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Hepatocellular carcinoma (HCC) is a serious global health problem, and

hepatitis B virus (HBV) infection remains the leading cause of HCC. It is

standard care to administer antiviral treatment for HBV-related HCC patients

with concurrent anti-cancer therapy. However, a drug with repressive effects

on both HBV infection and HCC has not been discovered yet. In addition, drug

resistance and side effects have made existing therapeutic regimens

suboptimal. Traditional Chinese medicine (TCM) has multi-ingredient and

multi-target advantages in dealing with multifactorial HBV infection and

HCC. TCM has long been served as a valuable source and inspiration for

discovering new drugs. In present study, a target-driven reverse network

pharmacology was applied for the first time to systematically study the

therapeutic potential of TCM in treating HBV-related HCC. Firstly, 47 shared

targets between HBV and HCC were screened as HBV-related HCC targets.

Next, starting from 47 targets, the relevant chemical components and herbs

were matched. A network containing 47 targets, 913 chemical components

and 469 herbs was established. Then, the validated results showed that almost

80% of the herbs listed in chronic hepatitis B guidelines and primary liver cancer

guidelines were included in the 469 herbs. Furthermore, functional analysis was

conducted to understand the biological processes and pathways regulated by

these 47 targets. The docking results indicated that the top 50 chemical

components bound well to targets. Finally, the frequency statistical analysis

results showed the 469 herbs against HBV-related HCC were mainly warm in

property, bitter in taste, and distributed to the liver meridians. Taken together, a

small library of 913 chemical components and 469 herbs against HBV-related

HCC were obtained with a target-driven approach, thus paving the way for the

development of therapeutic modalities to treat HBV-related HCC.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fcimb.2022.964469/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.964469/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.964469/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.964469/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.964469/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.964469/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2022.964469&domain=pdf&date_stamp=2022-08-15
mailto:yinxiaofeng@sxmu.edu.cn
mailto:yananqiao@sxmu.edu.cn
https://doi.org/10.3389/fcimb.2022.964469
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2022.964469
https://www.frontiersin.org/journals/cellular-and-infection-microbiology


Yin et al. 10.3389/fcimb.2022.964469
Introduction

Hepatocellular carcinoma (HCC) is a serious health

problem worldwide and the second most common cause of

death from all malignancies (Bray et al., 2018). Hepatitis B

virus (HBV) infection is still the most common etiological

factor of HCC worldwide, especially in Asia (Catherine de

Martel et al. , 2015). Currently, essentially all HCC

management guidelines recommend routine antiviral

treatment to avoid HBV reactivation during treatment for

HCC and reduce the recurrence of HCC after curative

treatment (Sarin et al., 2016; European Association for the

Study of the Liver, 2017; Terrault et al., 2018). However, a drug

with repression effects on both HBV infection and HCC is not

yet marketed. In addition, the current therapeutic regimens

are far from optimal because of drug resistance, adverse, and

toxic effects (Qiu et al., 2020). Novel multi-target medications

with anti-HBV and anti-HCC activities are therefore

urgently needed.
Traditional Chinese medicine (TCM) has always held a

privileged position as an essential source of inspiration

for discovering innovative drugs. Because they have

multi-ingredient, multi-target properties that result in

pharmacological synergism, it is possible that TCM had

distinct advantages in dealing with multifactorial HBV

infection and HCC (Kim and Kim, 2020; Zhang et al.,

2020). In addition, TCM has time-honored theories about

the diagnosis and treatment of liver diseases (Wang et al.,

2012). In real clinical practice in China, TCM is part of the

treatment regimen for HBV infection based on the syndrome

of Chinese medicine. In hepatoma cancer therapy, TCM is

mainly used to improve the anticancer drugs’ efficacy and

reduce their toxicity.

Network pharmacology integrates system bioinformatics,

multi-directional pharmacology and omics to develop

new strategies and study drugs ’ action mechanisms
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(Zhang e t a l . , 2021) . I t c an revea l the ro l e s o f

pharmacological interventions, especially multi-target drugs.

