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ABSTRACT: Idiopathic pulmonary fibrosis (IPF) affects an estimated global
population of around 3 million individuals. IPF is a medical condition with an
unknown cause characterized by the formation of scar tissue in the lungs,
leading to progressive respiratory disease. Currently, there are only two FDA-
approved small molecule drugs specifically for the treatment of IPF and this
has created a demand for the rapid development of drugs for IPF treatment.
Moreover, denovo drug development is time and cost-intensive with less than
a 10% success rate. Drug repurposing currently is the most feasible option for
rapidly making the drugs to market for a rare and sporadic disease. Normally,
the repurposing of drugs begins with a screening of FDA-approved drugs using
computational tools, which results in a low hit rate. Here, an integrated
machine learning-based drug repurposing strategy is developed to significantly
reduce the false positive outcomes by introducing the predock machine-
learning-based predictions followed by literature and GSEA-assisted validation and drug pathway prediction. The developed strategy
is deployed to 1480 FDA-approved drugs and to drugs currently in a clinical trial for IPF to screen them against “TGFB1”, “TGFB2”,
“PDGFR-a”, “SMAD-2/3”, “FGF-2”, and more proteins resulting in 247 total and 27 potentially repurposable drugs. The literature
and GSEA validation suggested that 72 of 247 (29.14%) drugs have been tried for IPF, 13 of 247 (5.2%) drugs have already been
used for lung fibrosis, and 20 of 247 (8%) drugs have been tested for other fibrotic conditions such as cystic fibrosis and renal
fibrosis. Pathway prediction of the remaining 142 drugs was carried out resulting in 118 distinct pathways. Furthermore, the analysis
revealed that 29 of 118 pathways were directly or indirectly involved in IPF and 11 of 29 pathways were directly involved. Moreover,
15 potential drug combinations are suggested for showing a strong synergistic effect in IPF. The drug repurposing strategy reported
here will be useful for rapidly developing drugs for treating IPF and other related conditions.

1. INTRODUCTION
Idiopathic pulmonary fibrosis (IPF) is categorized as a rare,
sporadic ailment. IPF impacts an estimated global population of
around 3 million individuals.1 The condition predominantly
affects individuals aged 50 and above, with a higher prevalence
observed among males compared to females. As per the
information provided by the National Institutes of Health
(NIH),2 roughly 100,000 individuals in the United States are
affected by IPF. Annually, there are approximately 30,000−
40,000 newly diagnosed cases.3 On a global scale, IPF impacts
approximately 13−20 individuals out of every 100,000 people.1

The progression of IPF can vary and is difficult to predict,
leading to a gradual and irreversible decline in lung function in
individuals with this condition. The prognosis for those
diagnosed with IPF varies, but on average, the median survival
time after diagnosis is approximately 2−3 years.4 The disease
can be influenced by a sudden deterioration in lung function,
termed an acute exacerbation, which frequently results in
mortality within a few months. Recognizing the severity of the
disease and the urgency of treatment, early detection and
treatment of IPF can also improve outcomes and reduce the risk
of complications. However, to date, there are only two drugs

Nintedanib and Pirfenidone approved for IPF.5 A greater
number of effective treatments are required to be developed to
provide timely treatment to the patients. Drug discovery is a
lengthy and expensive process that can take up to 15 years and
cost billions of dollars.6−10 Despite this, many drugs fail to gain
regulatory approval due to safety or efficacy concerns. Drug
repurposing (DR), also known as drug repositioning, offers an
alternative approach to drug development by identifying new
therapeutic uses for existing drugs. This strategy involves testing
drugs that have already been approved or are in late-stage clinical
trials for one indication to see if they could be effective for other
diseases. Compared to traditional drug discovery, DR is a more
efficient and cost-effective approach that has the potential to
accelerate the delivery of new treatments to patients.11,12 By
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leveraging existing knowledge and clinical data, DR can save
time and resources, and ultimately lead to the development of
new treatments for a variety of diseases.13

Many approaches such as machine learning (ML),14,15 virtual
screening,16 and network-science17 have been used in DR for
rare and sporadic diseases such as IPF and also in viral diseases
to identify potential new uses for existing drugs. It is done by
analyzing large amounts of data, such as gene expression, drug
interactions, and clinical outcomes.18,19 For example, a study
published in20 used ML to identify existing drugs repurposable
for the treatment of Zika virus infection by analyzing gene
expression profiles from infected human cells. Similarly, another
study done in21 performed DR through an in-silico analysis, as a
result, BI2536, a specific inhibitor of polo-like kinase (PLK) 1/2,
was chosen as a potential candidate for the treatment of
pulmonary fibrosis. Additionally, there are drugs that have been
repurposed for IPF. These drugs include nifuroxazide,
niclosamide, dabigatran, and proton pump inhibitors (PPIs).
A study done in22 investigated the repurposing of nifuroxazide,

