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Abstract

The well-recognized phospholipids (PLs) of Mycobacterium tuberculosis (Mtb) include several acidic species such as
phosphatidylglycerol (PG), cardiolipin, phosphatidylinositol and its mannoside derivatives, in addition to a single basic
species, phosphatidylethanolamine. Here we demonstrate that an additional basic PL, lysinylated PG (L-PG), is a component
of the PLs of Mtb H37Rv and that the lysX gene encoding the two-domain lysyl-transferase (mprF)-lysyl-tRNA synthetase
(lysU) protein is responsible for L-PG production. The Mtb lysX mutant is sensitive to cationic antibiotics and peptides, shows
increased association with lysosome-associated membrane protein–positive vesicles, and it exhibits altered membrane
potential compared to wild type. A lysX complementing strain expressing the intact lysX gene, but not one expressing mprF
alone, restored the production of L-PG and rescued the lysX mutant phenotypes, indicating that the expression of both
proteins is required for LysX function. The lysX mutant also showed defective growth in mouse and guinea pig lungs and
showed reduced pathology relative to wild type, indicating that LysX activity is required for full virulence. Together, our
results suggest that LysX-mediated production of L-PG is necessary for the maintenance of optimal membrane integrity and
for survival of the pathogen upon infection.
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Introduction

Mycobacterium tuberculosis (Mtb), the causative agent of tubercu-

losis, is a successful human pathogen that has infected more than

one-third of the world’s population. The success of Mtb as an

infectious agent relies, in part, on its ability to modulate the

expression of bacterial factors in response to infection so that it can

successfully multiply within the hostile host environment [1]. The

characteristic lipid-rich cell envelope of Mtb is one of the factors

believed to contribute to its survival in vivo [2,3]. It is generally

believed that Mtb polar lipids (PoLs) consisting of acidic

phospholipids (PL) such as cardiolipin (CL), phosphatidylglycerol

(PG), phosphatidylinositol and its mannoside derivatives, in

addition to basic PL such as phosphatidylethanolamine, are

important constituents of the Mtb membrane [2]. Mtb PLs are

known to function as important immune modulators [4] and have

been shown to be released within phagosomes and transferred into

lysosomes [5,6]. It is interesting to note that PG, which is an

abundant PL in other bacteria, is only a minor species in

Mycobacteria, whereas CL is a major species [2,3] with a high

turnover rate [7].

The relative ratio of acidic to basic PLs is one of the

determinants of net membrane charge. In some Gram-positive

pathogens such as Staphylococcus aureus and Listeria monocytogenes, a

fraction of the PG or CL molecules, or both, are lysinylated by the

esterification of a glycerol hydroxyl group to lysine. Lysinylation

imparts a net positive charge to these acidic PLs. This could, in

turn, influence the ratio of acidic to basic PLs, resulting in an

altered membrane charge. This could explain the bacterial

susceptibility to cationic antibiotics (CAMAs) and peptides

(CAMPs) [8,9]. Although Mtb PLs have been well characterized

for more than four decades, it is unknown if lysinylated PLs are a

subset of the Mtb PLs and, if so, what the consequences associated

with the absence of these lysinylated PLs might be. The present
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study demonstrates that the Mtb lysX gene, encoding a two-domain

protein, is required for the production of lysinylated PG (L-PG),

and the absence of L-PG is associated with changes in membrane

potential, increased sensitivity to CAMAs and CAMPs, and

growth defects in vivo.

Results

Identification of Lysinylated PLs in Mtb
In order to detect lysinylated PLs in Mtb, actively growing

cultures were incubated with 14C-lysine for 3 days; total lipids were

extracted, and PoLs were resolved by thin layer chromatography

(TLC). A distinct radiolabeled lipid was evident, indicating that

lysinylated PLs are members of the Mtb PoL pool (Fig. 1A, lane i).

In S. aureus, the mprF gene is responsible for L-PG production [8].