The overall concept of network pharmacology concurs with

the “multi-ingredient and multi-target” theory of TCM. In

general, based on the affirmative curative effects of TCM in

treating a certain disease, network pharmacology was

commonly used to predict the potential targets and

underlying mechanisms of TCM interventions (Chen et al.,

2021). In contrast, reverse network pharmacology is to use

diverse public databases for initial disease target selection.

Starting from the screened targets, effective medicine against

this disease are subsequently explored (Dan et al., 2020; Dan

et al., 2022). This specific target-driven assay allows us to

identify medicine with a strong link to a disease. The strengths

of target-driven approaches is that they are often simpler to

execute than traditional phenotypic assays, operating with

understanding of a drug’s specific biological hypothesis from

an earlier stage, thus identifying more highly selective

medicine (Croston, 2017). In addition, target-driven

approaches are often higher in throughput than phenotypic

assays, facilitating faster large-scale screening.

The design of this study is shown in Figure 1. Firstly, the

intersections of HBV and HCC targets were taken as HBV-

related HCC targets. Next, starting from acquired targets, the

corresponding chemical components and herbs were matched.

A target-chemical component-herb network was established.

The coverage of the herbs indicated in the guidelines was then

used to evaluate the findings. Furthermore, functional analysis

was performed for acquired HBV-related HCC targets.

Molecular docking was applied to investigate the binding of

obtained chemical components and targets. Finally, the

frequency of herbs’ properties, tastes, and meridian tropisms

was assessed. Consequently, the aim of this research was to

apply a target-driven reverse network pharmacology strategy to

gain systematic insight into the therapeutic potential of TCM

against HBV-related HCC.
FIGURE 1

Workflow of this study.
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Materials and methods

Searching for HBV-related HCC targets

To obtain HBV targets and HCC targets, the Genecards

database (Safran et al., 2010), and Therapeutic target database

(Wang et al., 2020) were queried. The information on these

targets was standardized using the Uniprot database (The

UniProt Consortium, 2020). PPI data were obtained from the

STRING database (Szklarczyk et al., 2021), with the term “Homo

sapiens” restricted. A confidence level of 0.9 was selected. The

CytoNCA plug-in of Cytoscape was applied to calculate the

topological parameters (Shannon et al., 2003).
Looking for relevant chemical
components that act on HBV-related
HCC targets

To find chemical components acting on relevant HBV-

related HCC targets, the Traditional Chinese Medicine

Systems Pharmacology Database and Analysis Platform

(TCMSP) was searched (Ru et al., 2014). The screening

conditions were as follows: oral bioavailability (OB) ≥ 30%

and drug−likeness (DL) ≥ 0.18, half-life > 4 hours, molecular

weight (MW) ≤ 500 Da, polar surface area (PSA) ≤ 140 Å2 and

number of rotatable bonds (NBR) ≤ 10 (Lipinski et al., 2001;

Huang et al., 2020). Given that the information provided by

TCMSP was predicted by a computer, chemical components

discarded in the initial screening were checked one by one to

ensure that no relevant active chemical components were

missed. These rechecked chemical components were selected
Frontiers in Cellular and Infection Microbiology 03
as chemical components. The lists of the obtained chemical

components and targets were introduced into Cytoscape to

construct the target-chemical component network. A

topological analysis was performed.
Searching for herbs containing obtained
chemical components

The TCMSP was searched to find herbs containing

obtained chemical components. Herbs containing obtained

chemical components were collected and an herb-chemical

component network was constructed. Cytoscape software

was utilized to construct the network of target-chemical

component-herb.
Enrichment analysis

Enriched gene ontology (GO) terms and the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway of 47

targets were carried out by Metascape (Zhou et al., 2019). P value

< 0.01 was considered to indicate significant enrichment.
Molecular docking

The crystal structures of the proteins were downloaded

from the Protein Data Bank database (wwPDB Consortium,

2019). The 2D structures of chemical components were

downloaded from the Pubchem database (https://pubchem.

ncbi.nlm.nih.gov/). The PDB IDs for 46 targets are listed in
TABLE 1 The PDB IDs for 46 targets.

