 
and NK cells resting in the high- risk group, while T cells 
CD4 memory resting, dendritic cells resting, and B cells 
naïve resting were more abundant in the low- risk group 
(Figure 10).

3.7 | Relationship between the 
prognostic signature and drug sensitivity

As chemotherapy is a conventional therapy for COAD, 
we estimated the response to chemotherapy at half maxi-
mum inhibitory concentration (IC50) for each COAD 
patient with the aid of the R package “pRRophetic” on 
the Genomics of Tumor Drug Sensitivity (GDSC) web-
site. The findings illustrated that the high- risk group 

F I G U R E  2  The evaluation of the differential degree of clustering. (A, B) PFS and OS curves for the two fatty acid- related clusters based 
on COAD patients from TCGA cohort. (C) Comparations of stromal, immune, and ESTIMATE scores in tumor tissues between the two 
groups. (D– G) Comparations between the two groups in immune filtrating cells abundance in tumor tissues. (H) Consensus clustering 
of DEGs and the clinical characters in the two fatty acid- related clusters of TCGA cohort. (I) Heatmap of gene set variation analysis for 
microarray and RNA- Seq data (GSVA) between the two groups.
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exhibited greater sensitivity to VX.680, paclitaxel, gemcit-
abine, and doxorubicin, and the low- risk group exhibited 
a higher sensitivity to AKT.inhibitor.VIII (Figure 11A– E). 
These findings could better guide patients' drug therapy 
selection.

4  |  DISCUSSION

Rectum adenocarcinoma/colon adenocarcinoma 
(READ/COAD) has been recognized as the most preva-
lent pathological kind of colorectal cancer (CRC), which 
is the third commonly occurring and second major 

contributor of cancer- associated deaths, causing over 
800,000 deaths annually all over the world.19 Young 
people are more likely to be affected by CRC than older 
people and children. The deployment of integrative 
therapies, including surgery and preoperative/postoper-
ative radiation in combination with chemotherapy, has 
led to a considerable improvement in the 5- year survival 
rate of CRC patients; nonetheless, invasion and metasta-
sis continue to cause a gloomy prognosis. Furthermore, 
because of the absence of early specific symptoms, early 
identification, and follow- up monitoring of COAD re-
main difficult. Despite the fact that colonoscopy is re-
garded as the holy grail for diagnosing and monitoring 

F I G U R E  3  Development of the fatty acid metabolism- related risk signature model. (A) In univariate Cox regression, the significance 
and hazard ratio (95 percent CI) values of OS- related FAMRGs were calculated. (B) The Lasso regression model uncovered the partial 
probability deviation of variables, where the red dots denotes the partial probability of deviation values, the gray lines denote standard error 
(SE), and the two vertical dotted lines on the left and right denote optimum values according to minimal and 1- SE criteria, respectively. (C) 
Lasso coefficient profiles of the 237 fatty acid- related genes in blue modules of the WGCNA. Survival analysis, and ROC analysis of two risk 
groups of the 12- gene signature in training cohort (D, G), testing cohort (E, H), and all patients (F, I).
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COAD, it is an intrusive treatment that frequently leads 
to distress and does not uncover metastases until they 
have spread to other organs. As a result, the discovery 
of tumor- specific biomarkers and risk stratification is 
critical in determining a patient's prognosis, and this 

information could be used to promote the develop-
ment of COAD diagnostic and therapeutic techniques. 
Furthermore, anticipating the prognosis is vital for 
therapy decisions as well as the discovery of prognostic 
biomarkers.

F I G U R E  4  Identification of the independence of the developed risk prediction. (A– B) COX regression analysis was used to determine 
independent prognostic variables.