an antidiarrheal drug, for the treatment of pulmonary fibrosis.
Using ELISA, an in vitro toolkit, the study found that
nifuroxazide was able to ameliorate pulmonary fibrosis in an
animal model by blocking the TGF-β/Smad pathway and
decreasing the expression of phosphorylated Stat3. Similarly,
Niclosamide,23 an anthelmintic drug, has been reported to
reverse fibrosis in the skin and lungs of mice with systemic
sclerosis and pulmonary fibrosis. An in vivo method is used for
validation of the repurposed drug. In another study, the FDA
adverse event reporting system and JMDC Inc. insurance claims
were analyzed to predict the dabigatran drug as repurposable for
IPF. Predictions were later validated by clinical big data.24 Few-
shot learning, ML, and molecular docking (MD) found that
active inhibitors against IPF included Herbacetin, Morusin,
Swertiamarin, Vicenin-2, and Vitexin.25 Combinations of
different approaches can be used in DR for Fibrotic diseases
to predict the binding of a small molecule to a protein target such
as done in.25 Additionally, a repurposing study26 identified seven
biological pathways that are implicated in all nine fibrotic

Figure 1.Drug Repurposing framework overview. (A) Process of data collection, preprocessing, and model development followed by deployment on
IPF data to get the drug predictions. (B) Validation of the predicted drugs using literature and GSEA, and finally (C) depicts the drug-pathway
association prediction for candidate drug prioritization and drug combination.
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diseases, along with pathways that are specific to certain diseases
among them. Captopril and ibuprofen were suggested as anti-
IPF drugs, along with nafcillin and memantine drugs
recommended for further validation. Thalidomide27 was also
suggested to have the possibility of targeting inflammation for
the treatment of IPF. In addition to ML and MD, systems
biology can also be used in DR for fibrotic diseases by analyzing
the complex interactions between associated proteins and
disease host factors and identifying new drug targets. One
such study28 used network-enabled DR for pulmonary fibrosis.
Through the measurement of proximity between the drug
targets and the signature within the interactome, we have
identified numerous potential candidates and furnished a ranked
drug list based on their closeness.29

However, ML, MD, and systems biology approaches suffer
from limitations when individually used for DR. One of themain
drawbacks ofML in DR is the potential for overfitting, where the
algorithm learns patterns that are specific to the training data but
may not generalize well to new data.30 This can lead to false
positive predictions and hinder the identification of promising
drug candidates. Similarly, MD relies on accurate structural
information for both the small molecule and the protein target,
which can be a limitation when information is not available.31

Additionally, MD does not account for the complex dynamics of
protein−ligand interactions, which can affect the drug efficacy
and toxicity. Finally, Systems biology approaches require large
amounts of data and complex computational models, which can
be time-consuming and resource-intensive. Additionally, the
biological complexity of the systems being studied can make it
difficult to identify key targets and pathways for DR.32 A possible
solution to the mentioned limitations posed by these individual
techniques is the combination ofML andMD that has overcome
some of these limitations by integrating the strengths of both
approaches.ML can help identify potential drug candidates from

large data sets, and MD can be used to predict the binding of
those candidates to specific protein targets.33 This can improve
the accuracy and efficiency of DR efforts, as demonstrated by
several recent studies. One such effort is SperoPredictor14 which
used a combination of ML and MD to identify potential drug
candidates for COVID-19.

In this study, a DR strategy that combines multiple ML
models has been developed to minimize false positive outcomes
(Figure 1). Here, an integrated ML-based DR strategy is
developed to significantly reduce the false positive outcomes by
introducing ML-based predictions (Figure 1A) followed by
literature-assisted validation (Figure 1B) and drug pathway
prediction (Figure 1C). The developed strategy is deployed to
1480 FDA-approved drugs and to drugs currently in a clinical
trial for IPF to screen them against 'TGFB1', 'TGFB2', “PDGFR-
a”, 'SMAD-2/3', 'FGF-2', and more proteins resulting in 247
total and 27 potentially repurposable drugs. Literature and
GSEA validation suggested 72 of 247 (29.14%) have been tried
for IPF, 13 of 247 (5.2%) drugs have already been used for lung
fibrosis, and 20 of 247 (8%) drugs have been tested for other
fibrotic conditions such as cystic fibrosis and renal fibrosis.
Pathway prediction of the remaining 142 drugs was carried out
resulting in 118 distinct pathways. Furthermore, analysis
revealed that 29 of 118 pathways were directly or indirectly
involved in IPF and 11 of 29 pathways were directly involved.
Moreover, 15 potential drug combinations are suggested for
showing a strong synergistic effect in IPF. The drug repurposing
strategy reported here will be useful for rapidly developing drugs
for treating IPF and other related conditions.