Gene symbol PDB ID Gene symbol PDB ID Gene symbol PDB ID

AR 4OHA JUN 6Y3V CTNNB1 3FQN

ESR1 7BAA CASP8 4JJ7 ERBB2 5MY6

RXRA 6LB4 FOS 1S9K NFKB1 7LFC

MAPK14 3LFF IL2 5LQB PPARA 6KAX

RELA 6NV2 HIF1A 4H6J TGFB1 6OM2

CASP3 4QUJ EGFR 5UG9 EGF 1NQL

TNF 5UUI STAT3 6NJS ITGB3 3T3P

TP53 3D06 STAT1 3wwt SMAD3 5OD6

AKT1 4GV1 CREB1 5ZK1 CDKN1B 6ATH

IL6 1ALU RB1 2R7G CXCL12 4UAI

VEGFA 4GLS MYC 6G6K EP300 3BIY

IL1B 5R8Q PTEN 7PC7 ITGB1 4WK0

MAPK1 4ZZN HSP90AA1 5J2X KRAS 6P0Z

IL4 4YDY MAPK3 4QTB RHOA 6V6U

NFKBIA 6Y1J MAPK8 2XRW – –

CCND1 2W96 PTK2 6YOJ – –
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Table 1. The molecular docking software Sybyl X-2.0 (Tripos,

St. Louis, USA) was used. The Surflex-Dock program was used

for the docking calculations.
Herbal characteristics

A frequency analysis was done to draw the rules of herbs

against HBV-related HCC. Various characteristics like channel

tropism, flavor, and property were examined.
Results

Looking for and screening for HBV-
related HCC targets

An illustration of the screening process for HBV-related

HCC targets is shown in Figure 2. Firstly, 10116 HBV target

information was collected by taking the union of the results

from TTD and GeneCards databases. 17016 HCC targets were

obtained in a similar manner. Secondly, targets with a

relevance score ≥ 10 were selected for research. There were

still 1644 HBV targets and 1921 HCC targets. Thirdly, after

taking the intersection of 1644 HBV targets and 1921 HCC

targets, 927 HBV-related HCC targets were derived. The

protein-protein interactions (PPI) network was an important

tool for learning about cellular regulation and function

(Valgardson et al., 2019). Fourthly, the PPI network of 927

targets was constructed by STRING and visualized by

Cytoscape (Shannon et al . , 2003). The topological

parameters, including betweenness centrality (BC), closeness

centrality (CC) and degree centrality (DC), were calculated for

further screening. Only the nodes with higher values of DC

(above twofold the median degree of all nodes), BC and CC

(above the median value of all nodes) were identified as hub

nodes which played a pivotal role within biological networks

(Yu et al., 2018). After calculation, the thresholds for primarily
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screening were DC ≥ 22, BC ≥ 394, CC ≥ 0.041736 and 204

targets were derived. The thresholds for re-screening were DC

≥ 36, BC ≥ 2544, CC ≥ 0.04245, and this reduced the targets

number to 64. Lastly, any targets that could not map to active

chemical components on TCMSP and HIT website were

discarded. Of these 64 targets, 47 were selected as HBV-

related HCC targets (Table 2). The PPI network of these 47

HBV-related HCC targets are depicted in dashed boxed

section in Figure 2.
Screening for relevant chemical
components and constructing the
target-chemical component network

