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Abstract: Dopamine (DA) is an important signal mediator in the brain as well as in the periph-
ery. The term “dopamine homeostasis” occasionally found in the literature refers to the fact that
abnormal DA levels can be associated with a variety of neuropsychiatric disorders. An analysis
of the negative feedback inhibition of tyrosine hydroxylase (TH) by DA indicates, with support
from the experimental data, that the TH-DA negative feedback loop has developed to exhibit 3,4-
dihydroxyphenylalanine (DOPA) homeostasis by using DA as a derepression regulator. DA levels
generally decline when DOPA is removed, for example, by increased oxidative stress. Robust DOPA
regulation by DA further implies that maximum vesicular DA levels are established, which appear
necessary for a reliable translation of neural activity into a corresponding chemical transmitter signal.
An uncontrolled continuous rise (windup) in DA occurs when Levodopa treatment exceeds a critical
dose. Increased oxidative stress leads to the successive breakdown of DOPA homeostasis and to
a corresponding reduction in DA levels. To keep DOPA regulation robust, the vesicular DA loading
requires close to zero-order kinetics combined with a sufficiently high compensatory flux provided
by TH. The protection of DOPA and DA due to a channeling complex is discussed.

Keywords: dopamine; DOPA; tyrosine; homeostasis; metabolic channeling; robust control; integral
feedback; derepression; tyrosine hydroxylase; neurotransmitter; vesicles; mathematical modeling;
zero-order kinetics; oxidative stress; Parkinson’s disease

1. Introduction

Dopamine (DA) is an important neurotransmitter. Its dysfunction is associated with
a variety of neuropsychiatric disorders. Low activity levels of DA are related to movement
disorders, irregular sleep patterns, or attention deficit hyperacticity disorder (ADHD).
On the other hand, increased or dysregulated DA activity in different brain areas have been
related to addiction [1] and schizophrenia [2,3] but also to improved cognitive functions [4].
Thus, the literature often refers to DA homeostasis in order to address the need for optimum
DA levels to assure proper nervous functions.

The enzyme tyrosine hydroxylase (TH) converts tyrosine (Tyr) to the precursor 3,4-
dihydroxy-phenylalanine (DOPA), which becomes DA by decarboxylation using dopa de-
carboxylase (DDC) (Figure 1). Cellular DA is moved into vesicles by vesicular monoamine
transporter 2 (VMAT2); the vesicles are transported to the active site possibly by kinesins [5].
There, vesicles are emptied into the synaptic cleft upon the arrival of action potentials
and the inflow of Ca2+ ions [6]. There is evidence that the reaction chain Tyr→ DOPA
→ vesicular DA inside the presynaptic cell is organized in terms of “metabolite channel-
ing” [7], where the enzymes TH, DDC, and the transport VMAT2 form a complex attached
to the vesicular membrane [8–12]. In the synaptic cleft DA is spread by diffusion and
by reuptake into the presynaptic terminals with DA transporters (DAT) or by uptake by
neighboring glial cells where it is metabolized [13–15].
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Figure 1. Overview of the synthesis and regulation of DA. There is evidence that DA is synthesized
from tyrosine (Tyr) by a channeling mechanism with the enzymes TH, DDC, and the transporter
VMAT2, forming a complex at the vesicular membrane [9–11]. The complex, whose details are
presently not known, possibly minimizes the oxidations of DA and DOPA by MAO and reactive
oxygen species (ROS), respectively [10]. It should however be noted that our analysis does not rely on
the existence of such a protein complex. The synthesized DA is stored in synaptic vesicles for release.
Significant leakage of transmitter molecules out from vesicles has been observed [16–20], and we
tentatively assume that leakage also occurs in vivo. Upon arrival of an action, potential vesicles
are emptied, and DA is released into the synaptic cleft. There, DA diffuses to DA-responsive target
sites (postsynaptic neurons) or taken up by DA transporters (DAT) at neighboring dopaminergic
terminals or metabolizing glial cells [10,14,21]. TH is inhibited both by DA [22,23] and its substrate
Tyr [24,25]. There is also an inhibition of TH from extracellular DA via D2 autoreceptors that inhibits
stimulatory cAMP/PKA phosphorylation of TH [26,27]. Tyrosinase (TYR) [28,29], converts DOPA
to dopaquinone with the final formation of Neuromelanin [30]. Monoamine oxidase (MAO) forms
hydrogen peroxide (a reactive oxygen species (ROS)) during the metabolization of DA. ROS are
able to oxidize DOPA using a similar pathway as TYR, leading to neuromelanin (see [30] and
references therein).

There are several regulatory interactions which act on TH [23,31,32]. In addition,
DOPA and dopaquinone have been reported to act as inhibitors [23,33], although the TH
inhibition by quinones appears to be related to irreversible modifications of TH’s sulfhydryl
groups [33]. In addition, TH has been found to possess DOPA oxidase activity [34] similar to
the enzyme Tyrosinase (TYR) [28,29]. TYR, though expressed at low levels in dopaminergic
neurons, uses DOPA as a substrate and seems to form neuromelanin [35].

DA synthesis and metabolism have been modeled in several studies addressing differ-
ent regulatory aspects and model approaches. One of the earlier models of DA synthesis,
release, and metabolism used the assumption that DOPA-derived DA enters the vesicular
pool without mixing with cytosolic DA [36]. Three DA pools were considered, i.e., inactive
bound DA, releasable bound DA, and free cytosolic DA. The TH regulation of DA synthesis
was modeled [37], with an emphasis on regulation by phosphorylation/dephosphorylation,
the cofactor BH4, and the cell’s redox status. Multiple activity states of TH were consid-
ered [37] together with influences by iron and α-synuclein. These enzymatic models are
based on Michaelis–Menten (MM) kinetics. Others models described DA synthesis and
metabolism by a power-law approach (biochemical systems theory) developed by Sav-
ageau [38]. The calculations by Qi et al. [30,39,40] contain an analysis of presynaptic DA
homeostasis including details on DA metabolites, catechol auto-oxidation, and melanin
formation. Best et al. [27] modeled DA synthesis and metabolism including TH regulation
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by autoreceptors. Cullen and Wong-Li [41] analyzed a reduced version of the model by
Best et al. [27], which is considered to be computationally more efficient and addressing
more clearly underlying key mechanisms. Véronneau-Veilleux et al. [42] developed an inte-
grative model for Parkinson’s disease by integrating a pharmacokinetic Levodopa/DOPA
treatment with DA dynamics and a neurocomputational model of basal ganglia. This
illustrates nicely how different models can be combined to bridge interactions between
different subsystems and to obtain clinically relevant predictions. Muddapu et al. [43,44]
used a multiscale approach to model a network between the brain regions Substantia
Nigra Pars Compacta (SNc), Subthalamic Nucleus (STN), Globus Pallidus externa (GPe )
with a spiking neuron model. To study the loss of dopaminergic cells [44] and Levodopa-
induced toxicity [45], the Muddapu et al. model contains details about ion channels,
calcium buffering mechanisms, energy metabolism pathways, DA turnover processes,
and calcium-induced apoptosis. Recently, a detailed single-cell model of SNc was used to
study the influence of energy deficiency on its subcellular processes to obtain insights into
the neurodegeneration in Parkinson’s disease [46]. Practically all modeling approaches
are based on solving the rate equations in the form of ordinary differential equations
(ODEs). Among the most detailed models in terms of metabolites are probably the studies
by Qi et al. [30].