Homology searches of the Mtb genome identified Rv1640c as lysX,

which encodes an mprF-like gene as a fusion to a lysyl-tRNA

synthetase (lysU). The latter gene is distinct from the essential

housekeeping tRNA synthetase (Rv3598c). The mprF gene in S.

aureus encodes a protein with potential lysyl transferase activity

[10]. In order to evaluate the function of lysX, we created a lysX

mutant strain, Rv-80lys, by replacing the majority of the coding

region comprising the mprF and lysU domains with a gentamycin

resistance cassette using homologous recombination (see Methods

section). A complementing derivative of this strain, Rv-81ami, was

created by integrating a plasmid expressing the intact lysX gene

under the control of the amidase promoter [11]. The lysX mutant

strain was found to be defective in the production of L-PoLs

(Fig. 1A, lane iv compared with lane i). L-PoL production was

restored, however, in the lysX complemented strain Rv-81ami

(Fig. 1A, see lane vii), confirming that the lysX gene product is

responsible for the production of L-PoLs. Staining TLC plates

with iodine (lanes ii, v, viii and xi) or ninhydrin (lanes iii, vi, ix and

xii), on the other hand, did not detect L-PoLs, indicating that they

may not be an abundant lipid species. We cultured Mtb in the

presence of 14C-acetic acid and extracted total lipids, followed by

TLC separation and subsequent quantification of L-PoL relative

to total input radioactivity, and found that L-PoL accounts for

approximately 0.3% of the total lipids (data not shown).

Structural analysis of the lysinylated polar lipid
In order to determine the nature of the L-PoL, preparative 2D-

TLC was carried out to collect L-PoLs. Structural analysis of the

L-PoL was carried out using a combination of MALDI-MS, amino

acid analysis and NMR (Fig. 2A–D). The MALDI-MS analysis in

negative-ion mode revealed m/z 681 ([M-H]2) to be the molecular

ion peak (Fig. 2A). The 1H-NMR results confirmed the presence of

an acetyl group at dCH3 2.1 ppm and dCH2 from the primary

amine in lysine at d 2.4 ppm (Fig. 2B), whereas the 31P-NMR

spectrum showed a shift in the phosphorus resonance spectrum at

d 214.96 ppm (Fig. 2B inset). Fatty acid analysis demonstrated

that the molecule was C18 (data not shown), and amino acid

analysis following acid hydrolysis confirmed the presence of lysine

(Fig. 2C). Together, these data demonstrate that lysine is

covalently linked to PG with the predicted structure shown in

Fig. 2D. The L-PoL in the text is referred to hereafter as L-PG.

Similar structural analyses of the corresponding unlabeled PoL of

the slower migrating radioactive lipid species of lysX (Fig. 1A, lane

iv) could not be done, given that it was present in negligible

quantities (not shown). The thermal decomposition products of

lysine are well characterized [12]. We speculate that the PoL

accumulation in the lysX strain is a consequence of lysine

degradation. Further studies are required to clarify the nature of

the lipid species accumulating in the lysX mutant.

An intact lysX gene containing lysU and mprF domains is
necessary for the production of L-PG

As previously noted, the Mtb lysX is a fusion gene encoding both

mprF and lysU activities, with mprF located at the 59 end of the lysX

gene (see Fig. 1B). The Gram-positive bacteria that have been

shown to produce L-PG, however, contain only mprF. The Mtb

MprF and S. aureus MprF share three domains of unknown

function, DUF470, DUF471 and DUF472. In order to evaluate

whether L-PG production in Mtb requires the activities of both the

LysU and MprF domains, we generated Rv-82med, a lysX

complemented derivative that produces only the MprF domain

(see Methods) and evaluated its ability to produce L-PG following

the incubation of actively growing cells with radiolabeled lysine.

The Rv-82med strain, much like Rv-80lys, was defective in L-PG

production (see Fig. 1A, lane x and compare with lane iv).

Quantitative real-time PCR analysis using primers and TaqMan

probes targeted to the mprF region of lysX (compared to the 16S

rRNA housekeeping gene) revealed that the expression of mprF in

Rv-82med was comparable to that in Rv-03 wild type and Rv-

81ami (data not shown). Together, these results indicate that Rv-

82med expresses mprF and that the MprF domain alone is not

sufficient for the production of L-PG in Mtb.