Forty-seven HBV-related HCC targets were mapped to

2013 chemical components. To make the present study more

close to the real world, chemical components which met

ADME and Lipinskir rules criteria (OB ≥ 30%, DL ≥ 0.18)

were left. Other research-worthy chemical components were

derived based on the official “Chinese Pharmacopoeia” (2020

edition). Eventually, 942 chemical components were

identified. Later, a target-chemical component network was

developed (Figure 3). The target-chemical component

network included 960 nodes and 1854 edges (Zhu et al.,

2019). Orange nodes represented the targets, while green

nodes represented chemical components. The edges

indicated the interaction between targets and chemical

components. The larger the node size, the greater the degree

of connectivity.
Screening for relevant herbs and
constructing the target-chemical
component-herb network

We not only focus on the chemical components, but also

combined with the corresponding herbs. Among the above-
FIGURE 2

Procedure of searching and screening for HBV-associated HCC targets, which were derived by taking the intersection of HBV targets and HCC
targets. Protein-protein interactions amongst the 47 targets were in the dashed box section.
frontiersin.org

https://doi.org/10.3389/fcimb.2022.964469
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Yin et al. 10.3389/fcimb.2022.964469
TABLE 2 Forty-seven HBV-associated HCC targets a.

Gene symbol Uniprot ID Protein name

AR P10275 Androgen receptor

ESR1 P03372 Estrogen receptor

RXRA P19793 Retinoic acid receptor RXR-alpha

MAPK14 Q16539 Mitogen-activated protein kinase 14

RELA Q04206 Transcription factor p65

CASP3 P42574 Caspase-3

TNF P01375 Tumor necrosis factor

TP53 P04637 Cellular tumor antigen p53

AKT1 P31749 RAC-alpha serine/threonine-protein kinase

IL6 P05231 Interleukin-6

VEGFA P15692 Vascular endothelial growth factor A

IL1B P01584 Interleukin-1 beta

MAPK1 P28482 Mitogen-activated protein kinase 1

IL4 P05112 Interleukin-4

NFKBIA P25963 NF-kappa-B inhibitor alpha

CCND1 P24385 G1/S-specific cyclin-D1

JUN P05412 Transcription factor AP-1

CASP8 Q14790 Caspase-8

FOS P01100 Proto-oncogene c-Fos

IL2 P60568 Interleukin-2

HIF1A Q16665 Hypoxia-inducible factor 1-alpha

EGFR P00533 Epidermal growth factor receptor

STAT3 P40763 Signal transducer and activator of transcription 3

STAT1 P42224 Signal transducer and activator of transcription 1-alpha/beta

CREB1 P16220 Cyclic AMP-responsive element-binding protein 1

RB1 P06400 Retinoblastoma-associated protein

MYC P01106 Myc proto-oncogene protein

PTEN P60484 Phosphatidylinositol 3

CAV1 Q03135 Caveolin-1

HSP90AA1 P07900 Heat shock protein HSP 90-alpha

MAPK3 P27361 Mitogen-activated protein kinase 3

MAPK8 P45983 Mitogen-activated protein kinase 8

PTK2 Q05397 Focal adhesion kinase 1

CTNNB1 P35222 Catenin beta-1

ERBB2 P04626 Receptor tyrosine-protein kinase erbB-2

NFKB1 P19838 Nuclear factor NF-kappa-B p105 subunit

PPARA Q07869 Peroxisome proliferator-activated receptor alpha

TGFB1 P01137 Transforming growth factor beta-1 proprotein

EGF P01133 Pro-epidermal growth factor

ITGB3 P05106 Integrin beta-3

SMAD3 P84022 Mothers against decapentaplegic homolog 3

CDKN1B P46527 Cyclin-dependent kinase inhibitor 1B

CXCL12 P48061 Stromal cell-derived factor 1

EP300 Q09472 Histone acetyltransferase p300

ITGB1 P05556 Integrin beta-1

KRAS P01116 GTPase KRas

RHOA P61586 Transforming protein RhoA
Frontiers in Cellular and Infection Microbiology
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aThe targets are sorted in decreasing order of degree value.
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identified 942 chemical components (components in herbs),

no corresponding herbs for 29 chemical components could be

found. The remained 913 chemical components were provided

in Supplementary Material and mapped to 469 herbs. A full

list of 469 herbs was available from the Supplementary

Material. That is to say, 469 herbs were associated with 47

targets by linking 913 chemical components. The network of

47 targets-913 chemical components-469 herbs was

established by combining target-chemical component

network and herb-chemical component network (Figure 4).