2. MATERIALS AND METHODS
2.1. Data Collection and Preparation. The data set

prepared contains drug and disease-related feature information

Figure 2. Drug and disease related data extraction and mapping processes followed in this study.
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obtained from various sources. Chemical structures for the drugs
have been used as the main feature of the drugs. Numerous
research works have utilized chemical structures presented in
SMILES format.34 SMILES is a simplified line notation utilized
to portray the configuration of chemical entities. The SMILES
were obtained from DrugBank,35 PubChem,36 and ChEMBL37

between the years 2022 and 2023 (Figure 2). All the drug-
related databases are shown in green boxes along with their

mapping process in Figure 2. SMILES strings were transformed
into a fixed-length vector representation using extended
connectivity fingerprints (ECFP) generation methods.38

These methods encode the chemical structure into a series of
binary values representing the presence or absence of specific
substructures or molecular properties. Drug target sequences
were considered as another feature of the drugs (Figure 2).39

Each drug targets one or multiple proteins to produce a

Figure 3. Performance Statistics of the Random Forest (RF), Tree Ensemble (TE), and Logistic Regression (LR). (A) Accuracies of theModels where
RF performs as best model, (B) F1-score (C) MCC, (D) precision, (E) sensitivity and (F) specificity. Among all the statistics RF performs best
followed by LR, and TE.
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therapeutic effect. Here, during the academic years 2023−2024,
drug-target sequences were obtained from Uniprot and
DrugBank. Protein sequences are represented as a series of
amino acids and were preprocessed for nonstandard amino acids
or missing data before being transformed into ML-ready format
using one-hot encoding. For the Drug Side Effects SIDER
database was used to download data on 1,430 FDA-approved
drugs.40 Side effects were mapped to drug structures, protein
sequences, and gene data using PubChem IDs, which are
provided by SIDER. The process of data mapping is inspired and
adopted from our previous study done in ref 14 however, the
current study is short of the features.14

Additionally, disease information on gene-disease associa-
tions (GDA) was gathered from DisGeNET, a comprehensive
database containing over 400,000 GDAs from various sources.
Gene sequences were then extracted from the Ensemble
database using the UniProt IDs and gene symbols from
DisGeNET.41 Data cleaning involving removing or imputing
errors, missing data, or redundant information was performed
followed by k-mer-encoding-based transformation of sequences
into a numerical representation. It captures the common
features including.

physicochemical properties, of amino acids, structural proper-
ties, and sequence-based properties, such as sequence motifs.
Disease-related phenotypes provide important insights into
understanding disease mechanisms to light up the road to
competitive therapeutic development, due to this disease
phenotypes have been utilized for drug discovery and develop-
ment for long. The Monarch database (Figure 2; purple boxes)
was used to obtain information on 10,881 human diseases, along
with 8662 phenotypes associated with these diseases. Natural
language processing (NLP) preprocessing techniques for text
features including tokenization, stemming, and stop word
removal were used. Finally, vectorization and embedding were
used for processing text features to convert text data into

numerical vectors that can be used in ML models. Additionally,
for drug and disease-related features, dimensionality reduction
techniques, such as principal component analysis (PCA) are
used to reduce the number of features while retaining 90% of the
important information.
2.2. Model Development, Training, Testing, and

Validation (Deep Learning). After preparing and trans-
forming the data, we considered the data on drug- and disease-
related features (DTIs) to be positive samples, while the
unknown interactions were treated as negative samples by
randomizing the positive samples (Figure 3) (Table 1). To
ensure a balanced data set, negative samples were up-sampled.
This approach was adopted to avoid bias Such methods may be
biased due to undetected interactions between targeted drugs.
To prevent duplication between positive and negative samples,
we checked that no pairs from the positive samples matched
exactly with negative samples. Next three different ML Models
including Random Forest (RF),42 Logistic Regression (LR),43

and Tree Ensemble (TE)44 were developed using default
parameters initially.

Data were split into the training (80%) and testing data
(20%). Initially, the models were trained and tested separately,
followed by testing in a similar methodology. The training and
testing accuracies were recorded. Additionally, a 10-fold cross-
validation was performed to further validate the models using
the 20% test data. All the parameters are given in Table S1, and
the performance statistics of the models are given in Table 1.
Once models are trained, all of the models are deployed
separately on the IPF data followed by the prediction fusion of
the top-performing models. Only the LR and RF were deployed
owning to their higher performance statistics.45 The predictions
of the models were validated from the literature on the
individual and combination levels. By leveraging the power of
ML, we were able to uncover hidden patterns and relationships
within the data sets that would have been challenging to identify

Table 1. Performance Atatistics of the ML Models

accuracy F1-score MCC precision sensitivity pecificity

train: valid: train: valid: train: valid: train: valid: train: valid: train: valid:

RF 0.993 0.992 0.993 0.98 0.985 0.984 0.993 0.99 0.993 0.985 0.993 0.99
TE 0.91 0.885 0.909 0.9 0.817 0.813 0.91 0.909 0.91 0.905 0.91 0.905
LR 0.985 0.931 0.985 0.95 0.97 0.96 0.985 0.98 0.985 0.975 0.96 0.935

