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Abstract

Background: We consider the problem of optimizing a liposomal drug formulation: a complex chemical system with many
components (e.g., elements of a lipid library) that interact nonlinearly and synergistically in ways that cannot be predicted
from first principles.

Methodology/Principal Findings: The optimization criterion in our experiments was the percent encapsulation of a target
drug, Amphotericin B, detected experimentally via spectrophotometric assay. Optimization of such a complex system
requires strategies that efficiently discover solutions in extremely large volumes of potential experimental space. We have
designed and implemented a new strategy of evolutionary design of experiments (Evo-DoE), that efficiently explores high-
dimensional spaces by coupling the power of computer and statistical modeling with experimentally measured responses
in an iterative loop.

Conclusions: We demonstrate how iterative looping of modeling and experimentation can quickly produce new discoveries
with significantly better experimental response, and how such looping can discover the chemical landscape underlying
complex chemical systems.
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Introduction

Formulation of a stable lipid membrane with good drug

complexation characteristics is a complex experimental problem

as there are many possible components (qualitative variables) with

a wide range of relative amounts (quantitative variables) in the

recipe. This makes drug formulation a good test case for

methodologies for discovering and optimizing complex chemical

systems. The experiments we present have five qualitative factors

and nine components whose concentrations are varied in the

aqueous phase, to form an experimental space that contains a total

of 82,950 possible experiments.

The experimental approach to the optimization problem

considered here is iterated high-throughput experimentation.

Many experiments are performed in parallel (e.g., using a 96-

well plate format), the results are analyzed, and a successive

generation of experiments is performed, with the goal of

progressively better results with each generation. After each

generation of experiments, the experimenter is faced with the

problem of designing a limited yet informative set of experiments

from an expansive experimental space for the successive

generation.

We address the problem of designing experiments for the

exploration of high-dimensional experimental spaces by applying

statistical modeling and predictive methods to the entire

experimental space at each generation. We build models from

the raw experimental data, and we use those models to choose

where next to sample the experimental space. This methodology is

iterated as illustrated in Figure 1. Our procedure is a form of

evolutionary design of experiments (Evo-DoE), building on

previous work based on genetic algorithms, where experiments

in each generation were specified by a genetic code, using genetic

operators (mutations and crossovers) to generate new experiments

for each successive generation [1–5]. The approach used here

differs primarily in that new experiments are chosen not only by

random variation, but also based on statistical modeling.

To start the optimization process, we sparsely sample the

experimental space with a random selection of experiments. We

build models of the desired response from the experimental data,

design the next sparse sampling of the experimental space, and the
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process repeats. Tightly coupling experiments with statistical

modeling and predictive algorithms enables successful optimiza-

tion of desired chemical behavior of supramolecular structures in

large high-dimensional experimental spaces.

The problem of designing each successive generation of

experiments is difficult for two related reasons: the statistical

uncertainty of any predictive model given the relatively small

amount of data (,102–103 samples), and the size of the space

(particularly when the number of dimensions (experimental

variables) is large). Large regions of the space are inevitably

unrepresented in the experimental data. To address the first

difficulty, we use a bootstrapping procedure in the model-building

process to ensure that the model’s complexity is not excessive given

the quantity of data available. The second difficulty is handled by

combining model-based prediction of experiments with a weighted

random sampling of the experimental space, where the distribu-

tion for the random sample is biased toward the unsampled

regions of the space. Given these two difficulties, our approach to

the experimental design problem may be seen as an example of

establishing an exploration/exploitation tradeoff [6], and is a high-

dimensional analogue of the technique known as Kriging in

geostatistics [7].

Traditional approaches to DoE for high-dimensional experi-

mental spaces use a ‘‘screening design’’ to identify a few significant

factors of many potential ones, or to identify a few significant

factors that embody the ‘‘main effects’’ that are presumed to be an

order of magnitude more important than ‘‘interaction effects’’ [8].