To make the network more concise and more intuitive,

chemical components and herbs with degree values less than

six were hidden. The target-chemical component-herb

network consisted of 1345 nodes and 4619 edges. Like

Figure 3, orange and green nodes represented targets and
Frontiers in Cellular and Infection Microbiology 06
chemical components. Blue nodes in Figure 4 represented

mapped 469 herbs.

To assess the reliability of the final results, the

recommended herbs in the guidelines for diagnosis and

treatment of primary liver cancer in China (2020 Edition)

and the clinical guidelines of diagnosis and treatment of

chronic hepatitis B with traditional Chinese medicine (2018

Edition) were summarized. After removing duplicates, there

were 112 herbs listed in these two guidelines. After

comparison, 86 out of 112 herbs (almost 80%) were included

in the 469 herbs, suggesting that the herbs that resulted from

target-driven reverse network pharmacology were not

divorced from clinical practice. Through design, new herbal

formulae against HBV-related HCC could be developed based

on the individual synergistic nature of each herb and the “Jun-
FIGURE 3

The 47 HBV-associated HCC targets-913 chemical components network. Orange nodes represented the targets, while green nodes
represented chemical components. The edges indicated the interaction between targets and chemical components.
FIGURE 4

The 47 targets-913 chemical components-469 herbs network. Orange, green, and blue nodes represented the targets, chemical components,
and herbs, respectively.
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Chen-Zuo-Shi” (also known as “sovereign-minister-assistant-

courier”) rule.
The mechanisms of the 47 targets

To determine the potential mechanisms that the 47 HBV-

related HCC targets were involved in, functional enrichment

analysis was conducted. Pathway enrichment from the KEGG

database showed that 174 pathways passed the filtering

criteria, and the top 20 pathways according to p value were

in Figure 5A. The most significantly enriched pathway was

“pathways in cancer” with 40 targets clustered. This pathway

was reported playing important tasks in HCC progression

(Zhou et al., 2015). Three pathways including “hepatitis B”

pathway were selected as the second group of most-

significantly enriched pathways with quite similar p values

and gene numbers. KEGG analyses highlighted the 47 targets

that were not only topological connectors but also functional

connectors in the crosstalk network of HBV and HCC. In

addition, “human cytomegalovirus infection” and “kaposi

sarcoma-associated herpesvirus infection” were also enriched

in the second group. The human cytomegalovirus was a DNA

virus that belonged to the herpes virus family. Therefore, the

application of the matched chemical components and herbs

based on these 47 targets may not be limited to HBV disease

but also extend to human cytomegalovirus and kaposi

sarcoma-associated herpesvirus infection.

The 47 targets were assigned to 1416 Gene Ontology (GO)

terms, including 1280 biological process terms, 77 molecular

function terms, and 59 cellular component terms. The top 20
Frontiers in Cellular and Infection Microbiology 07
GO terms ranked by p value are in Figure 5B. The types of the

top 20 GO terms were biological processes and molecular

functions instead of cellular components. The most

significantly enriched terms were closely related to cell

differentiation, proliferation, and migration processes, which

were strongly associated with cancer occurrence, development,

and metastasis (Sack et al., 2018). These enriched terms were

also observed in previous HBV-related HCC literature (Wang

et al., 2017; Fan et al., 2017; Zhang et al., 2021). Two molecular

function terms most significantly enriched were associated

with DNA-binding transcription factor binding, which was

also closely linked to cancer (Bai et al., 2020).
Binding affinities between top 50
chemical components and targets