Phenotypes associated with the absence of L-PG
production

Gram-positive organisms such as S. aureus and B. subtilis are

sensitive to cationic antimicrobial antibiotics (CAMAs) such as

vancomycin (Van) and polymyxin-B (PMB) and to cationic

antimicrobial peptides (CAMPs) such as human neutrophil peptide

(HNP-1) and lysozyme. On the other hand, Mtb is generally

tolerant to these compounds. HNP-1 and lysozyme are produced

in neutrophils and macrophages, respectively. It is generally

believed that CAMPs induce cell death by interfering with the

integrity of the negatively charged membrane. Furthermore, the

ability of intracellular pathogens to resist the action of CAMPs

Author Summary

The human pathogen Mycobacterium tuberculosis (Mtb)
survives in the hostile intracellular environment, in part, by
withstanding the actions of host-induced cationic antimi-
crobial peptides (CAMPs). Membrane phospholipid com-
position and the resultant charge could play an important
role in Mtb survival within the host. Acidic phospholipids
such as cardiolipin, phosphatidylinositol and its mannoside
derivatives, phosphatidylglycerol, and a single basic
species, phosphatidylethanolamine, are constituents of
the Mtb membrane bilayer. We demonstrate that lysiny-
lated phosphatidylglycerol (L-PG) represents another basic
phospholipid and that the lysX gene, which encodes a
two-domain protein with lysyl transferase and lysyl-tRNA
synthase activities, is necessary for L-PG production. We
show that L-PG is required for maintenance of an optimal
membrane potential and resistance towards CAMPs.
Phagosomes containing the lysX mutant showed an
increased association with lysosomes, and the lysX mutant
showed growth defects in mouse and guinea pig lungs,
indicating that LysX activity is required for full virulence.
Collectively, our results suggest that LysX activity, which is
responsible for the production of L-PG, is necessary for
maintenance of an optimal membrane potential such that
the pathogen can grow optimally upon infection, presum-
ably by withstanding the actions of CAMPs.

Mtb lysX and Lysinylated Lipid
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Figure 1. Polar lipid and Southern blot analysis of the lysX mutant strain. A: Mtb strains were grown in the presence and absence of 14C-
lysine. Total lipids were extracted in chloroform:methanol (2:1 v/v) and resolved by TLC on Silcia Gel 60 (EMD Chemicals, New Jersey) in a solvent
system of chloroform:methanol:water (65:25:4 v/v/v). TLC plates were either visualized by autoradiography (lanes i, iv, vii and x), exposed to iodine
vapors (lanes ii, v, viii and xi), or stained with ninhydrin (lanes iii, vi, ix and xii). B: Southern blot analysis of Mtb lysX mutant strains. B-i: The ClaI
fragment bearing the wild type lysX gene (3.5 kb) with the locations of the mprF and lysU regions marked. The dark box designated as ‘‘probe 1’’ is an
approximately 750 bp fragment that hybridizes with the 59-end of lysX and 160 bp of the lysX coding region. The ClaI fragment bearing the mutant
lysX gene disrupted with the gentamycin cassette (0.9 kb) is also shown. The dark band designated as ‘‘probe 2’’ is the 900 bp gentamycin gene that
hybridizes with the mutant lysX gene. B-ii: Southern blot analysis of ClaI-digested Mtb genomic DNA hybridized with probe 1. The 7 kb and 4 kb
band positions represent Rv-03 and Rv-80lys, respectively. Note that the complemented copy contains a band corresponding to the integrated copy
of lysX gene plus the flanking plasmid sequence. B-iii: Southern blot analysis of ClaI-digested Mtb genomic DNA (see Fig. 1B-iii) hybridized with
probe 2. pMMR85 is a positive control plasmid containing the mutant lysX gene plus flanking regions.
doi:10.1371/journal.ppat.1000534.g001

Mtb lysX and Lysinylated Lipid
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produced by the host is, in part, responsible for pathogen

proliferation upon infection [13]. The presence of lysine groups

on the acidic PG would impart a net positive charge and,

therefore, could affect the net ratio of positively charged to

negatively charged PL species. Thus, the absence of L-PG could

make the Mtb membrane relatively acidic, thereby sensitizing the

bacterium to the action of CAMAs. To test this possibility, actively

growing Rv-03, Rv-80lys, Rv-80ami and Rv-82med were exposed

to Van and PMB, and growth and viability were measured

(Fig. 3A). Van and PMB interfered with the growth and viability of

Rv-80lys and Rv-82med (see Fig. 3A-ii and 3A-iii), inset showing

viability after 3 days of exposure; and Figure S1 showing viability

after 6 days of exposure). Comparisons of growth, measured as the

change in optical density (OD), and viability, measured as the

change in CFU, revealed that while the lysX mutant was relatively

more sensitive to Van and PMB than Rv-03, it was able to recover

when grown in the absence of antibiotics, indicating that Van and

PMB do not exert potent bactericidal activity. All of the strains

grew well in the absence of antibiotics, although the lysX mutant

showed a small reduction in growth rate in the absence of

antibiotics (Fig. 3A-i), inset shows an approximately 0.3 log

reduction in viability). Visualization of Rv-80lys cells following

nucleoid staining and bright field or fluorescence microscopy did

not reveal any significant differences in cell morphology or

nucleoid organization (data not shown).