Table 2. IPF Associated Target Gene Information

Uniprot ID name ensemble ID genes DSI DPI

1 P01137 transforming growth factor beta-1 proprotein ENSG00000105329 TGFB1 0.287 0.962
2 P61812 transforming growth factor beta-2 proprotein ENSG00000092969 TGFB2 0.433 0.885
3 P16234 ″ platelet-derived growth factor receptor alpha″ PDGFR-a 0.415 0.808
4 P09038 fibroblast growth factor 2 ENSG00000138685 FGF-2 0.383 0.923
5 P84022 mothers against decapentaplegic homologue 3 ENSG00000166949 Smad3 0.415 0.923
6 P31751 RAC-beta serine/threonine-protein kinase ENSG00000105221 Akt-2 0.474 0.769
7 P62736 smooth muscle actinn-alpha ENSG00000107796 a-SMA 0.54 0.769
8 P02452 ″ collagen alpha-1(I) chain″ ENSG00000108821 0.43 0.846
9 Q8QHL3 vascular endothelial growth factor receptor 1 VEGFR 0.419 0.846
10 P08253 72 kDa type IV collagenase ENSG00000087245 MMP-2 0.333 0.923
11 P29279 connective tissue growth factor ENSG00000118523 CTGF 0.399 0.846
12 Q5VWK5 interleukin-23 receptor ENSG00000162594 IL-23 0.415 0.846
13 P05231 interleukin-6 ENSG00000136244 IL-6 0.248 0.962
14 P05121 plasminogen activator inhibitor 1 ENSG00000106366 PAI-1 0.359 0.885
15 P35225 interleukin-13 ENSG00000169194 IL-13 0.846 0.846
16 P24394 interleukin-4 receptor subunit alpha ENSG00000077238 IL-4Ra 0.474 0.846
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Table 3. Drugs Already Used under IPF and Other Related Conditions

DrugBank ID name ensemble gene ID (ensemble) disease genes

idiopathic pulmonary fibrosis (IPF)
1 DB00175 pravastatin ENSG00000105221 Akt-2
2 DB00184 nicotine ENSG00000105221 Akt-2
3 DB00201 caffeine ENSG00000105221 Akt-2
4 DB00248 cabergoline ENSG00000105221 Akt-2
5 DB00321 amitriptyline ENSG00000105221 Akt-2
6 DB00333 methadone ENSG00000105221 Akt-2
7 DB00341 cetirizine ENSG00000105221 Akt-2
8 DB00370 mirtazapine ENSG00000105221 Akt-2
9 DB00437 allopurinol ENSG00000106366 PAI-1
10 DB00458 imipramine ENSG00000105221 Akt-2
11 DB00468 quinine ENSG00000105221 Akt-2
12 DB00471 montelukast ENSG00000087245 MMP-2
13 DB00480 lenalidomide ENSG00000106366 PAI-1
14 DB00493 cefotaxime ENSG00000105221 Akt-2
15 DB00502 haloperidol ENSG00000105221 Akt-2
16 DB00514 dextromethorphan ENSG00000105221 Akt-2
17 DB00517 anisotropine methyl bromide ENSG00000105221 Akt-2
18 DB00548 azelaic acid ENSG00000105221 Akt-2
19 DB00557 hydroxyzine ENSG00000105221 Akt-2
20 DB00562 benzthiazide ENSG00000105221 Akt-2
21 DB00565 cisatracurium ENSG00000105221 Akt-2
22 DB00570 vinblastine ENSG00000106366 PAI-1
23 DB00590 doxazosin ENSG00000105221 Akt-2
24 DB00598 labetalol ENSG00000105221 Akt-2
25 DB00641 simvastatin ENSG00000105221 Akt-2
26 DB00661 verapamil ENSG00000105221 Akt-2
27 DB00678 losartan ENSG00000106366 PAI-1
28 DB00808 indapamide ENSG00000105221 Akt-2
29 DB00843 donepezil ENSG00000105221 Akt-2
30 DB00844 nalbuphine ENSG00000105221 Akt-2
31 DB00850 perphenazine ENSG00000105221 Akt-2
32 DB00852 pseudoephedrine ENSG00000105221 Akt-2
33 DB00920 ketotifen ENSG00000105221 Akt-2
34 DB00924 cyclobenzaprine ENSG00000105221 Akt-2
35 DB00972 azelastine ENSG00000105221 Akt-2
36 DB00975 dipyridamole ENSG00000105221 Akt-2
37 DB00988 dopamine ENSG00000105221 Akt-2
38 DB01012 cinacalcet ENSG00000105221 Akt-2
39 DB01039 fenofibrate ENSG00000105221 Akt-2
40 DB01056 tocainide ENSG00000105221 Akt-2
41 DB01095 fluvastatin ENSG00000105221 Akt-2
42 DB01098 rosuvastatin ENSG00000105221 Akt-2
43 DB01115 nifedipine VEGFR
44 DB01148 flavoxate ENSG00000105221 Akt-2
45 DB01198 zopiclone ENSG00000105221 Akt-2
46 DB01216 finasteride ENSG00000105221 Akt-2
47 DB01222 budesonide ENSG00000105221 Akt-2
48 DB01223 aminophylline ENSG00000106366 PAI-1
49 DB01303 oxtriphylline ENSG00000106366 PAI-1
50 DB01406 danazol ENSG00000105221 Akt-2
51 DB01409 tiotropium ENSG00000105221 Akt-2
52 DB01656 roflumilast ENSG00000105221 Akt-2
53 DB04843 mepenzolate ENSG00000105221 Akt-2
54 DB05039 indacaterol ENSG00000105221 Akt-2
55 DB05154 pretomanid ENSG00000106366 PAI-1
56 DB05294 vandetanib ENSG00000106366 PAI-1
57 DB05812 abiraterone ENSG00000105221 Akt-2
58 DB05990 obeticholic acid ENSG00000106366 PAI-1
59 DB06410 doxercalciferol ENSG00000105221 Akt-2
60 DB06616 bosutinib ENSG00000087245 MMP-2
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through traditional methods alone. Results demonstrated that
the combination of models or prediction fusion performs better
with an improved hit rate. Moreover, to counter the biases in
literature validation, all prediction results were searched which
were expected to support the predictions positively and
negatively.46 Additionally, to address the inheritance biases in
literature validation, an additional step was taken to enhance the
credibility and robustness of the predictions. For each prediction
made, an extensive search was conducted to identify relevant