In the present study, we use a minimal model approach to understand possible key
(and ideal) features of DA regulation, which might not be immediately visible from a more
complex model. Focus is taken on the presynaptic TH-DA negative feedback loop from
a robust homeostatic viewpoint. As described in more detail below, we show that low
KM values for the transport of DA into vesicles (as indicated by experimental data) allow
for robust homeostasis of DOPA by using DA as the regulator. An intact homeostasis of
DOPA by DA leads, in addition, to a maximum DA loading of vesicles. The feedback
regulation of DOPA by DA is explored with respect to influences of oxidative stress, aging,
and Levodopa treatment on DOPA and DA levels.

Mechanisms Leading to Robust Homeostasis

Before we go into more detailed properties of the TH-DA negative feedback and to
DOPA regulation, we describe, by taking a simple negative feedback loop as an example,
the requirements for robust homeostasis.

The term homeostasis was introduced by Walter Cannon in 1929 as “the sum of mech-
anisms which keep the steady states in organisms within certain but narrow limits” [47,48].
With the development of cybernetics [49–51] and systems biology [52–54], feedback mech-
anisms have become central in our understanding of how homeostasis can be achieved
in biological systems [55,56].

During the past 20 years, evidence has accumulated that organisms can employ regu-
lation methods, which originally were discovered/invented in control engineering [57–68].
Integral control, as one of these engineering methods, was invented in the beginning of
the 20th century for the robust steering of ships [69,70] but is now an essential element
in practically all industrial control applications [57].

In integral control, the difference between the controlled variable A and its set-point
Aset is integrated (Figure 2). The integrated error ε is proportional to the concentration of
the manipulated (controller) variable, which is used to oppose perturbations of the con-
trolled variable A. It can be proven that for step-wise perturbations the controlled variable
A always converges toward its set-point Aset [57]. This is generally referred to as the ”ro-
bustness” of the controller.
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Figure 2. The principle of integral control in negative feedback regulation. Variable A is the con-
trolled variable with set-point Aset. The error ε = Aset − A is integrated in time, which leads to
the manipulated variable E, which can oppose perturbations affecting A. For step-wise perturbations,
integral control leads to the precise regulation of A to Aset [57].

How can error integration be performed in a biochemical system? There are presently
three approaches to achieve integral control in reaction kinetics: one is based on zero-
order kinetics in the removal of the manipulated variable E [58,60], while another is
based on a first-order autocatalytic formation of E combined with its first-order removal
kinetics [65,71,72]. A third approach uses so-called antithetic control, where two controller
variables are involved [65,66,68]. We focus here on how robust control can be achieved by
zero-order kinetics.

Figure 3 gives a simple example of a negative feedback loop between A and E. Com-
ponent P is a precursor of the controlled variable A. This feedback loop can be considered
as a minimum model of TH inhibition by DA where P, A, and E are, respectively, Tyr,
DOPA, and DA.
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Figure 3. Negative feedback loop with robust homeostasis of controlled variable A. Same color code
as in Figure 2 indicating the parameters which contribute to Aset (red), the controlled variable A
(blue) and the manipulated variable E (green). Outlined in brown is the parameter which leads to
the integration of the error ε in Figure 2. The error integration is achieved when the manipulated
variable E is removed by zero-order kinetics with respect to E, i.e., k8 � E (see Equations (3)–(5)
in main text). The pair of rate constants ki, kj represent the respective Vmax and KM values of applied
Michaelis–Menten kinetics. Compound P is the source of the compensatory flux j2. j2 needs to have
a sufficiently high value in order to compensate for the step-wise perturbations k9 which remove A.
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The rate equation for E includes an MM-type transport/removal term k7 · E/(k8 + E).
When this term becomes zero order with respect to E, i.e., k8 � E such that E/(k8+E) ≈ 1,
the steady-state value of A is under robust control with set-point Aset:

dE
dt

=

(
k5·A

k6+A

)
− k7

!
= 0 ⇒ Ass=Aset=

k6k7

k5−k7
(4)

In relation to integral control (Figure 2), we can rewrite the rate equation for E in the fol-
lowing form (see Appendix A):

dE
dt

= γA(Aset − A) (5)

with γA=− (k5 − k7)/(k6 + A). (Aset − A) represents the error between the actual value
of A and Aset. However, unlike to the presentations of integral control for linear or simpler
chemical models [57,64]; here, γA is not a constant but depends upon A.

To maintain robust control in A the flux j2 (=k2P/(k3 + P)) needs to be large enough
to be able to compensate for the perturbing flux j9 = k9 · A; otherwise, the concentrations
of A are below Aset. This is illustrated in Figure 4, where step-wise perturbations by k9 are
applied during four phases. In the third phase, j2 is too low to compensate for the increased
perturbation (k9 = 5.0). In this phase, E is practically zero, and j2 cannot be increased
further by E-depression. However, a larger P concentration in phase 4 by an increased
k1 value allows one to reestablish homeostasis in A. E is increased and can again act as
a derepressing regulator E and compensate for the outflow perturbation j9 = k9 · A.
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Figure 4. Demonstration of robust A homeostasis in response to step-wise changes of k9. To keep A
at its set-point at increased k9 values, the concentration of E has to decrease by derepression under
zero-order kinetics with respect to E. Upper panel: concentration of P as a function of time. Lower
panel: concentrations of regulated species A (in blue) and controller species E (in green) as functions
of time. For illustration purposes, the rate constants were chosen such, that Aset = 1.0. Phase 1:
Perturbation k9 = 0.0. Rate constant k1 represents the inflow of P, which is changed from 5.0 to 10.0 at
the transition from phase 3 to phase 4. Phase 2: k9 = 2.0; phases 3 and 4: k9 = 5.0. Robust homeostasis
in A breaks down in phase 3, because there is not sufficient P required to generate a sufficiently
large compensatory flux j2. When k1 is increased in phase 4, homeostasis of A is reestablished by
the increase in P and j2. Other rate constants are: k2 = 10.0, k3 = 10.0, k4 = 1.0, k5 = 2.0, k6 = 1.0,
k7 = 1.0, k8 = 1× 10−6, and k10 = 1× 10−2. Initial concentrations: P0 = 400.0, A0 = 1.0, and E0 = 8.76.
All values are in arbitrary units (au).
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2. Materials and Methods
2.1. Method of Calculation

Rate equations were solved by using the Fortran subroutine LSODE [73]. Plots and
curve fits were generated with gnuplot (version 5.4.2, www.gnuplot.info) and edited with
Adobe Illustrator CS6 (version 16.0.0, adobe.com). To make notations simpler, concentra-
tions of compounds are generally denoted by compound names without square brackets.
Concentrations of the Tyr→ DOPA→ DA reaction chain are given in µM, and time units
are in minutes.