F I G U R E  5  Nomogram model development and calibration. (A) Nomogram incorporating clinical and risk factors. (B) The time- 
dependent ROC curve of the nomogram model. (C– E) Calibration of the nomogram at 1- year, 2- year, and 5- year survival in the TCGA 
cohort.
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CRC etiology is influenced by both genetic history and 
a variety of adjustable lifestyle and environmental vari-
ables.20 Increasing adiposity, especially abdominal obe-
sity, is associated with a greater risk of CRC incidence.21 
In other words, cancer risk is extremely varied depending 
on one's diet. At the point where diet- derived signals in-
tersect, white adipose tissue (AT) is now regarded as the 
major endocrine organ in the body and performs an inte-
gral function in maintaining metabolic and immunolog-
ical homeostasis.22 Up to date, various research reports 
have investigated the effect of diet/nutrition in CRC, with 
findings showing that it may perform both a causative 
and a preventive role in tumor growth. Apart from being 
a known risk factor for CRC, increased adiposity is also 
associated with poorer outcomes.23 However, the adverse 
association between obesity and CRC is complicated and 
has not been completely elucidated so far. A vast spec-
trum of adipokines and metabolites, with proinflamma-
tory and cancer- causing properties, has been theorized 
to be produced by AT in this environment, and it has 
been suggested that this phenomenon may be of critical 
relevance.24 Moreover, obesity- related metabolic modi-
fications (such as oxidative stress, endocrine alterations, 
insulin resistance, impairments in lipid metabolism, and 
metabolic syndrome) might contribute to the occurrence 
and progression of CRC.25– 27

Excessive adiposity and diet may potentially have an 
impact on the progression of cancer by altering tumor 

monitoring and modifying the host immunological re-
sponse. Undoubtedly, white AT is currently acknowl-
edged as the major endocrine organ in which signals from 
nutrition merge, and it performs a critical function in both 
metabolic and immunological system homeostasis.28 In 
addition, AT, whose polarization profile is dependent on 
the adipocytes health status, contains a diverse array of 
immune cells either with proinflammatory (e.g., M1 mac-
rophages, Th1 CD4 and CD8 T lymphocytes, and neutro-
phils) or anti- inflammatory (e.g., M2 macrophages, and 
regulatory T [Treg] cells) characteristics.29,30 In this con-
text, fatty acids (FAs), which are supplied by the diets and 
processed/released by AT, are becoming more relevant as 
primary players in this interaction because of their ability 
to affect both cancer cell growth and the host's immune 
system. FAs may display a pro-  or anti- inflammatory 
action according to their chemical characteristics, and 
they have the capacity for modulating host surveillance 
systems and influencing anticancer reactions by directly 
regulating both adaptive and innate immunity as well as 
metabolic homeostasis.31

Recently, it has been reported that fatty acid metabolism 
performs a critical function in the onset and progression 
of several malignancies.32 In COAD, the most noticeable 
morphological feature is a change in the cytoplasm due 
to the accumulation of glycogen and lipid, indicating that 
reconfiguration of the fatty acid metabolism is a critical 
element in the occurrence and progression of the disease. 

F I G U R E  6  Relationship Between the Risk Score and Clinicopathological Characteristics (A) Age. (B) Stage. (C– E) TNM .
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F I G U R E  7  Functional enrichment analyses. (A– B) Hallmark gene sets and (C– D) Kyoto Encyclopedia of Genes and Genomes pathways 
enrichment between high-  and low- risk groups in the TCGA- COAD dataset.

F I G U R E  8  Tumor microenvironment analyses. (A– D) High- risk and low- risk groups were compared on tumor purity, stromal, 
immune, and ESTIMATE scores. (E– H) The relationship between the risk score and stromal score, immune score, ESTIMATE score, and 
tumor purity in tumor tissues.
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F I G U R E  9  Relationships between the risk score with HLA, pyroptosis, ferroptosis, and immune checkpoint genes. Boxplots were 
utilized to depict the difference of the expressions of Immune checkpoint (A), HLA (B), pyroptosis (C), and ferroptosis (D) genes. *p < 0.05, 
**p < 0.01, ***p < 0.001.