Screening designs are typically highly fractionated two-level (and,

very rarely, three-level) factorial designs. This approach fails for

complex systems because the interactions are typically not first

order, but second order. Systems that have several significant

qualitative factors with more than two levels, mixture systems

crossed with factorial systems, and other such complex designs

cannot be fractionated to implement a screening design.

Conventional DoE software does not include facilities to code

systems that are several sub-designs crossed with each other, like

the one described here, which is seen below to be approximately a

267 factorial crossed with a 22 factorial crossed with a 3-

component constrained mixture crossed with a constrained

multilevel qualitative factorial.

Amphotericin B is an antifungal drug used to treat systemic

fungal infections. The drug can cause nephrotoxicity if present in

high doses. However, when intercalated within a lipid membrane,

the hydrophobic drug can be administered to a patient with

minimal toxic effects. There are currently three different lipid

formulations of Amphotericin B on the market [9]. Each

formulation consists of different lipids associated with the drug

molecule, indicating that there is more than one way to effectively

package the drug into a lipid structure. Of these three, AmBisome

[10,11], has been the most effective and profitable.

In experiments presented here, we describe an Evo-DoE

procedure to search within a defined space of 82,950 possible

experiments for lipid combinations that maximize the amount of

Amphotericin B entrapped in the formulation. In a space of this

size and complexity, exhaustive screening is impractical, conven-

tional DoE has severe difficulties handling the multiple qualitative

variables, and simple hill-climbing approaches tend to fail because

of the interaction effects in the system. Within a few iterations

(exploration of ,0.5% of the space) we found many new

promising Amphotericin B formulations not previously reported.

In addition we were able to determine experimentally the response

surface for the lipid-drug combinations.

Results

Evo-DoE is an iterated, cyclical process involving experimen-

tally measuring responses of sparsely sampled recipes from a space

of possible experimental recipes. One approach to implementing

Figure 1. Illustration of the iterated high throughput experimental process. Note the predictive modeling procedure in the loop.
doi:10.1371/journal.pone.0008546.g001

Evo-DoE
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evolutionary DoE is to use a genetic algorithm, which assigns each

possible experiment a genetic code, and then progresses from one

generation of experiments to the next by applying genetic

operators analogous to mutation and crossover to winning recipes

[1–5]. Here, we explore the experimental space by modeling the

entire response surface on the basis of the collected experimental

data, and then use that model to choose the next set of recipes to

test experimentally. The models used here are feed-forward, single

hidden-layer artificial neural networks [12].

The Evo-DoE process used here started with a set of 90

randomly selected recipes that included all the pairwise combina-

tions of lipids in our lipid library. The Nth iteration of the Evo-

DoE process consisted of the following steps:

1) Measure the experimental response of the Nth set of recipes;

2) Optimize the metaparameters of the Nth model, as described

below;

3) Build a model of the entire response surface from the

experimentally measured responses for the first N sets of

recipes;

4) Randomly choose 48 recipes from the untried recipes with

the top quartile of responses predicted by the model, and

add those recipes to the N+1th set of recipes;

5) Add 12 more randomly selected untried recipes to the N+1th

set of recipes.

Neural network metaparameters are often optimized by a

‘‘bootstrapping’’ process [13]. At step 2 of the Evo-DoE cycle,

model metaparameters were dynamically optimized via the

following procedure: Models with different configurations of

metaparameters were trained on 20 different datasets, each one

a random sample of 70% of the experimentally observed

responses. The models were then tested on the remaining 30%

of the responses. The accuracy of a given model (correlation of

out-of-sample predictions with measured responses) was computed

as the accuracy averaged over the 20 different data sets. Finally,

the metaparameter configuration that gave the highest accuracy

was selected.

The response of each recipe was calculated as follows: Three

spectrophotometric absorbance measurements were taken from

experimental replicates in three separate wells of a 96-well plate at

three different times, and the response of a recipe was defined as

the average of those nine measurements.