The increased sensitivity of the lysX strain to antibiotics suggests

an enhanced association between the two. To test this possibility,

actively growing lysX and Rv-03 cells were stained with

fluorescent-vancomycin (Fl-Van), and the staining patterns were

visualized by fluorescence microscopy. Earlier studies revealed that

in stained Mtb cells, Fl-Van associates with the nascent growth

zones, primarily at the poles and mid-cell septa [14]. These studies

also indicated that not all Mtb cells could be stained with Fl-Van

[14]. We found that a higher percentage of lysX cells were stained

with Fl-Van compared to Rv-03 (see Figure S2). Approximately

52% of lysX cells showed staining patterns not only at the mid-cell

Figure 2. Structural analysis of L-PoL. A: MALDI mass spectrometry analysis of L-PG in negative-ion mode. The m/z 681 [M-H]2 represented the
molecular ion peak. B: Structural analysis of L-PG. 1H-NMR spectrum of L-PG. The acetyl group can be found at dCH3 2.1 ppm, and dCH2 from the
primary amine in lysine was detectable at 2.4 ppm. The inset shows the 31P-NMR spectrum, in which the phosphorus resonance shifted at
214.96 ppm. C: The amino acid profile of L-PG. Pure lipid was hydrolyzed with 6 N HCl for 24 h, and the soluble hydrolytic product was analyzed in
an amino acid analyzer. Note that the elution of lysine at 54.33 min coincides with the standard (not shown). The small peak at position 41 min
corresponds to a buffer change during the run, and the ammonia peak at 56.11 min is from the buffer used to run the analyzer. D: The proposed L-
PG structure. The proposed structure of L-PG with a C18 fatty acid identified from fatty acid analysis (data not shown).
doi:10.1371/journal.ppat.1000534.g002

Mtb lysX and Lysinylated Lipid
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and polar septa but also over the entire length; meanwhile, only

32% of wild type cells showed such a staining pattern (see Figure

S2 legend for details). These results are consistent with the idea

that Van is able to gain better access to Rv-80lys cells compared to

Rv-03 cells.

Next, we examined whether the lysX mutant was also sensitive

to lysozyme and HNP-1. Similar to the results seen with the

CAMAs, HNP-1 and lysozyme significantly reduced the viability

of Rv-80lys compared to Rv-03 and Rv-81ami (Fig. 3B-i and 3B-

ii), see legends for P values). The phenotype of Rv-82med was

found to be similar to that of Rv80lys (Fig. 3B). Together, these

results indicate that the absence of L-PG production is associated

with increased sensitivity of the bacterium to the actions of

CAMPs and CAMAs. Importantly, these experiments also showed

that complementation of the lysX mutant restored the wild type

growth phenotype under these conditions (Fig. 3A and 3B).

Altered membrane potential of Mtb lysX mutants
We wished to test whether the absence of L-PG production in

Rv-80lys cells was associated with changes in the properties of the

PL bilayer (e.g., membrane potential). The membrane potential of

the Rv-80lys cells was determined using a slow-response

membrane potential-sensitive dye, DiOC2(3), and comparing with

Rv-03 cells. This cationic cyanine dye exhibits green fluorescence

(Ex = 488 nm and Em = 520 nm) in the monomeric state and red

fluorescence (Ex = 488 nm and Em = 620 nm) in the aggregated or

oligomeric state. As a negative control, the membrane potential

was measured following exposure of the cells to the proton

ionophore m-chlorophenylhydrazone (CCCP), which is known to

eliminate the proton gradient across the membrane. As seen in

Figure 4, the membrane potentials (measured as the ratio of red to

green fluorescence) of the lysX mutant Rv-80lys and Rv-82med

were 21% and 17%, respectively, higher than that of the Rv-03

and complemented Rv-81ami (P,0.002). The increased ratio of

red to green fluorescence observed in lysX mutants suggests

accumulation of the positively charged lipophilic dye on the

negatively charged membrane. The red to green fluorescence ratio

in all strains was decreased to similar levels (,41%) in the presence

of CCCP (P = 0.001). Presumably, this reduction reflects the

completely depolarized state of the membrane. Together, these

results indicate that the membranes of Rv-80lys and Rv-82med

are hyperpolarized relative to Rv-03 and Rv-81ami.