Molecular docking can foresee binding modes of small

molecules with target proteins and predict molecular

interactions (Saikia and Bordoloi, 2019). According to the rule

of Sybyl, the total score shows the binding affinity between the

small molecule and a potential target. A higher total score

suggests a closer interaction between small molecule and

potential target (Li et al., 2022; Zhang et al., 2019). A total

score ≥ 4.0 indicates that the small molecule binds well to the

targets (Guo et al., 2022). Considering that 3D structure for

CAV1 was not available in the PDB database, docking studies

were performed between 46 targets and the top 50 chemical

components ranked by node degree value. As shown in Figure 6,

2300 scores were obtained, and the obtained total scores were

presented on a color scale (red, higher than 4.0; blue, less than
A B

FIGURE 5

The functional enrichment analysis of 47 targets. (A) The top 20 KEGG pathways by p value. The bubble size indicated the number of targets
clustered, and the color indicated the p value of the enrichment analysis. (B) The GO terms were sorted according to p value, with the most
significantly enriched terms at the top. BP, biological processes. MF, molecular functions. The length of each bar indicated the number of
targets clustered, and the color indicated the p value of the enrichment analysis.
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4.0). The average score of 2300 sets of receptor-ligand docking

results was 5.8, indicating good binding affinities between these

50 chemical components and the 46 targets in the target-

chemical component network.

The top three binding score values were yielded by the

binding of AKT1-hesperidin (score: 13.6), CXCL12-

hesperidin (score: 12.4) and AKT1-rutin (score: 11.9). The

corresponding hydrogen bonding plots are shown in Figure 7.

It can be seen from Figure 7 that each ligand (chemical

component) interacted with multiple residues of the target

through at least one hydrogen bond. On the other hand,

all these three combinations were not discovered in the

target-chemical component network. That is, the potential

chemical component-target combinations may be far more

diverse than that included in the TCMSP database. There

were still large amounts of interactions between active TCM

chemical components and HBV-related HCC targets waiting

to be further mined. The docking results could provide

rapid and inexpensive technique support for future

laboratory screening of related chemical component

and herbs.
Properties, tastes, and meridian tropisms
of herbs against HBV-related HCC

Figure 8 represented the frequency analysis results, which

summarized the rules of 381 herbs that could be found in the
Frontiers in Cellular and Infection Microbiology 08
Chinese Pharmacopoeia (2020 edition). In TCM, the

properties of herbs mean their effects, which are classified

into cold, cool, even, hot, and warm. The properties of Chinese

medicinal herbs served as the foundation for herb analysis and

clinical application (Huang et al., 2018). As shown in

Figure 8A, the properties of 381 herbs were mainly warm

(26.4%), followed by cold (23.6%). The total proportion of

these two types of medicines accounted for more than 50% of

all herbs. According to TCM theory, warm medicine can be

warming and nourishing, thus reinforcing healthy Qi and

helping to eliminate pathogenic factors (Liu et al., 2019).

Cold medicine generally has a clearing action to get rid of

the body of excess substances to regulate the balance of the

body (Xia et al., 2020).

Herbs are also categorized according to their flavors,

including bitter, pungent, salty, sour, and sweet. In terms of

tastes, bitter accounted for the largest number (Figure 8B).

The second was pungent. Bitter medicines have downward

effects such as clearing away dampness and purging, whereas

pungent medicines have outward and upward effects of

dispersing (Xia et al., 2020). Using bitter medicines and

pungent medicines in combination can dissolve stagnation

of blood. This makes blood circulate smoothly, which can

relieve pain.