The system was quickly optimized (Figure 2), after individually

testing 450 individual recipes from a space hundreds of times

larger. Even with a fairly substantial amount of noise, common in

real chemical systems, a clear optimum was reached as subsequent

generations thoroughly explored the same subregion without

resulting in further increased response. The amount of noise is

apparent from the spread of points for the standard: The control

recipe replicated each generation The optimum has a response

roughly twice that of the standard, indicating that the recipes have

more Amphotericin B in the lipid phase. The standard was

prepared using the AmBisome recipe [10,11], but with our

protocol.

More detailed analysis of the high response optimum found by

Evo-DoE is shown in Figure 3 as a set of 2-dimensional sections of

one 3-dimensional section of the entire space.It was generated

from a Microsoft Excel pivot table based on the three most

important factors found through our Evo-DoE: PG-type lipids,

negatively charged lipids, and aqueous factors (complete identifi-

cation of lipids and aqueous factors is given in the Materials and

Methods section). The numbers in each cell are average response

values, and the cells are color coded (with three color levels and

blank cells). From this representation it is clear that there are

substantial high response ridges for components DSPG, Bicine,

and DOPM, with lesser ridges for linoleic acid, PS, and oleic acid.

The abundance of every library component for each successive

generation of Evo-DoE was recorded. The results shown in

Figure 4 are for the PG lipid group and the negatively-charged

lipid group (other groups not shown). In Figure 4A the strong

selection for DSPG is apparent starting in the second generation

while the representation of other competing lipids fluctuates. In

Figure 4B, selection for DOPM, PS and linoleic acid is shown

during the exploration and optimization by our protocol.

We chose a sampling of winning recipes found by Evo-DoE

based on high response and diversity of components. We then

analyzed this group of twelve recipes for the formation of vesicles

and stability over time at varying temperatures, and normalized

each result based on the standard recipe. It should be noted that

we based our response function here solely upon the amount of

Amphotericin B associated with the lipids and not on these

secondary criteria. However, a response function could in

principle combine all three criteria.

The results of the analyses of the winning recipes are shown in

Table 1. Due to the selection criteria, it is not surprising that all

selected recipes show better Amphotericin B incorporation

(‘‘response’’) over the standard. For internal volume values that

indicate the presence of liposomes, all but one of the selected

recipes show lower volumes than the standard. This indicates the

presence of liposomes but suggests that they are not as voluminous

as liposomes prepared using the standard recipe. Surprisingly, the

stability tests indicate that all of the selected recipes are more stable

than the standard. We found the standard to be quite unstable and

a few of our new recipes to be stable after 30 days as evidenced by

the lack of aggregates in the formulations.

Discussion

The experimental space of this system was large and complex,

consisting of a 5-factor qualitative/mixture design in lipids crossed

with a 762 factor design in the aqueous phase. There were 82,950

possible combinations, far exceeding the throughput of the

experimental system. Traditional DoE methods handle such

complex systems with great difficulty. They were designed to

Figure 2. Rank order of all tested formulations found with Evo-
DoE vs. the standard recipe. Error bars on the best new recipe were
taken from three repeats performed on the same day (space repeats,
see Materials and Methods). The error bars from the standard were
taken from 75 total repeats performed over the course of the
experiment.
doi:10.1371/journal.pone.0008546.g002

Evo-DoE
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work with small numbers of experimental points when interactions

among the system components are weak enough that the space can

be simplified [14]. Most DoE software (e.g., Design-Expert, JMP)

is not even equipped to describe this kind of system properly.

Genetic algorithms have been used in iterated high throughput

optimization [1–5]. Their inherent stochastic nature makes them

less efficient than the predictive modeling-based system presented

here. Our predictive Evo-DoE algorithm is adapted for real

chemical systems and was able to code the experimental system

and rapidly reach an optimum.

It is important to note that the predictive model of the Evo-DoE

method presented here is a statistical model built entirely from the

available experimental data, and contains no expert prior

knowledge regarding reactions or self-assembly processes. Neither

does it contain structural information as in QSAR models [15].

Future work will consider addition of these informational

components into the modeling process.