sources of information that were anticipated to both support and
challenge the predicted outcomes. This meticulous approach
ensured a comprehensive and balanced evaluation of the
predictions, encompassing a wide range of perspectives and
potential outcomes.
2.3. Proteins Involved in IPF. To take predictions by

deploying models, we required IPF-related proteins involved in
the development of IPF. In this connection, a literature survey of
the published articles, patents, and databases was carried out,

Table 3. continued

DrugBank ID name ensemble gene ID (ensemble) disease genes

idiopathic pulmonary fibrosis (IPF)
61 DB06663 pasireotide ENSG00000105221 Akt-2
62 DB06772 cabazitaxel ENSG00000106366 PAI-1
63 DB06800 methylnaltrexone ENSG00000105221 Akt-2
64 DB08860 pitavastatin ENSG00000105221 Akt-2
65 DB08896 regorafenib ENSG00000087245 MMP-2
66 DB08910 pomalidomide ENSG00000106366 PAI-1
67 DB08916 afatinib ENSG00000105221 Akt-2
68 DB09053 ibrutinib ENSG00000105221 Akt-2
69 DB09079 nintedanib ENSG00000105221 Akt-2
70 DB11217 arbutin ENSG00000106366 PAI-1
71 DB11619 gestrinone ENSG00000105221 Akt-2
cystic fibrosis
72 DB00198 oseltamivir ENSG00000105221 Akt-2
73 DB00462 methscopolamine bromide ENSG00000105221 Akt-2
74 DB00487 pefloxacin ENSG00000105221 Akt-2
75 DB01061 azlocillin ENSG00000106366 PAI-1
76 DB01165 ofloxacin ENSG00000105221 Akt-2
77 DB01409 tiotropium ENSG00000105221 Akt-2
78 DB08897 aclidinium ENSG00000105221 Akt-2
79 DB09076 umeclidinium ENSG00000105221 Akt-2
lung fibrosis
80 DB00474 methohexital ENSG00000106366 PAI-1
81 DB00700 eplerenone ENSG00000105221 Akt-2
82 DB00758 clopidogrel ENSG00000105221 Akt-2
83 DB00843 donepezil ENSG00000105221 Akt-2
84 DB01240 epoprostenol ENSG00000105221 Akt-2
85 DB01587 ketazolam ENSG00000105221 MMP-2
86 DB01591 solifenacin ENSG00000105221 MMP-2
87 DB02659 cholic acid ENSG00000105221 TGFB-1/2
88 DB04854 febuxostat ENSG00000105221 Akt-2
89 DB08881 vemurafenib ENSG00000106366 PAI-1
90 DB09477 enalaprilat ENSG00000105221 Akt-2
91 DB14490 ferrous ascorbate ENSG00000106366 PAI-1
renal fibrosis
92 DB06212 tolvaptan ENSG00000105221 Akt-2
93 DB01267 paliperidone ENSG00000105221 Akt-2
other fibrotic conditions
92 DB00247 methysergide ENSG00000105221 Akt-2
93 DB00381 amlodipine ENSG00000105221 Akt-2
94 DB00421 spironolactone ENSG00000087245 MMP-2
95 DB00425 zolpidem ENSG00000105221 Akt-2
96 DB00795 sulfasalazine ENSG00000105221 Akt-2
97 DB00915 amantadine ENSG00000105221 Akt-2
98 DB00973 ezetimibe ENSG00000105221 Akt-2
99 DB02300 calcipotriol ENSG00000105221 Akt-2
100 DB05271 rotigotine ENSG00000105221 Akt-2
101 DB06209 prasugrel ENSG00000105221 Akt-2
102 DB06210 eltrombopag ENSG00000105221 Akt-2
103 DB08867 ulipristal ENSG00000105221 Akt-2
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and we found 16 related proteins (Table 2). The data for these
proteins was prepared and preprocessing steps like main data
were performed. Once the data were prepared, models were
deployed to get the prediction of the drugs repurposable for IPF,
and downstream validation using literature sources was carried
out initially, as mentioned in Section 2.2, followed by GSEA-
based validation.47−49