2.2. Model of Tyrosine Hydroxylase Regulation

Figure 5 shows the considered model:

TH
Tyr

−

k1
DOPA DA DA

k2, k3 k5, k6 k7, k8 k18, k19

DA in
vesicle
pool

TYRTH

ROS,
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Figure 5. Reaction scheme of the TH-DA negative feedback model with added rate constants and
fluxes. Not all DOPA and DA are necessarily bound to the channeling complex, but since the complex
is not evenly distributed within the cytoplasm, both cytosolic DOPA and DA are considered to
be located proximate to the complex. With increasing age and increased MAO levels [74] MAO
may oxidize DA and perturb the feedback control of DOPA (path outlined in gray). In addition,
both DOPA and DA are subject to auto-oxidation [75,76], which are included in the model by k14

(together with ROS) and α(k18, k19) (together with MAO). As in Figure 3, pairs of rate constants (ki, kj)
represent the respective (Vmax, KM) values of applied Michaelis–Menten kinetics. With increased
MAO concentrations, oxidative stress and ROS also increase due to MAO-generated hydrogen
peroxide. ROS can oxidize DOPA [30] (outlined in red). Cytosolic DA concentration is increased due
to the re-entry of DA (flux j11) and by vesicular leakage [16–20] (flux j23). Inflow of Ca2+ by neuronal
stimulation lead to release of vesicular DA into the synaptic cleft. Clearance of DA in the synaptic
cleft occurs by diffusion, glial cell metabolization [14,21], or uptake of DA by DAT [77,78].

The DAergic midbrain neurons form highly extended and complex structures, in par-
ticular, their axonal arbors [79]. We can therefore expect considerable compartmentalization
in these neurons. Our modeling approach does however not rely on compartmentalization
or model this explicitly. Although metabolite intermediates are free in solution and act
through mass action kinetics, we expect that local concentration differences of the metabo-
lites can occur within the axonal structure. We tentatively assume that the enzymes TH,
DDC and the transporter VMAT2 form a channeling complex as indicated in Figure 1.
When using the term ’cytosolic DOPA’ or ’cytosolic DA’ later in the paper, we do not
necessarily consider that DOPA and DA are homogeneously distributed in the cytoplasm,
but due to the local distribution of the channeling complex at the vesicular membrane,
we assume that the highest concentrations of free DA and DOPA are physically close
to the complex (this situation is termed by Cornish-Bowden “dynamic channeling”; see
Figure 13.30 in [7]). Despite the additional inhibitions acting on TH, the key element for
a possible robust homeostasis is here the same as for the model in Figure 3, i.e., the occur-
rence of zero-order kinetics in the removal of the TH-inhibiting species DA. Figure 5 shows
that this step is related to the loading of DA into the vesicles by transporter VMAT2. DOPA
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is thereby the potentially regulated species, and DA is the regulator. The transport of DA
into the vesicles is ATP dependent, which is needed to build a necessary proton gradient
by ATPase [10,80]. The ATP dependence is not included in the model.

Experimentally determined rate parameters and inhibition constants (see next sec-
tions) are used and include substrate (Tyr) inhibition of TH [24], the inhibition of TH
by DA [22,23,31], and the inhibition of TH by extracellular DA via D2 autoreceptors [27].
Furthermore, DOPA is enzymatically removed both by TH [34] as well as by TYR. The ex-
perimentally determined KM value for the transport of DA into vesicles, which is critical for
a robust regulation of DOPA by DA has indeed been found to be relatively low (0.29 µM [81];
see also [82] for another low KM value with respect to vesicle loading). These KM values
indicate that the TH-DA negative feedback may prove to be close to robust behavior.

ROS, such as OH· radicals or superoxide O−2 , play an additional factor for removing
DOPA (leading to neuromelanin [30]), thereby perturbing DOPA homeostasis. The influ-
ence of external DOPA addition by mimicking Levodopa medication (with rate constant
k22) is included in the model together with the re-entry of extracellular DA into the cell.
More detailed descriptions of the experimental parameter/rate constant values are given
in the next sections.

The rate equations are:

d(Tyr)
dt

=k1−

 k2 · Tyr

k3

(
1+DA

k4

)
·
(

1+DOPA
k16

)
+ Tyr

( k12

k12+Tyr

)(
k20

k20+DAex

)
−k10·Tyr (6)

d(DOPA)
dt =

(
k2·Tyr

k3

(
1+ DA

k4

)
·
(

1+ DOPA
k16

)
+Tyr

)(
k12

k12+Tyr

)(
k20

k20+DAex

)
− k9·DOPA

k13+DOPA−
k5·DOPA

k6+DOPA−k14·DOPA− k15·DOPA
k16

(
1+ Tyr

k3

)
+DOPA

+k22

(7)

d(DA)

dt
=

k11·DAex

k21+DAex
+

k5·DOPA
k6+DOPA

− k7·DA
k8+DA

−α· k18·DA
k19+DA

+k23·(DAves) (8)

d(DAves)

dt
=

k7·DA
k8+DA

− k17·DAves−k23·(DAves) (9)

d(DAex)

dt
= k17·DAves −

k18·DAex

k19+DAex
(10)

The grayed term in Equation (8) indicates the removal of DA at increased MAO
concentrations with α being an adjustable factor. The set-point for DOPA (DOPAset) is
calculated, in an analogous manner as for the P-A-E model (Figure 3), i.e., from the steady-
state condition of Equation (8) with α = 0. The influence of α is shown below when
considering combination aging, oxidative stress, and DA auto-oxidation.

In calculating the set-point DOPAset, we consider that the transport velocity of DA
into the vesicles, given by k7 · DA/(k8 + DA), is an ideal zero-order process with respect
to DA. In other words, at low enough k8 values, we have that k7 · DA/(k8 + DA) ≈ k7.

Then, inserting the DA re-entry flux

j11 =
k11·DAex

k21+DAex
(11)

and the vesicular DA leakage (for details see next section and Appendix B)

j23 = k23·(DAves) (12)
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into Equation (8), setting d(DA)/dt = 0, and solving for DOPA, gives the expression for
the DOPA set-point:

DOPAset =
k6(k7 − j11−j23)

k5+j11+j23−k7
(13)

Due to the re-entry and leakage terms j11 and j23, DOPAset depends on the DA level
in the synaptic cleft and on the amount of DA stored in vesicles. The maximum set-point
of DOPA is reached when j11 = 0 and j23 = 0 with DOPAmax

set = k6k7/(k5 − k7). DOPAset
goes to zero when fluxes j11 and j23 balance k7, i.e., when there is no net-uptake of DA into
vesicles. Thus, under ideal controller conditions (low k8), DOPAset reflects the net-uptake
of DA into vesicles.