Figure 3. Phenotype of lysX strains. Panel A: The growth and viability of the Mtb lysX strains in 7H9 broth in the absence of antibiotics -i. A-ii:
The growth and viability of cultures grown in the presence of 1.0 mg/ml Van. At the indicated times, growth was measured. After 3 days of growth in
broth, viability was determined by plating cells on Middlebrook 7H11 agar and determining the CFU. Symbols: Filled diamonds – Rv-03; grey squares
– Rv81-ami; white triangles – Rv-80lys; crosses – Rv-82med. The inset shows the viable cell count. Black bars - Rv-03, grey bars - Rv-81ami, white bars -
Rv-80lys and dashed bars - Rv82-med. A-iii: The growth and viability of cultures grown in the presence of 100 units/ml PMB. * Represents a P
value,0.001 versus Rv-03 and Rv-81ami (Student-Newman-Keuls Method); bars represent means6standard error. Panel B: The growth and viability
of Mtb strains in the presence of 1 mg/ml lysozyme -i- or HNP-1 -ii. There was no significant reduction in viability compared to cultures grown
without TFA (data not shown). The stars represent P,0.001 versus Rv-03 and Rv-81ami (Student-Newman-Keuls Method). The bars represent the
mean6standard error.
doi:10.1371/journal.ppat.1000534.g003

Mtb lysX and Lysinylated Lipid
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lysX mutant phenotype in macrophages
We next examined whether the Mtb lysX mutant Rv-80lys

showed proficient growth in macrophages upon infection of the

THP-1 macrophage cell line. The Rv-80lys showed a modest

growth defect in macrophages compared to Rv-03 and comple-

mented Rv-81ami (see Fig. 5, P = 0.01 for day 3, P = 0.006 for day

6). Similar results were also noted for Rv-82med (Fig. 5, P,0.014

for day 3 and P,0.03 for day 6 compared to Rv-03).

Intracellular replication of Mtb is, in part, due to its ability to

resist the delivery of its phagosomes to lysosomes [15]. This

process can be visualized by examining the co-localization of Mtb

with the lysosome-associated-membrane protein (LAMP-1). In

order to address whether the lysX mutant had a phagosome-

lysosome fusion defect, we infected macrophages with Mtb strains

expressing green-fluorescent protein and visualized co-localization

with LAMP-1. Increased association of phagosomes containing

Rv-80lys with lysosomes was evident compared to Rv-03 and

complemented Rv-81ami (Fig. 6, p,0.001). Rv-82med behaved

like Rv-80lys, indicating that the full-length lysX gene is required

for functional activity. These results are consistent with the

hypothesis that the lysX mutant is not as proficient as the Rv-03

strain in preventing fusion of phagosomes with lysosomes, which

could contribute to defects in intramacrophage replication.

The production of inflammatory cytokines tumor necrosis

factor-alpha (TNF-a), IL-6 and IL-10 is necessary to mount a

protective immune response against Mtb infection [16,17,18].

TNF-alpha restricts the growth of Mtb in alveolar macrophages

[18], and the multiplication of virulent Mtb in monocyte-derived

macrophages (MDMO) is associated with suppression of TNF-a
production during the early periods after infection. To test selected

pro-inflammatory cytokine responses of macrophages, MDMO

were infected with Rv-80lys and Rv-03 strains, and the production

of TNF-a and IL-6 was measured (Fig. 7). As can be seen, the

secretion of TNF-a was elevated after infection with the lysX

mutant compared to the wild type and complemented strains,

similar to MDMO cells exposed to PMA (Fig. 7A). Similarly, the

secretion of IL-6 was also increased following infection with the

lysX mutant compared to the wild type and complemented strains

(Fig. 7B).

lysX has growth defects in vivo
To evaluate the phenotype of lysX in vivo, C57BL/6 mice and

Hartley strains of guinea pigs were aerosol infected with lysX, and

the viability of the pathogen was measured (Fig. 8). The lysX

mutant showed only a modest growth defect in mice (Fig. 8A) but

was clearly attenuated in guinea pigs (Fig. 8B) and showed reduced

dissemination to the spleen (Figure S4). Gross pathology and

histopathology of the lungs of infected mice at 28 days (Fig. 8C

and E) and guinea pigs at 42 days (Fig. 8D and F) showed distinct

differences between the wild type and the lysX mutant.