2.4. External Validation.Here, we conducted an additional
analysis using a combination of Gene Expression Omnibus
(GEO) data sets and LINCS tools for the purpose of drug
repurposing in the context of IPF. The utilization of both GEO
data sets and machine learning models allowed us to achieve
external validation of our study and validate the effectiveness of
our ML approach.11 To initiate the process, we downloaded
IPF-related data sets (GSE2052 and GSE24206) from the GEO
database, which provided us with gene expression data
associated with IPF. These data sets contained valuable
information regarding the gene expression profiles of IPF-
affected samples as well as control samples, enabling us to
identify potential targets and pathways relevant to IPF.50

Clue.io, a comprehensive computational platform, integrates
large-scale gene expression data with a vast library of compounds
and their known biological effects.11 By leveraging the vast
resources and algorithms available within Clue.io, we were able
to explore gene expression data in the context of known drug
effects, enabling us to identify novel therapeutic options for IPF-

related diseases. One of the key strengths of our study lies in the
overlap observed between the drugs identified through our ML
models and those derived from the GEO approach.51 This
overlapping subset of repurposed drugs served as a strong
validation of our ML approach, demonstrating its reliability and
accuracy. The fact that the ML models and GEO approach
produced similar results indicates the robustness and consis-
tency of our findings.
2.5. Pathway Prediction. For drugs that were not

confirmed through the literature, they were further collected
separately. The SMILES data for all of the drugs were collected
and prepared as shown in Table S2. Later, the drugs along with
SMILES were uploaded on the Netinfer52 server and pathway
predictions were obtained. All of the parameters for drug-
pathway association were predicted with default parameters.
Predicted results for drug-pathway association are given in Table
S2.

Moreover, from the predicted pathways, IPF-associated
distinct pathways were separated and drugs associated with
these pathways among the unused (in literature) were
prioritized. Finally, from the prioritized drugs for preclinical
validation, drug combinations based on pathway association
were predicted.

Figure 4. Clue-based validation. (A) Data set extraction and analysis, (B) enrichment analysis of the genes, (C) database searches for the drugs using
the enriched gene list from GEO, and (D) literature-based validation of the ML-predicted and clue-generated drugs.
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3. RESULTS
3.1. Machine LearningModel Training and Validation.

After data collection and preparation of 1480 FDA-approved
drugs (Table S2), it was split into training and testing data sets.
Training data sets account for 80% while testing data sets
account for 20% of the total data. Next, three different ML

Models, including RF, LR, and TE were developed and trained
with default parameters initially. The training accuracies for RF,
LR, and TE were 99.3, 98.5, and 91%, respectively. Similarly, the
testing accuracies for RF, LR, and TE were 99.2, 88.5, and
93.1%, respectively, as shown in Figure 3A. Other performance
statistics such as f1-score, MCC, precision, sensitivity, and

Figure 5. (A−C) Control vs IPF analyzed expression through GEO2R for GSE2052 are given; (D, E) for data set GSE24206 analyzed expression are
given. Moreover, Red colored dots depict the overexpression gene expressions, blue colored genes represent the under expressed gene, and black
colored dots show the genes with insignificant fold change. (F) Moderated t-statistic score shows the linear relationship between sample quantiles and
theoretical quantiles.
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specificity are mentioned in Figure 3B−F, respectively. Addi-
tionally, these performance statistics are summarized in Table 1
as well. Based on the given performance parameters, RF and LR
were selected for further application in drug repurposing for IPF.
3.2. Data Preparation for IPF. A literature and database

search was carried out to find the IPF-related key proteins such
as ‘TGFB1′, ‘TGFB2′, “PDGFR-a”, ‘SMAD-2/3′, “FGF-2” and
more (Table 2). Later further information related to these
proteins was extracted from databases mentioned in the
methods. The data was prepared and processed (Figure S1) to
get the prediction of repurposable drugs for IPF. Additionally,
for the IPF protein targets, STRING enrichment was
performed,53 and protein−protein interaction network54 results
are saved as Figure S2, and the gene coexpression information is
also given in Figure S3.
3.3. Predictions from Trained Models. The trained RF

and LR regression models were deployed to get the prediction
for the IPF-associated protein targets. Both models, RF and LR
were deployed, outputs were averaged, and the top 247 drugs
(Table S10) against the protein’s targets were shortlisted (Table

S2). The detailed procedure for the deployment of the models is
given in Section 2.2, and data preparation is given in Figure S4.
3.4. Literature and GSEA-Based Validation of the

Prediction. For the predicted drugs, a literature survey was
carried out to check if they have already been approved, used, or
tried for IPF or not.55 In the case of positive results, the drug was
labeled as validated and not validated otherwise. Among the
total 247 drugs, as per the literature, 105 drugs (42.5%) were
confirmed from the literature to have been tried for IPF and
other fibrotic conditions such as lung and cystic fibrosis (Table
3). Moreover, Clue was used for further validation, as shown in
Figure 4. Here, two data sets for IPF-associated disease
information were obtained from GEO (GSE2052 and
GSE24206) and were analyzed for up and downregulated
genes (Figure 4A) with p-value <0.05 and LogFC values in the
range of <−1 and >+1 were selected. GSE2052 contains 26
samples which involve normal histology lung tissue samples and
IPF lung explant (Table S3).56 Similarly, GSE24206 consists of a
total of 23 samples containing Healthy donor biological
replicates, early IPF surgical biopsy upper lobe replicates, and