This refined method of model-based screening resulted in rapid

and effective location of an optimum formulation of vesicle-

encapsulated Amphotericin B. The optimum was found using only

0.5% of the total possible points, and so may be only a local

optimum, but coverage of the space was nevertheless quite broad.

Many formulation variations are possible and available for

characterization and development into commercially viable

products.

It is also possible to get a rough picture of the response

landscape dictated by the lipid and aqueous phase combinations

and their interactions with the target. The high dimensionality and

qualitative nature of the factors makes conventional visualization

difficult. We found it best to section the measured response surface

to get intuitions about its topology, as shown in Figure 3.

The solutions found in our system may also be influenced by the

particular high throughput method we employed, as new recipes

were selected from previous ones based on how well the latter

Figure 3. Representation of a 3-dimensional section of experimental space. For each PG-type lipid, shown in bold, the horizontal section
lists the lipids from the group with a net negative charge and the vertical section lists the reagents in the aqueous phase and their corresponding pH
values. Response levels (the UV/Vis absorbance of Amphotericin B associated with the formulation): dark grey, .0.20; medium grey, 0.15–0.20; light
grey, 0.10–0.15; white, ,0.10; Blank cells, not determined. For abbreviations, see Materials and Methods.
doi:10.1371/journal.pone.0008546.g003

Evo-DoE

PLoS ONE | www.plosone.org 4 January 2010 | Volume 5 | Issue 1 | e8546



complexed with Amphotericin B using our protocol. Other

protocols may place other selective factors or stresses on the

system and produce different optima. However, we found many

different types of recipes that can be used for Amphotericin B

formulation. Other groups using different protocols have also

found some of the factors that contributed to a positive response in

our system. For example, the specific favorable interaction

between Amphotericin B and the lipid DSPG has been known

for some time, and forms the basis for the Ambisome patent

(Figure 2; see [11]). However, we also found some interesting

synergies among the recipe components that have not been

previously described, such as the substitution of linoleic or oleic

acid for the phospholipid component (typically DOPC as in the

standard). Although successful formulations of Amphotericin B

have been developed since the 1980s [9], there may be many

different beneficial drug formulations that have yet to be

discovered, some perhaps possessing better stability and pharma-

cokinetics.

Although our response function did not include other important

parameters for drug formulation development, such as structure of

the resulting particles, stability of the formulation over time, or

pharmacokinetics, these could be included in a response function.

The predictive Evo-DoE framework can accommodate the

incorporation of such parameters. We have characterized the

structure and stability of the fittest drug formulations post-

optimization, and see variation in these parameters. Using our

protocol with a multi-component response function would allow

direct optimization of drug formulations, from the initial

incorporation of drug into lipid structures through to animal

models.

Our Evo-DoE methodology ‘‘closes the loop’’ in iterated

adaptive experimentation in a high-dimensional experimental

space. This closed loop can be fully automated if autonomously

operating robots are used to conduct high-throughput experimen-

tation, with the results fed directly into computers for automated

statistical analysis of experimental results, and then automated

intelligent design of the subsequent round of experiments could be

fed directly back into the experimental robot platform. This can

ultimately lead to 24/7 operation and rapid optimization of

Figure 4. Change over time in lipid components in recipes tested.
The representation of each lipid, computed as a percentage of recipes that
have each particular component, for each generation of Evo-DoE is shown
for seven successive generations. For generation 2–7, only model-based
recipes are considered. A) The PG lipid group; B) the negatively charged
lipid group. See Materials and Methods for abbreviations and groupings.
doi:10.1371/journal.pone.0008546.g004

Table 1. Selected high-response formulations.