2.3. Parameter Values

To the extent these were found in the literature, experimentally determined rate
parameter values were used in the calculations. While reported KM values can be directly
applied, Vmax values depend on the actual enzyme concentrations, which are mostly
unknown. Rate constants (see the scheme of the model, Figure 5) k1, k10, k11, k14, k17–k20,
and k22 were used as adjustable parameters. In the following section, we give an overview
of found the literature data.

2.3.1. Dopamine Transport into Vesicles and Leakage

Robust homeostasis of DOPA is based on zero-order kinetics for the transport of DA
into vesicles (i.e., a low transporter KM value compared to the local DA concentration trans-
porter VMAT2 is exposed to). Volz et al. [81] studied the DA uptake kinetics by VMAT2 us-
ing voltammetry. The Vmax and KM values were determined, respectively, to 1.9 fmol/(s·mg
protein) and 0.289 µM. Experimental determination of cytosolic DA levels were measured
by capillary electrophoresis and voltammetry with values between 2 and 3 µM [83–85] and
47–140 µM [86]. Near [82] studied the binding of [2-3H]Dihydrotetrabenazine to bovine
striatal synaptic vesicles. The kinetic determination of the equilibrium constant resulted
in the value of 5.4 nM (5.4× 10−3µM), which relates to the KM for vesicle loading under
a rapid-equilibrium assumption.

There is evidence that catecholamine transmitters stored in vesicles leak into the cy-
toplasm [16–20]. An analysis of the kinetic data by Fried [16] and Schonn et al. [17]
(Appendix B) show that the vesicular leakage of DA can be described as a first-order process
with respect to DAves (Equation (12)). While both Fried and Schonn et al. data sets give k23
values close to each other, we use k23 = (0.0158 ± 0.0006) min−1 from the Schonn et al. data.

2.3.2. Dopamine Re-Entry by DAT

DA transport by DAT was reported to follow Michaelis–Menten kinetics with KM
estimates varying between 0.2 to 2 µM (k21 in the model) [77,78]. In our calculations, we
treated the re-entry of DA by DAT as a zero-order process (low k21). Although different
KM values of DAT change DOPAset by changed j11 fluxes (as the leakage flux j23 of DA out
from vesicles also does (see Equation (13)), we found that different DOPAset values due to
different DAT KM’s are still defended.

2.3.3. DOPA Decarboxylase (DCC) EC 4.1.1.28

BRENDA [87] lists KM values for human DDC of 0.028 [88] and 4.27 mM [89]. We take
the multiplicative average of these rather different values and use k6 =

√
0.028 · 4.27

mM = 346 µM. The turnover number of the enzyme was determined to be 5.1 s−1 or
306 min−1 [88]. Assuming (rather arbitrarily) a DCC concentration of 10−8 M, we obtain
a Vmax (k5) value of 3.06 µM/min, which is used in the calculations.

2.3.4. Tyrosinase (TYR) EC 1.14.18.1

Three human KM entries for DOPA as a substrate are reported: 0.34 [28], and 0.48
and 0.49 mM [29]. We take the average and assign for k13 a value of 437 µM. The turnover
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number for this enzyme is reported to be 38.11 s−1 or 2286 min−1 [28]. Using an enzyme
concentration of 10−9 M, the used Vmax (k9) value in the calculations is 2.3 µM/min.

2.3.5. Tyrosine Hydroxylase (TH) EC 1.14.16.2. Inhibition by Tyr

BRENDA has 5 entries for the inhibition constant k12 of TH by Tyrosine. These are
data of four mutant enzymes and one wild-type enzyme with the values [24]: 0.037, 0.044,
0.046 (wild type), 0.048, and 0.073 mM. The average value is 0.0496 mM. Fossbakk [25]
reports a similar inhibition constant as [24] for the wild-type enzyme (59 ± 18 µM) and,
in addition, for a variety of TH point mutations. In the calculations, we use a value of
50 µM for k12.

2.3.6. Inhibition of TH by DA

Using bovine TH, Lazar et al. [22] reports an inhibition (dissociation) constant for
DA, k4 in our model, in dependence of the enzyme’s phosphorylation status. At pH 7.0,
the inhibition constant is 6 ± 2 µM for the nonphosphorylated form and 45 ± 7 µM when
the enzyme is phosphorylated. Sura et al. [23] report for human TH isoforms inhibition
constants for DA in the range 78–208 µM for S40 phosphorylated TH. For the unphos-
phorylated TH forms, the inhibition constants are significantly lower, i.e., lower than
3.5 nM.

2.3.7. Inhibition of TH by DOPA

Sura et al. [23] determined the binding of DOPA to human TH isoforms. For the un-
phosphorylated enzyme, the Kd is reported to be between 2.7 and 4.5 µM. For phospho-
rylated TH, the Kd values are slightly higher and lie in the range 4.0–7.4 µM. Unlike
the binding of DA to phosphorylated and unphosphorylated TH, the binding of DOPA
shows only minor changes in dependence of TH’s phosphorylation state on TH activity.
Sura et al. [23] conclude that DOPA appears not to be important for regulation of TH
in vivo, whereas TH inhibition by DA is.

2.3.8. TH Turnover Number/Vmax for Tyr as Substrate

The turnover number of Tyr for the wild-type TH is reported to be 3.33 s−1 ≈ 200 min−1 [24].
Sura et al. [31] report a similar value for the Tyr turnover number of 3.03 s−1. We use the 200 min−1

value for TH’s turnover number and show how Vmax (k2) in dependence of TH concentration
influences the regulation of DOPA by DA.

2.3.9. TH KM (Tyr) Values, k3

BRENDA gives an overview of 16 KM values for human TH (using L-Tyrosine as
substrate), ranging from 0.0081 to 0.166 mM. The values cover 11 mutant enzymes and
five recombinant isoforms of TH. The isoform KM values are 0.011 mM [90] and 0.055,
0.066, 0.074, and 0.166 mM [91] with the average of 0.0744 mM = 74.4 µM. The KM values
for the different mutant and wild-type enzymes are: 0.0081, 0.014, 0.015, 0.016, 0.019,
0.02, 0.025 [92], 0.017 [93], 0.039, 0.042, 0.043, 0.046 (’wild-type’), 0.066 [24], and 0.08 mM
(’wild type’)[23]. Sura et al. [23] also provide an overview of KM values for different
mutants and the wild-type enzyme. Fossbakk et al. [25] reports a KM of 5.1± 2.2 µM, while
Morgenroth et al. [94] had reported earlier a KM for Tyr of 55.3 ± 4.2 µM similar to one of
the above TH isoform values by Nasrin et al. [91]. For k3, we use here the average value by
Nasrin et al. [91] of 74.4 µM.

2.3.10. TH-Mediated Conversion of DOPA

Haavik [34] reports a KM (k16) for the DOPA oxidation by TH of 56 ± 12 µM. The rate
of disappearance was found to be very low. In our calculations, we used a Vmax (k15) for
the removal of DOPA by TH to be the same as the Vmax (k9) for TYR, i.e., 2.3 µM/min.
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2.3.11. Monoamine Oxidase (MAO) EC 1.4.3.4

Li et al. [95] studied the liver enzyme at 11 ◦C. They determined the KM (k19 in our
model) to 111 µM and the kcat (turnover number) (k19) to 0.249 s−1 ≈ 15 min−1. Making
a rough estimate by using Van ’t Hoff’s rule that for each increase by 10 °C, the rate
constants doubles, we estimate kcat roughly to 90 min−1 ( = 2 × 2 × 1.5 × 15 min−1).
Assuming a MAO concentration of 1 µM, we obtain 90 µM/min for Vmax (k18).