Hematoxylin-eosin staining confirmed that the lungs infected with

Rv-03, but not those infected with Rv-80lys, had extensive

inflammation in both species and showed caseating granulomas in

guinea pigs. The vast differences in the growth kinetics and

pathology between the wild type and lysX mutant pathogens

indicate that LysX activity is required for full virulence.

Interestingly, the lysX complemented strain Rv-81ami behaved

like the lysX mutant with respect to in vivo growth and pathology

(data not shown), indicating that the complemented strain is not

able to restore lysX function in vivo.

The ability of Mtb strains to produce complex cell wall-

associated lipids called phthiocerol dimycocerosates (PDIM) and to

bind and reduce neutral red dye is associated with virulence.

Avirulent and attenuated strains are defective in these processes.

Furthermore, virulent Mtb strains propagated in the laboratory

often lose these properties [2,19,20,21]. The neutral red reduction

and PDIM profiles of the lysX mutant were comparable to those of

wild type cells (Figure S5), indicating that the observed in vivo

growth defects of the lysX mutant are not due to a loss of PDIM

and defect in neutral red reduction.

Discussion

The primary conclusion of our data is that L-PG is one of the

basic PLs in Mtb and that the lysX gene, encoding the two-domain

LysX protein, is responsible for its production. Although L-PG is a

Figure 5. The viability of lysX in macrophages. THP-1-derived
macrophages were infected with Mtb strains; at the indicated times
following infection, the macrophages were lysed, and the Mtb viability
was determined. The white bars represent Rv-80lys; the dashed bars
represent Rv-82med; the grey bars represent Rv-81ami; and the black
bars represent Rv-03. Data are mean6standard error from three
independent experiments, and the Mann-Whitney Rank Sum Test was
used for data analyses.
doi:10.1371/journal.ppat.1000534.g005

Figure 4. Determination of the membrane potential of Mtb
strains. The relative membrane potential was calculated using the
average mean fluorescence intensity (the ratio between the average red
fluorescence and the average green fluorescence). The graph shows the
average of four experiments. Wild type and lysX mutant strains were
incubated with 3 mM DiOC2(3) for 5 h in either the presence (+) or
absence (2) of 100 mM CCCP. The bars represent the mean6standard
error. * Represents P,0.002 versus Rv-03 and Rv-81ami (Student-
Newman-Keuls Method), whereas # refers to P = 0.001 compared to
untreated with CCCP.
doi:10.1371/journal.ppat.1000534.g004

Mtb lysX and Lysinylated Lipid
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Figure 6. Co-localization of Mtb with LAMP-1-expressing phagosomes. Panel A: THP-1-derived macrophages were infected with GFP-
expressing Mtb strains (Rv-03, Rv-80lys, Rv-81ami and Rv-82med). Bacteria (green spots) inside LAMP-1-positive phagosomes (red) produce a yellow
signal indicating co-localization (merged). Panel B: The percent co-localization was determined by visual scoring of yellow spots after 72 h of
infection. We analyzed 126 macrophages for Rv-80lys, 164 for wild type, 168 for complemented, and 127 for Rv-82med and scored 534 bacterial cells
for Rv-80lys, 1,307 for wild type, 848 for Rv-81ami, and 402 for Rv-82med. Mtb Rv-03 (black bar; 21.261.6%), Rv-80lys (white bar; 52.063.0%), Rv-
81ami (grey bar; 26.462.2%) and Rv-82med (dashed bar; 52.662.8%). * P,0.001 versus Rv-03 and Rv-81ami using the Student-Newman-Keuls
Method; bars represent mean6standard error.
doi:10.1371/journal.ppat.1000534.g006

Mtb lysX and Lysinylated Lipid
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minor PL species of Mtb, its absence has several consequences, one

of which is an alteration of the membrane potential. This

underscores the role of LysX activity in maintaining optimal

membrane function. Presumably, the absence of L-PG in the lysX

mutant shifts the ratio of acidic to basic PLs, thereby hyperpo-

larizing the membrane. A consequence of the absence of L-PG is

the increased sensitivity of the pathogen to lipophilic antibiotics

such as PMB and Van. It is likely that hyperpolarization of the

membrane in the lysX mutants due to its net negative charge

promotes interactions with cationic peptides and antibiotics

produced by the host immune system, which in turn could lead

to the killing of the invading pathogens [13,22]. It is known that

host-induced CAMPs are one of the frontline defenses against

invading pathogens. Therefore, sensitization of lysX mutant Mtb

cells to the action of CAMPs suggests that maintenance of the

optimal membrane potential is necessary for Mtb growth in vivo.