Recipe Lipid phase Aqueous phase Response Internal Volume
Stability
at 4uC

Stability
at 25uC

Stability
at 50uC

Std DSPG, Chol, DOPC Succinic Acid 10 mM, pH 4.5, Na(OH), Sucrose 9%. 1.0 1.00 1.0 1.0 1.0

1 PS, Chol, SM Bicine 100 mM, pH 8.5, Na(OH), Glucose 9%. 1.8 0.50 1.1 3.7 5.0

2 DSPG, Chol, DOPM Bicine 100 mM, pH 8.5, Na(OH), Sucrose 4.5%. 1.7 N.A. 1.11 3.7 4.3

3 DSPG, Ergo, Lino Mes 100 mM, pH 7, Na(OH), Sucrose 9%. 1.3 0.98 2.0 5.3 6.7

4 DSPG, Chol, DOPM Bicine 10 mM, pH 8.5, Na(OH), Sucrose 9%. 1.8 0.52 2.0 4.7 5.0

5 DSPG, Chol, DOPM Mes 10 mM, pH 7, Na(OH), Sucrose 4.5%. 1.7 N.A. 1.8 5.7 6.0

6 DSPG, Chol, Oleic Bicine 100 mM, pH 8.5, Na(OH), Glucose 4.5%. 2.0 0.40 2.2 6.7 6.7

7 DMPG, Chol, DOPM Bicine 100 mM, pH 8.5, Na(OH), Glucose 9%. 2.2 N.A. 2.0 3.0 4.7

8 DMPG, Chol, DOPM Bicine 100 mM, pH 8.5, Na(OH), Glucose 4.5%. 1.9 0.26 1.4 3.3 5.0

9 DPPC, Ergo, SM Bicine 10 mM, pH 8.5, Na(OH). 1.7 N.A. 2.1 6.7 5.0

10 PC, Chol, PS Bicine 100 mM, pH 8.5, Na(OH), Glucose 9%. 2.0 0.20 2.0 5.7 5.7

11 PC, Chol, Lino Bicine 100 mM, pH 8.5, Na(OH), Glucose 9%. 2.0 N.A. 2.1 5.7 6.7

12 DOPC, Chol, SM Bicine 100 mM, pH 8.5, Na(OH), Glucose 4.5%. 1.9 N.A. 1.0 3.3 4.3

doi:10.1371/journal.pone.0008546.t001

Evo-DoE
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complex experimental spaces, and would mark a significant

milestone in automating the scientific process [16].

The task of discovering and optimizing complex chemical

systems suffers from two recurring problems: First, beneficial

nonlinear interactions among system components cannot be

inferred from basic chemical and physical laws, and second, as

the number of system constituents and experimental parameters

increases, traditional screening of experimental spaces becomes

impractical and economically unfeasible. The general method

applied here to optimize liposomal formulations of Amphotericin

B, predictive Evo-DoE, can be used generally to discover and

optimize other kinds of complex chemical systems, thus yielding a

new tool for solving the problem of chemical complexity.

Materials and Methods

Materials
Aqueous components. Water, mes, phosphate buffered saline

(PBS), glutamic acid (Glu), succinic acid (Succ), hepes, bicine and

trizma (Tris) were purchased from Sigma Aldrich. Sodium hy-

droxide was purchased from Merck.

Solvents. Chloroform, ethanol, methanol and dimethyl sulfox-

ide (DMSO) were purchased from Sigma Aldrich.

Lipids and amphiphiles. Egg PC (L-a-phosphatidylcholine,

hydrogenated), POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-

choline), DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine),

DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), POPG (1-

palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]) (sodium

salt), DPPG (1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)])

(sodium salt), DMPG (1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-

glycerol)]) (sodium salt), DSPG (1,2-distearoyl-sn-glycero-3-[phospho-

rac-(1-glycerol)]) (sodium salt) and DOPM (1,2-dioleoyl-sn-glycero-3-

phosphomethanol) (sodium salt), were purchased from Avanti Polar

Lipids. Cholesterol, ergosterol, sphingomyelin from bovine brain

$98%, (Sphingo) 1,2-diacyl-sn-glycero-3-phospho-L-serine solution

(PS), cardiolipin sodium salt from bovine heart (CL), oleic acid,

myristoleic acid (Myri) and linoleic acid (Lino) were purchased from

Sigma Aldrich.