F I G U R E  1 0  Relationship between the risk score and the infiltration levels of immune cells. Immune cell infiltration patterns differ 
between low-  and high- risk patients.
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In particular, the tricarboxylic acid (TCA) cycle is down-
regulated, while the Warburg effect (aerobic glycolysis) 
is upregulated, which is the most significant change. In 
the meantime, a study discovered that the Warburg effect 
seems to be a grade- dependent characteristic regulating 
the proliferation and viability of COAD cells.33 As a result, 
in this research, we retrieved gene expression profiles as 
well as FAMRG sets from TCGA in order to find the prog-
nostic FAMRG signatures of COAD. Following the LASSO 
regression, as well as multivariate and univariate Cox re-
gression analyses, 12 FAMRGs (ADA, ALDH2, ARV1, 
ASAH1, CASP9, CPT2, DDIT3, FDFT1, GSR, PHGDH, 
PLA2G4B, and TIMP1) were selected to develop a risk 
signature that can predict clinical prognosis of COAD. 
ALDH2 is an enzyme involved in ethanol metabolism 
and acetaldehyde breakdown, such as 4- hydroxykingenal 
and malondialdehyde, to acetate. In recent years, mul-
tiple studies have demonstrated pro- colorectal cancer 
consequences of ALDH2 activation, which directly reg-
ulates metabolic and inflammatory responses.34 The car-
nitine palmitoyl transferase system (CPTs) regulates fatty 
acid β- oxidation. In the outer mitochondrial membrane, 
CPT1 is situated, while CPT2 is located in the inner mi-
tochondrial membrane. Many studies have linked CPT1 
overexpression to tumor development. Furthermore, 
two recent investigations verified CPT2’s significance 
in colorectal carcinogenesis.35,36 A precursor enzyme to 

squalene epoxidase (SQLE) in cholesterol production. 
Based on their findings, Jiang et al. concluded that FDFT1 
is associated with poor prognosis in stage I- III COAD and 
promotes tumor growth through modifying NAT8 and 
D- pantethine expression.37 Inhibiting both FDFT1 and 
SQLE is a better therapy for stage I- III COAD. The serine 
synthesis pathway transforms 3- phosphoglycerate to ser-
ine via three enzymatic steps, with the NAD- dependent 
PHGDH as the rate- limiting important enzyme in the 
first stage of its production pathway. PHGDH is located 
in the genomic region where recurrent copy number in-
creases are most common in breast and melanoma ma-
lignancies.38,39 To learn more about the “one- carbon” unit 
and a- ketoglutarate, researchers are studying the relation-
ship between serine synthesis and PHGDH inhibition in 
cell lines with high PHGDH expression levels.40 Thus, 
PHGDH inhibitors as targeted cancer therapy have con-
siderable clinical research value. More research is needed 
to determine the association between COAD and other 
proteins expressed by the genes in our risk signature.

To anticipate the 1- , 3- , and 5- year survival of COAD 
patients, we built a nomogram that integrated risk signa-
tures and clinical parameters. Furthermore, we validated 
the precision of the nomogram in predicting 1- , 3- , and 
5- year survival rates. We categorized 367 patients into 
high -  and low- risk groups using the median risk score as 
a cutoff value. The Kaplan– Meier curve illustrated that 

F I G U R E  1 1  Heterogeneous medication resistance. Comparison of the chemotherapeutic responses in high-  and low- risk patients with 
COAD. *p < 0.05, **p < 0.01, ***p < 0.001.
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the low- risk group exhibited a longer OS as opposed to 
the high- risk group. The AUCs of 1- , 3- , and 5- year OS 
anticipated by the model were 0.813, 0.691, and 0.795, re-
spectively, verifying the prediction ability of the signature 
with satisfactory specificity and sensitivity. PCA analysis 
showed a high degree of discrimination between the high-  
and low- risk groups. Similar results were obtained by uti-
lizing the same approach for the test dataset. Univariate 
Cox regression uncovered that risk score and clinical fac-
tors such as TNM stage and age were strongly associated 
with OS, and multifactorial Cox analysis further found 
that 12- FAPRGs signature was an independent prognostic 
indicator for COAD, indicating that our signature could be 
a good complement to conventional pathological staging. 
Following that, we created a nomogram that included fac-
tors including risk score, TNM stage, and age. The model 
projected AUCs of 0.774, 0.791, and 0.765 for 1- , 3- , and 
5- year OS, accordingly.