Figure 6. (A) common upregulated genes from both data sets, (B) common downregulated genes from both data sets, and (C) map of pathways and
processing involving the common and downregulated genes.
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advanced IPF explant upper and lower lobe replicates (Table
S4).57 The data sets were analyzed using the GEO2R tool for
differential expression analysis (Figure 5) and the process was
repeated for both data sets. Control vs IPF analyzed expressions
through GEO2R for GSE2052 are given in Figure 5A−C and
those for data set GSE24206 are given in Figure 5D−F. Red-
colored dots depict the overexpression of gene expressions, blue-
colored genes represent the under-expressed gene, and black-
colored dots show the genes with insignificant fold change
(Figure 5).

Finally, downloaded data sets were analyzedmanually in Excel
resulting in 35 positively regulated (Figure 6A) and 43
negatively regulated genes (Figure 6B) common in both data
sets (Table S5). Additionally, DAVID, GSEA, GO, biological
process enrichment, and pathway enrichment58 along with
ShinyGO 0.77 were performed using a Web server (Figure
4B).59 Results of pathway and process enrichment from
ShinyGo are given in Figure 6C. It shows pathways and
processes directly and indirectly involved in IPF, such as. JAK-
STAT, PI3K-Akt, EGFR tyrosine kinase, and Relaxin signaling
pathways (Figure 6C).60 Later up-regulated genes were put in
the STRING database, the network was exported to Cytoscape,
and hub genes were found by setting and sorting the network by
degree topology. The degree was set between 1 and 7 for the
downregulated network and between 1 and 7 for the upregulated
network. The role of these genes/proteins in IPF was confirmed
through the literature. Finally, the analyzed genes were used to
perform clue for drug repurposing and as a result, the top 1088
drugs with the lowest negative score (Table S6) were selected as
candidate drugs (Figure 4C) followed by a literature survey
(Figure 4D). By comparing these drugs with ML-based
predicted drugs, we found that a total of 62 drugs are overlapped
(Figure 7). Of these overlapping drugs, most of them were

already confirmed through the literature, and for the remaining
drug-pathway association, prediction through NetInfer was
carried out to further confirm them and prioritize for validation
in vitro.
3.5. Pathway Prediction and Drug Prioritization. In this

study, we employed the NetInfer Web server52 to explore drug-
pathway associations and identify potential repurposable drugs
for IPF. The data set comprised 142 drugs (Table S2), and upon
analysis, we successfully predicted 118 distinct pathways
associated with these compounds (Table S7). Among these
pathways, 28 were found to be directly or indirectly involved in
the pathogenesis of IPF (Table S8), with 11 core pathways
showing direct involvement (Table S9). These findings provide
valuable insights into the intricate molecular interactions
between drugs and pathways in the context of the IPF. To
further prioritize the drug candidates, we considered their
associations with the core IPF pathways. Consequently, we
identified 21 drugs that demonstrated significant potential for

repurposing as therapeutics for IPF (Table 4). The selection of
these repurposable drugs was guided by the premise that their

targeted pathways have direct relevance to IPF pathogenesis.61

These promising candidates warrant thorough preclinical
validation to assess their safety and efficacy before advancing
to clinical trials.

Furthermore, we conducted a drug combination analysis
based on pathway overlapping to explore potential synergistic

Figure 7. Drugs common between Clue Web server and proposed
framework.