Amphotericin B from Streptomyces ssp. in powder form and b-

octylglucopyranoside (BOG) in powder form was purchased from

Fluka. Sepharose 4B, Rhodamine 6G, calcein, glucose and sucrose

were purchased from Sigma.

Methods
Buffers preparation method. Buffers of stock solution,

100 mM, pH 4.5–7 and 8.5, NaOH were prepared and stored

at 4uC. Buffer titrations were performed with a solution of 10M

NaOH in water to adjust pH.

A library of 75 buffers was required to cover all possible

combinations of 7 different acids at 2 concentration levels, 3 pHs,

and 2 sugars at 2 concentration levels. All were stored at 4uC and

used at room temperature (23uC).

Detergent preparation method. The BOG detergent

powder was dissolved in water to a 20% (w/v) final concentration.

The solution was stored at 4uC.

Phospholipids preparation method. Stock solutions of

phospholipids in HCCl3, HCCl3/MeOH 3:1 or HCCl3/MeOH

95:5 were prepared and stored under nitrogen in Chromacol

screw cap vials with silicon/teflon septa (Microcolumn Srl), and

stored at 220uC. DOPC, POPC, DPPC, PC (egg), SM, PS,

DOPM, oleic acid, myristoleic acid, linoleic acid, cholesterol and

ergosterol were prepared at 5 mM and diluted when needed to

1 mM. CL, DPPG, POPG and DMPG were prepared at 6 mM

and diluted to 0.6 mM. DSPG in powder was prepared at

0.6 mM.

Amphotericin B preparation method. Amphotericin B

powder was dissolved in DMSO at 3.3 mM. A clear orange

solution was obtained and stored at 4uC.

Instrumentation
Absorbance measurements. Absorbance measurements at

415nm in the high-throughput experiment were recorded with a

PerkinElmer Wallace 1420 Victor 3 Multilabel Counter, designed

for 96-well plates. Absorbance spectra of the Amphotericin B in

aqueous solution and in solution with vesicles were recorded with

a PerkinElmer Lambda 25 spectrophotometer, using a quartz

cuvette.

Liquid handling. The high-throughput experiment was

performed with a robotic workstation for liquid handling, Xiril

75-1-2 (Switzerland). The hardware layout was designed

specifically for the experimental protocol developed. The library

of buffers, DMSO and BOG were contained in Chromacol 10 SV

tubes and placed in a removable stainless steel tube decktray for

the Xiril 75 with 96 12675 mm positions. The dilution steps of the

protocol were performed in 1.5 mL Eppendorf tubes, set in 32

position racks for 1.5 or 2 mL microfuge tubes with lids. At the

end of the experiments the racks containing the buffers, DMSO

and BOG were stored at 4uC. The custom racks were purchased

from Xiril. The robot workstation uses Rainin tips GPS-L250

space saver 960PZ purchased from Elettrofor Sas, Rovigo, Italy.

High-throughput protocol. The following section describes

the chemical high-throughput experiment protocol for preparing

and analyzing formulations containing Amphotericin B. The

DMSO solution containing Amphotericin B (crystallized at 4uC) is

warmed on a standard heatblock until it becomes liquid. 2.87 ml of

the Amphotericin B solution are transferred by pipette into the

bottom of 500 ml volume glass vials (Chromacol 05-MTV-96) and

then set in a 96-position deep well vial holder (Chromacol 05-

MTP-96) from Microcolumn Srl.

The well plate containing the Amphotericin B vials is then

placed in the robotic workstation and the lipids in organic solvent

were added to the vials according to a well map, which specifies

the exact qualitative and quantitative composition of the resulting

mixture in each of the wells. At the end of the distribution step,

each vial contains a mixture of three lipids and Amphotericin B.

The resulting plate containing the vials of organic solvent, lipids

and Amphotericin B is then transferred into a vacuum chamber

connected with a vacuum pump (KNF LAB, Pressure min 1.0 bar)

with Teflon membranes. A heatblock at 100uC is set under the

well plate for 20 minutes before it is removed and the evaporation

process is allowed to continue for another 40 minutes, achieving a

thin yellow film on the glass surface of the vials. The well plate is

then transferred again to the robotic workstation and 200 ml of the

hydration aqueous phase are added according to a well map. The

final concentration of the lipids in the mixture is always 500 mM.