Recent years have seen the development of a prognos-
tic hallmark for assessing the prognosis of COAD patients. 
For example, using 11 autophagy genes, Chen et al. de-
veloped a predictive signature for predicting the 1- , 3- , 
and 5- year OS of cancer patients with CRC.41 Yang et al. 
developed a prognostic signature for anticipating the 1- , 
3- , and 5-  year OS using eight ferroptosis- related genes.42 
Additionally, Zhang et al. created a predictive signature 
based on 6- carbon metabolism and TCA- related mRNAs 
to predict 1- year OS in COAD.43 In another study by Song 
et al., they discovered a signature for evaluating the 3-  and 
5-  year survival probability in CRC patients utilizing seven 
m6A- modified lncRNAs.44 One, 3, and 5- year OS AUCs of 
0.66, 0.66, and 0.67 were found in a study by Chen et al.41 
However, in research by Yang et al.,42 the AUCs of OS for 
the same years were 0.7632, 0.7411, and 0.7581, respec-
tively. Compared to the AUCs in this training set (0.726, 
0.687, and 0.748) and pooled set (0.813, 0.691, and 0.795) 
of the present study, Chen's research had reduced AUCs. 
Furthermore, For 3- year OS, the AUC in the training and 
testing sets of the present study (0.808 and 0.819, corre-
spondingly) was greater than that of Shi et al. (0.703 and 
0.630). Besides, the calibration plots for the 1- , 3- , and 5- 
year OS indicated congruence between the predictions 
made by the nomogram and the actual observations. 
These findings showed that the current prognostic nomo-
gram is appropriate for assessing the probability of 1- , 3- , 
and 5- year OS rates in patients with COAD.

There were statistically significant differences in the 
distributions of risk scores across patients with various 
grades and TNM stages in both the training and validation 
sets. Furthermore, a survival assessment of the low-  and 
high- risk groups demonstrated that the high- risk group 
exhibited a worse prognosis as opposed to the low- risk 
group. In the meantime, multivariable Cox regression 

illustrated that the risk score was a prognostic predictor 
independent of other variables. According to these find-
ings, it was concluded that the fatty acid metabolism- 
related signature might be utilized as a valid predictor of 
the prognosis of COAD patients and could be used for the 
stratification of patients for fatty acid metabolism- focused 
therapy in the future.

The immunological microenvironment performs an 
integral function in the progression of cancers. Infiltrating 
immune cells might function as tumor- promoting or 
tumor- antagonizing factors. As cancer cells progress in 
their capacity to block the tumor- antagonizing actions of 
immune cells and evade immunological monitoring, they 
are able to promote the growth of cancer tumors. Cancer 
therapy has seen significant advancements in recent years, 
with immunotherapy targeting the modulation of im-
mune checkpoints and immune microenvironment show-
ing promising success. Additionally, fatty acid metabolism 
and immunity have been found to be strongly correlated.45 
Most of the proteins and genes associated with fatty acid 
metabolism homeostasis are also implicated in the control 
of fatty acid metabolism fluxes. When exposed to bacte-
rial assaults, cells of the innate immune system, including 
macrophages, microglia, monocytes as well as lympho-
cytes, may respond effectively. This result was obtained 
by carefully managing the fatty acid metabolic fluxes of 
these cells, which are regulated by FAMRGs. Macrophage 
is active in fatty acid beta- oxidation and has the largest im-
pact on immunity.46 According to some noteworthy find-
ings, parenchymal fatty acid beta- oxidation is associated 
with genes that are usually correlated with the immune 
system.47 In this research, we further conducted pathway 
enrichment analysis. GSEA revealed that distinct path-
ways involved in the growth of tumors were obviously 
enriched in the low-  and high- risk groups. Nevertheless, 
drug metabolic processes, as well as fatty acid catabolic 
processes, were primarily enriched in the low- risk group, 
while tumor metastasis- related pathways and immune 
response- related pathways primarily perform a modula-
tory function in the high- risk group.