Table 4. Potential Drugs along with Pathways to Be
Preclinically Validated

compound name pathway ID description score

1 escitalopram hsa04151 PI3K-Akt signaling
pathway

0.00637411

2 pirenzepine hsa04668 TNF signaling
pathway

0.00625015

3 disopyramide hsa04151 PI3K-Akt signaling
pathway

0.00624992

4 quetiapine hsa04151 PI3K-Akt signaling
pathway

0.00606185

5 brompheniramine hsa04151 PI3K-Akt signaling
pathway

0.0060605

6 cyproheptadine hsa04151 PI3K-Akt signaling
pathway

0.0060375

7 topiramate hsa04151 PI3K-Akt signaling
pathway

0.0058144

8 chenodeoxycholic
acid

hsa04151 PI3K-Akt signaling
pathway

0.00570901

9 fluphenazine hsa04066 HIF-1 signaling
pathway

0.00539549

10 trimipramine hsa04066 HIF-1 signaling
pathway

0.00538127

11 quinethazone hsa04151 PI3K-Akt signaling
pathway

0.00625234

12 pirenzepine hsa04151 PI3K-Akt signaling
pathway

0.00622134

13 hyoscyamine hsa04151 PI3K-Akt signaling
pathway

0.00599395

14 lorazepam hsa04151 PI3K-Akt signaling
pathway

0.00596583

15 glimepiride hsa04151 PI3K-Akt signaling
pathway

0.00578804

16 propafenone hsa04151 PI3K-Akt signaling
pathway

0.00577599

17 dimenhydrinate hsa04151 PI3K-Akt signaling
pathway

0.00559847

18 iloperidone hsa04010 MAPK signaling
pathway

0.00525688

19 meclizine hsa04151 PI3K-Akt signaling
pathway

0.00666584

20 flumazenil hsa04151 PI3K-Akt signaling
pathway

0.00591095

21 brompheniramine hsa04668 TNF signaling
pathway

0.00590764

22 dobutamine hsa04010 MAPK signaling
pathway

0.00580683

23 trimipramine hsa04010 MAPK signaling
pathway

0.00527779

24 meclizine hsa04010 MAPK signaling
pathway

0.00664799

25 stiripentol hsa04151 PI3K-Akt signaling
pathway

0.00590532

26 cyproheptadine hsa04010 MAPK signaling
pathway

0.00550832

27 disopyramide hsa04010 MAPK signaling
pathway

0.00531159

28 trimipramine hsa04668 TNF signaling
pathway

0.00519002

29 quetiapine hsa04010 MAPK signaling
pathway

0.00510318
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effects. By analyzing the interactions between the 118 pathways
associated with the drugs' correlation using their pathways, we
identified 15 high-end drug combinations that have the potential
to produce enhanced therapeutic outcomes compared to
individual drug treatments (Table 5).62 The synergy score is

calculated using the total number of pathways being targeted by
combinations.63,64 Complete information about the drug
combinations and pathways targeted is given in Table S11.
The concept of pathway overlapping serves as a robust strategy
to design novel and efficient drug combinations for complex
diseases such as IPF. To ensure the translation of our findings
into clinically relevant treatments, we emphasize the importance
of rigorous preclinical validation for all prioritized drugs and
drug combinations. Preclinical studies are essential to establish
the safety profiles, optimal dosages, and efficacy of the identified
candidates, laying the groundwork for their eventual evaluation
in clinical trials.65 Overall, our study provides a comprehensive
exploration of drug-pathway associations in the context of IPF,
identifying promising repurposable drugs and potential drug
combinations.66 These results contribute to the growing field of
drug repurposing and offer a potential avenue for the
development of more effective and targeted therapies for IPF
patients. Further research and validation will be instrumental in
advancing these discoveries toward clinical application and
ultimately improving the lives of individuals affected by this
devastating lung disease.

4. DISCUSSION
In this study, we aimed to identify potential drug candidates for
IPF through drug repurposing using ML models and external
validation. We collected drug- and disease-related features from
various databases and used ML models such as RF and LR for
prediction. The trained models were deployed to predict drug−
protein interactions relevant to IPF, and the results were
validated through a literature review and GEO data sets.
Additionally, we employed pathway prediction to prioritize
drugs based on their associations with IPF-related pathways.67,68

The use of ML models allowed us to efficiently analyze complex
data sets and uncover hidden patterns and relationships between
drugs and proteins, which might have been challenging to
identify using traditional methods alone. The combination of RF
and LR showed superior performance in predicting drug−

protein interactions, ensuring a robust basis for drug
repurposing. One limitation of our study is that it relies on the
accuracy and completeness of the data obtained from various
databases.69 Although we performed data cleaning and
preprocessing steps, there might still be errors or missing
information that could affect the accuracy of our predictions.
Moreover, while our ML approach demonstrated reliability and
consistency, it is essential to acknowledge that predictions are
inherently based on associations and might not always reflect
direct causation. Future directions for this research include
enhancing the data set with more recent and comprehensive
data to further improve the accuracy of predictions. Addition-
ally, incorporating additional features, such as drug−drug
interactions and drug-target binding affinities, could provide
more comprehensive insights into drug repurposing for IPF.70,71

Validating the predicted drug candidates in preclinical models
and clinical trials is crucial to assess their safety, efficacy, and
potential for use as IPF treatments.

5. CONCLUSIONS
In conclusion, our study demonstrates that DR is a promising
approach for identifying potential therapies for IPF. By
employing machine learning models, we successfully predicted
drug−protein interactions relevant to IPF, and these predictions
were validated using literature sources and GEO data sets. The
ML models exhibited robust performance in identifying
potential drug candidates, and the overlap between ML-
predicted and GEO-derived drugs further reinforced the
reliability of our approach. Moreover, pathway prediction
allowed us to prioritize drug candidates based on their
associations with IPF-related pathways, enhancing the potential
for successful repurposing. By focusing on pathways directly
implicated in IPF pathogenesis, we identified a subset of drugs
with a higher likelihood of efficacy in treating the disease.
Overall, this study highlights the importance of drug
repurposing as a more efficient and economical approach
compared with de novo drug development for IPF. The
identified drug candidates offer promising avenues for further
preclinical validation and potentially for advancing to clinical
trials. Further research and validation of these candidates are
essential to bring effective and targeted therapies to IPF patients,
ultimately improving their quality of life and outcomes. By
leveraging the power of machine learning and pathway analysis,
our study contributes to the growing field of drug repurposing
and offers hope for the development of more effective
treatments for IPF and other challenging diseases.
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