3. Results
3.1. Factors Influencing DOPA Homeostasis

Since experimental parameter values may vary depending on the studying condi-
tions/methods, we investigated the system’s homeostatic behavior when certain parameter
values are varied.

3.1.1. KM of Dopamine Loading into Vesicles

As indicated in the derivation of DOPAset above, an important parameter for DOPA
homeostasis is the KM value for the transport of DA into vesicles (k8, Equation (8)). A neces-
sary, but not sufficient condition for robust homeostasis, is that k8� DA, i.e., the kinetics
of DA loading should be zero-order or close to zero order with respect to DA. To illustrate
how the zero-order condition influences DOPA homeostasis, Figure 6 shows the controller’s
behavior toward ROS perturbations (oxidative stress) by applying step-wise increased k14
values during three successive phases (phase 1: k14 = 0 min−1; phase 2: k14 = 0.01 min−1;
phase 3: k14 = 0.1 min−1) and by varying k8 around the experimentally determined value
of 0.29 µM [81].

The framed panel in Figure 6 shows the calculations using the experimentally deter-
mined value of k8 = 0.29 µM, while in panels (a) and (b), the k8’s are lower by two and one
orders of magnitude, respectively. In panel (d), the k8 is one order of magnitude higher
than the value determined by Volz et al. [81]. Figure 6 clearly shows that the controller’s
accuracy to defend DOPAset is dependent on k8.

3.1.2. Influence of Compensatory Flux j2
While a low KM value for the DA loading into vesicles (k8) is important for ensuring

a good controller accuracy, a sufficiently high compensatory flux j2

j2=

 k2 · Tyr

k3

(
1+DA

k4

)
·
(

1+DOPA
k16

)
+ Tyr

( k12

k12+Tyr

)(
k20

k20+DAex

)
(14)

is also required to allow a workable derepression by DA.
This is shown in Figure 7b where k2 (Vmax of TH) is increased by one order of mag-

nitude. Figure 7a shows the response before the increase in k2. However, the improved
controller accuracy comes at the expense of a slower response time and higher DA levels.
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Figure 6. The KM ( = k8) of the transport of DA into vesicles has a major influence on the controller
accuracy for DOPA homeostasis toward step-wise increased perturbations by oxidative stress (k14).
(a) k8 = 2.9× 10−3µM; (b) k8 = 2.9× 10−2µM; (c) k8 = 2.9× 10−1µM; (d) 2.9 µM. Other rate constants
(a–d): k1 = 10 µM/min, k2 = 1× 104 µM/min, k3 = 74.4 µM, k4 = 6 µM, k5 = 10.0 µM/min, k6 = 346 µM,
k7 = 6.0 µM/min, k9 = 2.3 µM/min, k10 = 0.025 min−1, k11 = 1 µM/min, k12 = 50 µM, k13 = 437 µM, k14

phase 1: 0.0 min−1, k14 phase 2: 0.01 min−1, k14 phase 3: 0.1 min−1, k15 = 2.3 µM/min, k16 = 56 µM,
k17 = 0.01 min−1, k18 = 90 µM/min, k19 = 111 µM, k20 = 0.1 µM, k21 = 1× 10−4µM, k22 = 0.0 min−1,
k23 = 0.0158 min−1. Initial concentrations, (a–d): Tyr = 323.2 µM, DOPA = 52.9 µM, DA = 512.5 µM,
DAves = 232.6 µM, DAex = 1.7 µM. Framed panel c shows the calculations with the experimentally
determined value [81] of k8.
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Figure 7. Increase in Vmax (k2) improves the accuracy of DOPA homeostasis but leads to a slower
response of the controller. Panel (a) is a recalculation of Figure 6d. Panel (b) shows the controller’s
response when k2 has increased from k2 = 1× 104 µ to k2 = 1× 105 µM/min. Other rate constants as
in Figure 6d. Initial concentrations, panel (b): Tyr = 323.1 µM, DOPA = 53.0 µM, DA = 5.3 × 103 µM,
DAves = 232.4 µM, DAex = 1.7 µM. Note that the controller’s accuracy can be further improved by
having k8 values lower than 2.9 µM.

From Equation (14), we see that an increase in Tyr, for example by increasing the inflow
of Tyr by k1, can have negative effects on the controller, due to the Tyr inhibition term
k12/(k12 + Tyr), which decreases j2 with increasing Tyr concentrations. Taking Figure 6c as
a reference and increasing the k1 by one order of magnitude (from 10 to 100 µM/min), Tyr
increases by approximately one order of magnitude, which leads to an 11% reduction of j2
in phase 3 and a significant offset of DOPA from DOPAset (Figure 8).
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Figure 8. Increase in k1 leads to a poorer homeostatic regulation of DOPA due to TH inhibition by
increased Tyr levels. The graph shows DOPA and DA concentrations when k1 = 100 µM/min. Other
rate constant values as in Figure 6c. Initial concentrations: Tyr = 3.7× 103µM, DOPA = 51.2 µM,
DA = 18.1 µM, DAves = 228.9 µM, DAex = 1.6 µM.

3.1.3. TH Inhibition by DA

Unphosphorylated TH is subject to a much stronger DA inhibition (lower inhibi-
tion constant) than phosphorylated TH. Since the reported values of the inhibition con-
stants (k4 in the model) vary significantly (see Material and Methods), we were interested
in the feedback loops’s behavior when k4 is varied. Figure 9 shows, in comparison with
the varied k8 and k14 values from Figure 6, the corresponding results when k4 is decreased
by one order of magnitude. Clearly, a tighter inhibition of TH by DA results in a much
more rapid response by the system, but due to a decreased compensatory flux, DOPA
levels are below the controller’s set-point at larger k8 values. In addition, DA steady-state
levels are lower in comparison with Figure 6. As in Figure 6, the outlined panel c shows
the results with k8 having the value of 0.29 µM determined by Volz et al. [81].