We also assessed at the correlation between the risk 
score model and the immune- related variables. A lower 
stromal, immune, and ESTIMATE score were seen in 
the low- risk group, according to these data. In addi-
tion, there were more naive B cells, memory CD4+ T 
cells, and resting dendritic cells infiltrations in low- risk 
patients, but less resting NK cells, M0 and M1 macro-
phages infiltrations in high- risk patients. Our results 
showed that changes in FAMRGs affect the proportion 
of various B and T cell subtypes and macrophages, re-
sulting in an influence on prognosis. An enhance-
ment in the oxidation catabolism of fatty acid has been 
shown to trigger the impaired number and function 
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of natural killer cells, resulting in tumor immune eva-
sion.48 Therefore, aberrant FAMRG expression could 
enhance immune evasion by affecting NK cells in the 
proliferation of COAD. Furthermore, in the present 
study, the percentage of M0 and M1 macrophages rose 
in patients in the high- risk group. Macrophages have a 
role in tumor growth by secreting chemokines and cyto-
kines that have tumorigenic or anti- tumor properties. In 
addition, Zhou's research discovered that macrophages 
may engage in the Tregs to enhance COAD progression 
and medication resistance.49 It was noticed that the 
presence of M0 macrophages was substantially associ-
ated with recurrence- free survival (RFS) in HCV- HCC.50 
Together with our findings, abnormalities in FAMRGs 
may impair the activities of macrophages and the inter-
actions between macrophages and T cells to stimulate 
COAD proliferation.

Furthermore, this research found that the high- risk 
group exhibited substantially reduced expression of 
TNFSF15 and HHLA2, and considerably upmodulated 
expression of CTLA4, CD274, CD276, LAG3, PDCD1, 
and IDO1. Research has revealed that HHLA2 (a mem-
ber of the B7 family) was related to cancer progression 
and immune responses.51 CD276, known as B7- H3, is a 
critical component of the immune checkpoint belong-
ing to the CD28 and B7 families. CD276 was discov-
ered to be highly expressed in a variety of tumor cells, 
where it acts as a suppressor of T- cell activity, leading to 
a dismal prognosis for cancer patients.52 IDO1, which 
is an immuno- modulating enzyme molecule, has been 
demonstrated to be involved in tumor progression, me-
tastasis, angiogenesis, and tumor immune resistance, 
according to research findings.53 The expression level 
of immune checkpoints is positively correlated with the 
risk score in a significant way. This indicates that high- 
risk individuals have a poor prognosis since they are 
more likely to experience immune evasion and a cancer- 
promoting immunological milieu. These novel results 
suggest that exploiting the metabolism- regulated activ-
ities in the immune system may be a potential strategy 
for enhancing anti- tumor effects in the future.

A 17- immune genes- based prognostic signature 
demonstrated that T cells, natural killer cells, B cells, 
and macrophages differed between the two groups, and 
patients in the low- risk group had a higher likelihood of 
responding to chemotherapy and immunotherapy.54 The 
present study demonstrated that a high- risk score was 
strongly associated with an increased half- IC50 of VX.680, 
paclitaxel, doxorubicin, and gemcitabine, while a low- risk 
score was strongly associated with an elevated half- IC50 
of AKT inhibitor. Based on these results, our prognostic 
signature could be used to anticipate the effectiveness of 

chemotherapy or immunotherapy, which might be useful 
in clinical practice.

However, despite the fact that the prognostic fatty acid 
metabolism- related signature displayed a better prediction 
performance for COAD patients in this research, there are 
a few drawbacks that need to be resolved. First, because 
all of the cases were obtained from a publicly accessible 
database, the possibility of selection bias is nonnegligible. 
Second, there has been no experimental study undertaken 
to explore the roles of 12 FAMRGs in COAD. As a result, 
more research, both in vitro and in vivo, is required to ver-
ify the findings of this study.

In conclusion, a predictive risk profile was created 
based on 12 FAMRGs (ADA, ALDH2, ARV1, ASAH1, 
CASP9, CPT2, DDIT3, FDFT1, GSR, PHGDH, PLA2G4B, 
and TIMP1) in COAD, which we examined for their 
prognostic value. A prognostic nomogram for making 
predictions of 1- , 3- , and 5- year OS was constructed 
by integrating a risk signature with clinical data. This 
nomogram can enhance the clinical outcome predic-
tive performance of the TNM staging system while also 
serving as a reliable tool for risk evaluation. This study 
contributes to a better knowledge of fatty acid metabo-
lism status in COAD patients, which will be beneficial 
to patients undergoing fatty acid metabolism- targeted 
therapy.
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