Meridian tropisms are TCM organ systems. Namely, the

target organs of herbs, like the heart, spleen, and liver (Xu et al.,

2019). The theory of meridian tropism plays an important role

in the clinical selection of TCM. Concerning meridian
FIGURE 6

The binding scores between 46 targets (x axis) and the top 50 chemical components ranked by node degree value (y axis). Colors indicated
different scores. (red, higher than 4.0; blue, less than 4.0).
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tropisms, half of the herbs were liver meridian, which matched

the disease region of HBV and HCC (Figure 8C). The second

most matched meridian was the lung meridian. The liver

governs regulating and ascending. The lung governs

purification and descending. Both organs complement each

other to harmonize qi, blood, and body fluid and to restore the

non-pathological state (He et al., 2019).
Discussion

The diverse and growing knowledge of genomic

information, multilevel biological interactions, and disease

mechanisms facilitates the elucidation and discovery of

new potential targets at which novel treatment development

could be directed (Hoehe and Morris-Rosendahl, 2018).

Target-driven reverse network pharmacology is one such

strategy to use geneomewide target-ligand interaction

networks in TCM to link genetic and drug data together

(Dan et al., 2020).

Before the introduction of target-driven approaches, drug

discovery was based primarily on phenotypic assays, often

with limited information about the molecular mechanisms of

disease. It is often necessary to characterize the mechanisms of
Frontiers in Cellular and Infection Microbiology 09
active molecules identified in phenotypic screens to assist with

the optimization of a candidate. Moreover, phenotypic assays

exhibited lower throughput than target-driven approaches. In

contrast, target-driven approaches allow significantly faster

drug discovery and development than conventional

phenotypic approaches.

Docking results suggested that the three strongest binding

were AKT1-hesperidin, CXCL12-hesperidin and AKT1-rutin.

Interestingly, these three sets of target-chemical component

interaction were in line with previous experimental data.

Hesperidin is a kind of citrus flavonoids and numerous

studies have delineated anti-HBV and anti-HCC activities of

hesperidin (Li et al., 2018; Parvez et al., 2019; Khuanphram

et al. , 2021). It has been demonstrated that AKT1

phosphorylation in RBL-2H3 cells and male rats can be

suppressed by hesperidin (Kobayashi and Tanabe, 2006; Li

et al., 2018). Hesperidin has been also reported attenuating the

secretion of CXCL12 from A549 cells in a dose-dependent

manner by ELISA method (Xia et al., 2018). Rutin, a flavonoid

widely found in plants, exhibits anti-HCC activities in Wistar

rats (Pandey et al., 2021). Rutin can regulate phosphorylated

AKT1 expression in different tissues (Li et al., 2022; Liang

et al., 2018; Fei et al., 2019). With the advent of increasing

large-scale data acquisition, the application of network
FIGURE 7

The hydrogen bonding plots of (A) AKT1-hesperidin, (B) CXCL12-hesperidi, and (C) AKT1-rutin. All ligands were depicted in a capped stick
representation, while the interacting residues were shown as lines. The hydrogen bonds were yellow dashed lines.
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pharmacology in herbal formulas has provided a new horizon

in the study of related domains such as active compound

discovery, mechanism research, quality control, and others.

Network pharmacology is expected to help traditional herbal

medicine transition from experience-based medicine to

evidence-based medicine (Li et al., 2022). However, it has

inherent limitations, such as a lack of clinical data (Vogt and

Mestres, 2019; Wu et al., 2021). In this respect, the major

limitation of this work is a lack of in vivo and in vitro

experiments. Experimental validations are needed to further

verify our findings in later studies.
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Conclusion

To our knowledge, this was the first attempt to

systematically study HBV-related HCC treatment with TCM

using target-driven reverse network pharmacology. A small

library of 913 chemical components and 469 herbs against

HBV-related HCC were acquired, with the hope of providing

theoretical reference for more therapeutic options and may

eventually benefiting clinical practice. Moreover, our studies

promise to greatly expand the previous understanding of

combined use of TCM-derived and western medicine.
A B

C

FIGURE 8

(A) Properties, (B) tastes, and (C) meridian tropism of herbs against HBV-associated HCC.
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