3.1.4. Levodopa Treatment

Since increasing oxidative perturbations k14 leads to a decrease in DOPA and thereby
to an additional decrease in DA, we investigated the effect when external DOPA is added,
e.g., when medication by Levodopa is applied (described by rate constant k22). Adding
external DOPA to the system has two effects:

(i) When applied such that the combined fluxes j5 + j11 + j23 are lower than j7 (j7 is
the rate of DA loading of vesicles, Figure 5), DOPA inflow helps to maintain DOPA
homeostasis and slightly improves the performance of the controller/negative feed-
back. However, the improvement by DOPA addition is dependent on the controller
accuracy (i.e., k8 values). This is shown in Figure 10 where controller performances
in absence of DOPA addition (panels a and b), and in its presence, (panels c and d) are
compared for two different k8 values. When k8 is low and controller accuracy is high,
DOPA addition improves controller performance and raises DA levels. In this case,
all components of the model, including DA, are in a steady state.
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Figure 9. Stronger inhibition of TH by DA (lower k4), for example by dephosphorylation [22], leads
to more rapid response kinetics (in comparison with Figure 6). However, the stronger inhibition
also leads to lower DA steady-state levels and to a larger offset of DOPA from its set-point. Rate
constants as in Figure 6, except for k4, which was reduced by one order of magnitude to 0.6 µM.
Initial concentrations: (a) Tyr = 323.2 µM, DOPA = 52.9 µM, DA = 51.3 µM, DAves = 232.5 µM,
DAex = 1.7 µM; (b) Tyr = 323.3 µM, DOPA = 52.8 µM, DA = 51.4 µM, DAves = 232.4 µM,
DAex = 1.7 µM; (c) Tyr = 324.0 µM, DOPA = 52.3 µM, DA = 52.6 µM, DAves = 231.3 µM, DAex = 1.6 µM;
(d) Tyr = 329.3 µM, DOPA = 48.2 µM, DA = 63.3 µM, DAves = 222.4 µM, DAex = 1.5 µM. Framed
panel c shows the calculations with k8 = 0.29 µM [81].
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Figure 10. DOPA addition can improve DOPA homeostasis when j5 + j11 + j23 < j7. Panels a and b
show reference calculations with two different k8 values (representing different controller accuracies)
when DOPA is not added (k22 = 0 µM/min). Panels c and d show the effect of DOPA additions. For all
panels, (a–d): phase 1, no DOPA addition; phase 2, k22 = 2 µM/min addition; phase 3, k22 = 4 µM/min
addition. Other rate constant values are as in Figure 9. Initial concentrations in panels a and c are as
in Figure 9c. Initial concentrations in panels b and d are as in Figure 9b.

(ii) However, if DOPA inflow results in the flux condition j5 + j11 + j23 > j7, then the con-
troller breaks down, and DA levels start to grow continuously with a DOPA steady-
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state level above DOPAset. The controller tries to oppose the increased DOPA levels
by downregulating the compensatory flux j2 to zero with a continuous increase in
DA. This behavior, also termed integral wind-up [57], is shown in Figure 11, when
the DOPA inflow rate in phase 3 was increased to k22 = 8 µM/min. DOPA steady-state
levels are now entirely uncontrolled. Since the compensatory flux j2 is practically zero,
the steady-state level of DOPA is now solely determined by the DOPA inflow rate
(k22) and by the rates of DOPA removal.
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Figure 11. DA integral wind-up occurs when, here in phase 3, k22 is set to 8 µM/min, which results
in the condition j5 + j11 + j23 > j7. Other rate constant values and initial concentrations as for
Figure 10c.

As a result of the increasing DA levels during the wind-up, the rate of vesicular DA
loading j7 (Equation (9)) becomes zero-order (k8 � DA) with respect to DA, which has
the effect that the vesicular concentration of DA (DAves) reaches its maximum steady-state
value k7/(k17 + k23):

DAves =
k7

k17+k23

(
DA

k8+DA

)
= DAmax

ves

(
DA

k8+DA

)
high DA−−−−→ DAmax

ves (15)

DOPA additions can restore DOPA levels when the activity of TH is low, such as in TH
deficiency (THD) [96] or in DOPA-responsive dystonia (DRD) [97,98] patients. In the case
that TH activity is not fully absent, DOPA additions can restore the homeostatic regula-
tion of DOPA in presence of oxidative stress (k14). This is indicated in Figure 12 where
the amount of TH in phases 2 and 3 (both panels) was decreased by two-orders of mag-
nitude to k2 = 1 × 102 µM/min with k14 = 0.1 µM/min. By comparison, phases 2 do
not have any DOPA addition, while DOPA addition occurs in phase 3 (k22 = 7 µM/min).
The breakdown of the controller is seen in phase 2 showing low DOPA and DA levels
due to the insufficient TH activity. As a reference, in phase 1, sufficient TH is present
(k2 = 1× 104 µM/min), and oxidative stress is absent (k14 = 0.0 µM/min). Panels a and
b differ by controller accuracy k8, showing that a lower k8 (panel b) gives a better con-
troller accuracy.

Since in the complete absence of TH activity the negative feedback is lacking, levodopa
titrations need to be used to compensate for the missing levels of DOPA and DA.
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Figure 12. Re-establishing robust DOPA homeostasis at reduced TH activity levels by DOPA addition.
In both panels: phase 1 has a normal TH activity (k2 = 1× 104 µM/min) and no oxidative stress
(k14 = 0.0 µM/min); in phase 2, oxidative stress is present (k14 = 0.1 µM/min), and TH activity level
is reduced by two orders of magnitude (k2 = 1×102 µM/min). As a result, DOPA homeostasis breaks
down in phase 2 with low DOPA and DA levels. In phase 3, DOPA is added (k22 = 7 µM/min)
in the presence of low TH and oxidative stress as in phase 2. In phase 3, DOPA homeostasis is
restored. Panel (a): k8 = 0.29 µM; panel (b): k8 = 0.029 µM. Other rate constant values and initial
concentrations, as in Figure 10a.

3.1.5. Robust DOPA Homeostasis Implies Maximum Vesicular DA Loading

As DA decreases in order to counteract for an outflow perturbation in DOPA, the vesic-
ular DA concentration DAves also decreases (Equation (15)). The accuracy of the DOPA
controller, i.e., the value of k8 (compared with Figure 6), then, according to Equation (15),
determines how much the steady-state values of vesicle-loaded DA (DAves) change in rela-
tion to DA levels. Figure 13 shows DAves steady-state levels (in terms of percentage of its
maximum value DAmax

ves ) in relation to DA concentrations and k8. The black line 3 shows
the DAmax

ves −DA relationship when k8 = 0.29 µM [81]. The other curves show the changes
when k8 is increased or decreased by one and two orders of magnitude.
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Figure 13. Calculated vesicular steady-state DA concentrations DAves as a function of cytosolic DA
levels and DOPA controller accuracy k8 (Equation (15)). At high controller accuracy (low k8, line
no. 5), DAves levels are less affected when DA concentrations decrease. At low controller accuracy
(high k8, line no. 1), DAves levels decrease rapidly with increased DOPA perturbations and with
decreasing DA concentrations. k8 values used: 1, 29 µM; 2, 2.9 µM; 3, 0.29 µM; 4, 0.029 µM; and 5,
0.0029 µM.

Thus, a robust controller with low k8 values keeps DAves levels close at its maximum
k7/(k17 + k23) (Equation (15)) even when cytosolic DA levels change. Figure 14 shows
the decrease in vesicular DA concentration in dependence of the changed controller ac-
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curacy k8 and applied oxidative stress. The same perturbations by k14 are applied as
in Figure 6. Curves 1, 2, and 3 refer to the conditions in Figure 6a,c,d, respectively.
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Figure 14. Vesicular DA concentration as a function of perturbation k14 and controller accuracy
k8. The step-wise changes in k14 for phases 2 and 3, as well as the other rate constants and
initial concentrations, are the same as in Figure 6. Curves 1, 2, and 3 refer to the conditions of
Figures 6a,c,d, respectively.