Once the lipid film is hydrated it is sonicated at 25uC for

10 minutes (Bandelin Sonorex Digitec), to promote the formation

of small unilamellar vesicles (SUV). The robot then transfers

140 ml of the sonicated vesicle solution into Eppendorf tubes,

prefilled with 240 ml of buffer. The samples are then centrifuged

(Heraeus Biofuge Pico) at 136103 rpm for 15 minutes to separate

the Amphotericin B entrapped in the formulation from free drug

crystals in solution. A yellow pellet representing the free drug

precipitate is visible on the bottom of the Eppendorf tubes.

178.5 ml of the supernatant is pipetted carefully into new 1.5 ml

Eppendorf tubes and repositioned in the robot. To each sample,

the robot adds 21 ml of DMSO and 10.5 ml of BOG, reaching a

Evo-DoE
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total volume of 210 ml in order to destroy any vesicles in the

sample, leaving the Amphotericin B free in the organic solvent to

be analyzed spectroscopically.

The robot transfers 200 ml of the resulting solution into a

transparent 96-position micro-titration plate. The well plate is

covered and stored at 4uC overnight. Before measuring the

absorbance of the solution with the spectrophotometer, any bubbles

in the samples are removed with a gentle stream of nitrogen.

Triplicate absorbance measurements are made at 415 nm.

Stability tests. Formulations containing Amphotericin B

based on twelve selected top recipes and the standard were

prepared as above. The formulations were then split and

incubated in parallel at 4uC, 25uC, and 50uC, over the course of

30 days. For analysis, an aliquot of 10 ml was placed on a slide with

10 mM Rhodamine 6G and analyzed with fluorescent microscopy

(Nikon TE2000-S inverted fluorescence microscope with

Photometrics Cascade II 512 camera and in-house software).

The samples were visualized with a 406objective and 10 different

frames were captured per sample. The captured frames were then

analyzed for the presence of aggregates as evidenced by small dye-

containing lipid particles. They were scored as according to the

criteria: score of 0 for no aggregates seen, 1 for at least one

aggregate in only one captured frame, 2 for one aggregate in more

than one independent frame, 3 for at least one aggregate in all

frames, 4 for many aggregates in all frames. These scores were

then averaged over the time course of the experiment and

normalized to the standard.

Encapsulated volume estimation. Formulations containing

Amphotericin B based on selected top recipes and the standard

were prepared as above, but with 10uM calcein in the hydration

buffer. The unencapsulated external dye was then separated from

the lipid formulations using size exclusion chromatography

(sepharose 4B column, 661cm). The percent dye encapsulated

was then quantified on the PerkinElmer Wallace 1420 Victor 3

Multilabel Counter. The values were then normalized to the

standard.

Response function. Response values are calculated from

the absorbance of Amphotericin B after the removal of the

uncomplexed Amphotericin B crystals in solution and after the

destruction of the retained vesicle formulation with BOG as

detergent. The Amphotericin B absorbance spectrum shows several

peaks depending on the physical state of the Amphotericin B

[17,18]. Adding detergent in lipid solutions drives the micellization

process and destroys the vesicles [19], which according to their

large colloidal size absorb and scatter light over a broad spectrum,

with a critical micellar concentration of 0.025 M [20]. By

effectively cancelling out the effect of the liposomal structures

and any difference in absorbance due to specific Amphotericin B-

lipid interaction, absorbance peaks quantified here are determined

directly from the abundance of Amphotericin B. The quantification

of Amphotericin B was calculated from the absorbance of the

molecule using the linear region of the titration curve.

Experimental design (Evo-DoE). The full experimental

space of this experiment contained 82,950 possible recipes. It

consisted of all possible combinations of the following two libraries:

N An aqueous phase library (Table 2) consisting of all

combinations of a buffer (15 possibilities of seven buffers at

two levels, or water only) and a sugar (5 possibilities of two

sugars at two levels, or no sugar), for a total of 75 possibilities.