One may argue that maximum filled DA vesicles also occur when external DOPA is
applied in excess, as indicated by Figure 11 and Equation (15). However, when DOPA is
in excess, DA shows the wind-up and becomes uncontrollably high. The resulting high DA
and DOPA levels can lead to increased and unfavorable oxidative stress by reactions with
MAO/ROS leading to cell toxicity and neuropsychiatric disorders [30,45,99,100].

3.1.6. Deteriorated DOPA Homeostasis by DA Removal/Auto-Oxidation

A removal of DA by MAO and by DA auto-oxidation disturbs DOPA homeostasis
and may lead to the breakdown of the DOPA-DA control loop. Although the channeling
complex may keep DOPA and DA protected against possible molecular attack by ROS,
some “capturing” by ROS and/or MAO may occur.

Figure 15 shows how DA removal leads to controller breakdown. When α = 0, no DA
removal occurs, and DOPA control by DA is operative. When MAO/auto-oxidation has
access to DA (α = 1), DOPA homeostasis breaks down leading to high DOPA and low DA
levels (Figure 15, dashed lines).
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Figure 15. Deteriorated DOPA homeostasis when DA is subject to removal by MAO/auto-oxidation.
Solid lines show the performance when α = 0 (Figure 6c). Dashed lines show the concentrations
when α = 1 and DA is removed. Rate constant values as for Figure 6c with k18 = 90 µM/min and
k19 = 111 µM. Initial concentrations (dashed curves, α = 1): Tyr = 210.7 µM, DOPA = 518.3 µM,
DA = 1.705 µM, DAves = 149.7 µM, DAex = 0.62 µM. Red and blue lines show DOPA and DA
concentrations, respectively.
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The corresponding decrease in DAves levels is shown in Figure 16. In phase 3 when
the perturbation k14 is relative high (k14 = 0.1 µM/min), there is a significant reduction
in DAves when DA oxidation is present (α = 1), compared with the situation DA oxidation
does not occur (α = 0).
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Figure 16. Effect of cytosolic DA oxidation/auto-oxidation on vesicular DA levels. α = 0 indicates
the results when using the conditions as in Figure 6c, i.e., no DA removal occurs. α = 1 allows
oxidation of DA to occur. Same rate parameters as in Figure 6c are applied. Initial concentrations for
α = 1 are the same as in Figure 15.

4. Discussion
4.1. On DOPA Regulation by DA Derepression in Cells

Using PC12 cells, Goldstein et al. [101] applied different MAO inhibitors and analyzed
their influence on a variety of metabolites, including DA and DOPA. The study clearly
shows the ”inverse” relationship between DA and DOPA: by applying increasing amounts
of each inhibitor, DA levels rise (because less DA is oxidized by MAO), while DOPA levels
correspondingly decline. Interestingly, for higher clorgyline concentrations (larger than
10 nM), the trend is reversed, i.e., DA levels decline with increasing inhibitor concentration
and DOPA levels correspondingly rise. These results support the view of DOPA regulation
by DA repression/derepression. However, we were not able to find the literature data
which would answer the question to what extent the TH-DA negative feedback leads to
more or less robust DOPA homeostasis. To address this, more specific tests are required,
such as varying expression of TH or applying perturbations, which specifically would only
reduce DOPA levels.

Thus, we analyzed the TH-DA negative feedback loop (Figure 5) from an ideal working
perspective: under what conditions would an ideal control be possible, and which of
the species within the negative feedback loop would be controlled? We see one kinetic and
one structural argument which would favor ideal control.

The kinetic argument for an ideal robust control of DOPA is a zero-order uptake of
DA into the vesicles. It implies, as seen in Figure 6, that DOPA is a regulated species and
DA acts, by derepression kinetics, as the regulator. The experimental data by Volz et al. [81]
for the KM (k8 in the model) of the VMAT2 transporter indeed support this view, al-
though the behavior of the controller when using the experimental KM value by Volz et al.
only tangents an ideal DOPA control (Figure 6c). On the other hand, increased TH activity
levels due to increased enzyme concentrations or a changed phosphorylation status can
lead to an improved DOPA homeostasis (Figure 7).

The structural aspect is the indication that the enzymes TH, DCC, and the trans-
porter VMAT2 appear to form a channeling complex [9–11]. The occurrence of metabolite
channeling is well recognized [7] and is considered to be a central control mechanism of
cellular metabolism [102]. There are two aspects of metabolic channeling which appear
of importance in the context of DOPA regulation by DA. One is an effective DA filling
mechanism of vesicles. The other is the minimization of environmental perturbations (for
example, at increased oxidative stress) acting on DOPA and DA (Figure 15).



Int. J. Mol. Sci. 2021, 22, 12862 18 of 25

4.2. Why DOPA Homeostasis?

An argument suggested by Equation (15) is that under ideal controller conditions
(low k8), DOPA homeostasis allows an optimum DA filling of the vesicular stores, which
seems to be of importance for a reliable translation of the electrical signal into a chemical one.
In this respect, it is interesting that TH localization to VMAT2 is found to be regulated by its
phosphorylation on Ser31 [12]. To what extent this regulation is also related to DA synthesis
and DOPA homeostasis remains to be discovered. In addition, DOPA homeostasis could
also be related to the regulation of flux control within a biosynthesis pathway originating
from DOPA.

Figure 7 shows that TH is important for providing a sufficiently high compensatory
flux j2 for maintaining a functional DOPA controller. Since many cofactors are involved
in the activity of TH, the dysregulation of these factors/genes has negative effects on DOPA
control and DA levels. For example, the point mutation P301A and several others [25]
show a decrease in TH’s activity (Vmax(Tyr)) by two orders of magnitude, which certainly
has an impact on DOPA homeostasis and the regulation of DA, as indicated above.

4.3. Oxidative Stress and Age

Reactive oxygen species are implicated in a variety of age-related diseases [103].
With regard to aging, DA and serotonin are those neurotransmitters that are mostly dis-
cussed. From early adulthood, DA levels decline steadily by around 10% per 10 years [104],
which has been related to the increase in MAO activity with age [74]. Other factors that
are implicated in the aging brain is the production of ROS by mitochondria [105]. ROS,
which decrease DOPA levels, cause a reduction in DA, as the feedback loop tries to op-
pose the declining DOPA levels. When oxidative stress increases with age and removes
DOPA, DA levels therefore also lead to a steady decrease. With an additional removal of
DA by MAO, cytosolic and vesicular DA further decrease. As MAO produces hydrogen
peroxide and radicals that may further decrease DOPA, a self-amplifying decrease in DA is
expected to occur with age. On the other hand, there is a complex network of antioxidant
molecules to keep an intracellular redox homeostasis [106], which needs to be considered
in understanding the mechanisms of aging.