N A lipid library (Table 3) consisting of combinations of pairs of

four types of lipid (1–5 members each) with two sterols. The

library was constructed using six possible combinations: (1) PC,

PG, sterols (40 possibilities), (2) Negatively charged, PG, sterols

(40 possibilities), (3) Sphingo, PG, sterols (10 possibilities), (4)

PC, negatively charged, sterols (50 possibilities), (5) Sphingo,

negatively charged, sterols (10 possibilities), or (6) PC, Sphingo,

sterols (8 possibilities), for a total of 158 possibilities.

Because the lipid combinations form a mixture system, the

range of quantitative possibilities (relative concentrations of each

of the lipid types) is a polytope. The polytope and its extreme

vertices were generated using JMP software, and a set of the four

vertices, two midpoints, and the overall centroid were selected for

the experiments, for a total of seven concentration profiles for each

of the 158 lipid combinations.

Thus, the total number of possible combinations is given by 75

(buffers) * 158 (qualitative lipid mixtures) * 7 (quantitative lipid

possibilities) = 82,950 (total experimental space).

Applying conventional DoE methods to a complex system like

this is very difficult. We attempted to generate a screening design

using two major software packages (JMP and Design-Expert) and

found them incapable of dealing with multilevel qualitative factors

with the sorts of constraints specified for the lipid library.

Experimentation using iterated high-throughput screening and

Evo-DoE begins with an initial generation selected from the whole

experimental space. In standard methods such as genetic algo-

rithms, this selection is random. More recently, low-discrepancy

random sequence protocols have been used to avoid the gaps and

overlapping points that frequently arise in the random approach, by

biasing the random sampling toward unsampled regions of the

experimental space. This is essentially a high-dimensional version of

the stochastic sampling used in Kriging [7]. We further refined the

initial generation using the concept of incomplete factorial

experiments, by using a balanced design as the first generation

[21,22]. Our results from the earlier experiments and simulations

have shown that two-way interactions appear to form the ‘‘ridges’’

our algorithm explores to find the peaks; this balanced design

Table 2. Aqueous phase library.

Buffers pH group Levels (mM) Sugars Levels (%)

HEPES 7 10, 100 Glucose 4.5, 9

MES 7 10, 100 Sucrose 4.5, 9

Glutamic acid 8.5 10, 100 No Sugar

Succinic acid 4.5 10, 100

Bicine 8.5 10, 100

Tris 8.5 10, 100

PBS 7 10, 100

No buffer

doi:10.1371/journal.pone.0008546.t002

Table 3. Lipid library.

Lipid Categories Lipids

PC DOPC, POPC, DPPC, PC (egg)

PG CL, DSPG, DPPG, POPG, DMPG

Sterol Cholesterol, Ergosterol

Negatively charged PS, DOPM, oleic acid, myristoleic acid, linoleic acid

Sphingo Sphingomyelin

doi:10.1371/journal.pone.0008546.t003
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samples those ridges effectively. The recipe set was generated by

successively eliminating duplicative runs from a moderately large

number of initial random recipes. In subsequent generations 80–

90% of the points were selected by predictive modeling, and the rest

by a stochastic sampling algorithm described above.

Predictions of experiments were obtained from a neural network

model (learned with back-propagation using nnet in the R language

after standardizing all inputs and normalizing the output to the [0,1]

interval) with 28 inputs and one output (levels ‘‘No buffer’’ and ‘‘No

sugar’’ in the aqueous phase were regarded as two separate input

variables, each taking on either zero or one). Each neural network

was constructed with particular metaparameter values (weight

decay and number of hidden nodes). The model’s metaparameters

were selected using a bagging process, repeating the model learning

on a number of different data sets, each being a different random

sample of the observed experiments, and a number of times on each

data set. Each configuration of metaparameters was then assigned a

quality measure, calculated as the median correlation between

observations and predictions over all the repeats.
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