ATP is an important component which is required to maintain various homeostatic
regulations, including protein (i.e., α-synuclein) homeostasis [107], the transport of DA
into vesicles [10], and vesicle transport [5]. As ATP levels decline during aging [108], many
of the homeostatic mechanisms decline with increased age.

4.4. Why Only DOPA Inflow Control?

Most of the homeostatic regulators in metabolism come in antagonistic pairs. Some
examples are insulin and glucagon in blood sugar homeostasis or parathyroid hormone
and calcitonin in blood calcium homeostasis (see the Supporting Material in [64] for
descriptions of other controller pairs). Each individual controller in such a pair acts either
as an inflow controller to allow minimum acceptable levels of the controlled metabolite or as
an outflow controller to avoid that metabolite concentrations become too high [64]. As seen
by the calculations above, the control of DOPA by DA opposes the removal of DOPA,
for example by oxidative stress. The TH-DA negative feedback acts therefore as an inflow
controller [64] to avoid that DOPA levels become too low. The reason for this is apparently
that one needs DOPA for the making of DA, where the latter is needed in providing
the chemical transmitter signal. However, this inflow control by DA does not oppose
any DOPA levels above DOPAset. This is seen in Figure 10b, when Levodopa is applied
in such a high dose leading to the controller shutdown and DA wind-up. The absence of
an outflow controller which would restrict maximum DOPA levels seems to indicate that
higher DOPA levels can be better tolerated than lower ones.
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4.5. Role of Other TH Regulators

The presence of Tyr inhibition on TH has in our calculations a clear influence on
DOPA homeostasis by reducing the compensatory flux j2 when Tyr increases. This is seen
in Figure 8 when the Tyr concentration is increased by a larger k1 value. However, this
does not mean that robust homeostasis in DOPA cannot be achieved in the presence of Tyr
inhibition of TH. Interestingly, calculations by Best et al. [27] indicate that the substrate
inhibition of TH by Tyr can work as an attenuator, i.e., the Tyr inhibition of TH ’flattens’
the reaction rate catalyzed by TH and smooths DAves concentration when Tyr levels
fluctuate, for example, by the intake of meals.

5. Conclusions and Outlook

The results above suggest the view that DA regulates the homeostasis of DOPA by
derepression. The critical parameter to achieve robust DOPA control is the KM (k8) for
the VMAT2 transporter moving DA into vesicles. The results by Volz et al. [81] for this
KM (0.289 µM), and the value by Near (5.4×10−3µM, for the binding of [2-3H] dihydrote-
trabenazine to bovine striatal synaptic vesicles) [82], indicate that these transporter KMs
appear to be relative low and may work under zero-order conditions with respect to
the uptaken compound. While k8 is important for the accuracy of DOPA homeostasis
(Figure 6), an increase in TH’s Vmax (k2) is able to improve controller accuracy even when
k8 is relatively high (Figure 7). However, a sufficiently high compensatory flux j2 is needed
to maintain DOPA homeostasis. Factors which decrease j2 may lead to a poorer controller
performance, as for example an increase in TH inhibition by Tyr. The dephosphorylation of
TH results in a stronger TH inhibition by DA, which leads to a more rapid and stronger
controller response (Figure 9).

An argument for robust DOPA homeostasis is the observation that a zero-order kinetic
loading of DA into vesicles not only results in robust DOPA control but also in a maximum
DA loading of vesicles. This appears to be necessary in order to reliably transform an
incoming train of electrical signals into a chemical transmitter message. Although we
presently cannot answer whether the in vivo system shows robust DOPA control, we
feel that our findings points to a possible “functional intention” of DOPA control during
evolution. This regulatory feature of DA synthesis could be of interest for treatment
procedures using MAO inhibitors or DOPA supplementation.

We have so far not included the (oscillatory) dynamics of repeated Ca2+ inflow, DA
release into the synaptic cleft,and the influences on TH activity via auto-receptors and
the re-entry of extracellular DA into the cell. Even under such oscillatory conditions,
DOPA homeostasis may still be operative as calculations on related homeostatic controllers
with derepression kinetics have shown [109,110]. We will study these oscillatory aspects
in relation to DOPA/DA regulation in subsequent work.
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Abbreviations

The following abbreviations are used in this manuscript:

DA dopamine
DAves vesicular dopamine
DAex extracellular dopamine
DAT dopamine transporter
DDC DOPA dehydroxylase
DOPA L-3,4-dihydroxyphenylalanine
Levodopa L-3,4-dihydroxyphenylalanine
MAO monoamine oxidase
ROS reactive oxygen species
t time (min)
Tyr tyrosine
TYR tyrosinase
TH tyrosine hydroxylase
VMAT2 dopamine transporter located at vesicle membrane

Appendix A. Derivation of Equation (5)

We start with the dot notation of Equation (4) and rearrange:

Ė =
k5·A

k6+A
− k7 =

k5·A
k6+A

− k7(k6+A)

k6+A
=

k5·A−k6k7−k7·A
k6+A

(A1)

Multiplying the left side and last term of Equation (A1) by 1
k6k7

gives:

Ė
k6k7

=

(k5−k7)·A
k6k7

− 1

k6+A
(A2)

Noticing that

Aset =
k6k7

k5 − k7
(A3)

and multiplying the left and right side of Equation (A2) by k6k7
k5−k7

leads to:

Ė
k5 − k7

=
(A− Aset)

k6+A
= − (Aset − A)

k6+A
(A4)

Rearranging Equation (A4) then gives Equation (5), i.e.:

Ė = − (k5 − k7)

k6+A︸ ︷︷ ︸
γA

· (Aset − A)︸ ︷︷ ︸
error

(A5)

If Ė→ 0, then A→ Aset.

Appendix B. Determination of Rate Constant k23

We analyzed the kinetic data by Schonn et al. [17] (Figure 2a, incubation with
clomipramine and reserpine). The analyzed data (Figure A1) show an excellent fit to
a first-order kinetic decrease in the vesicular transmitter.
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Figure A1. The data by Schonn et al. [17] of Serotonin release in the presence of clomipramine
and reserpine inhibitors (green dots). The data were fitted to the function f (t) = 100· exp(−k23·t)
resulting in k23 = (0.0158 ± 0.0006) min−1. The resulting fit is shown by the red line.

Another analysis of the earlier data by Fried (Figure 1 in [16]) of the vesicular release
of Noradrenalin (Norepinephrine) in the presence of reserpine and Mg-ATP gives a very
similar k23 value (≈ 0.0136 min−1) as for the Schonn et al. data. In this case, we estimated
the half-life (t1/2) of the assumed first-order kinetic release of Noradrenaline and calculated
k23 by the relationship

k23 =
ln 2
t1/2

(A6)
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k23=ln2/t1/2=0.0136 min−1

Figure A2. Replot of the Fried data (Figure 1 in [16]). The release of Noradrenalin was monitored
in the presence of Mg-ATP and the inhibitor reserpine. k23 is estimated from t1/2 to be approximately
0.0136 min−1.
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