In partial support of this claim, we found that the lysX mutant

showed defects in intracellular replication (Fig. 5) and that

infection of macrophages with lysX led to increased production

of pro-inflammatory cytokines (Fig. 7). We also found that the lysX

mutant showed increased co-localization with LAMP-1 vesicles

(Fig. 6). Finally, we showed that the lysX mutant was attenuated in

guinea pig lungs and had a modest growth defect in mouse lungs

(Fig. 9). Together, these results are consistent with the hypothesis

that LysX activity is required to maintain an optimal membrane

potential and possibly to promote pathogen survival upon

infection. Notably, the gross pathological differences between the

lysX mutant and wild type were striking compared to the modest

differences in growth in vitro and ex vivo (see Figs. 3, 5 and 8). The

reduced bacterial burden and the reduced pathology and size of

granulomas in the lungs of guinea pigs clearly suggest that LysX

activity is required for bacterial multiplication and virulence.

Evaluation of the host-induced cytokine response following

different stages of infection with wild type and lysX mutant

pathogens could provide valuable insights into lysX function. Our

studies also showed that the lysX mutant, like wild type, retained

the ability to produce PDIMs and reduce neutral red (Fig. S5). It

remains to be evaluated, however, if other membrane and cell

wall-associated lipids are modulated in the lysX background.

The production of L-PG is believed to involve two biochemical

steps: the generation of lysyl-tRNA by the LysU protein and the

transfer of a lysine group from the lysyl-tRNA to PG by MprF, a

membrane-bound lysyl-transferase protein [23]. The Gram-

positive bacteria shown to produce L-PG carry a single

housekeeping lysU gene that encodes a cytosolic LysU protein

[8,9,24]. E. coli does not contain L-PG, but ectopic expression of

the S. aureus mprF gene allows E. coli to accumulate L-PG in their

membranes, suggesting that cytosolic LysU and membrane-bound

MprF cooperate to produce L-PG [10,25]. Mtb contains two lysU

genes, one encoded by Rv3598c, which is an essential gene, and

the other encoded by the lysU domain of lysX [26]. Since

expression of the mprF fragment of lysX does not lead to the

production of L-PG (Fig. 2), it appears that in Mtb, unlike in other

bacteria, the cytosolic LysU and the membrane-bound MprF do

not cooperate to produce L-PG.

This raises the question as to why a dedicated lysU gene

product, distinct from the housekeeping gene, is required for L-PG

production in Mtb. One possibility is that the lysinylation reaction

occurs on the membrane, and the local presence of LysU and

MprF activities are required to transfer lysine from the lysyl-tRNA

to the membrane-bound PG. If the cytosolic lysyl-tRNA could not

diffuse through the Mtb plasma membrane, a separate activity

would be needed to replace it. Nonetheless, such dedicated

activities imply that PG lysinylation in Mtb is a tightly regulated

reaction. The temporal expression profile of Mtb genes upon

infection in mice shows that lysX is upregulated during acute and

chronic infection [27]. Presumably, increased expression levels of

lysX would ensure that sufficient levels of L-PG were produced to

maintain the optimal ratio of acidic to basic PLs. This would, in

turn, ensure that the optimal membrane potential required for Mtb

proliferation upon infection is maintained. Another possibility,

although unlikely, is that the demand for lysyl-tRNA required for

lysinylation and protein synthesis cannot be met by a single

housekeeping enzyme. Clearly, however, further studies are

required to address this issue.

While this manuscript was in preparation, Vandal et al.

reported the characterization of several transposon mutants of

Mtb that were hypersensitive to acidic pH, one of which was lysX

[28,29]. Their transposon mutants were hypersensitive to

antibiotics and other stressors such as heat, SDS and DETA-

NO. Although the lysX mutant was moderately sensitive to DETA-

NO, its growth was not attenuated in murine lungs. It is unknown

whether L-PG is produced in the lysX transposon mutant and

whether the lysX mutant shows any residual activity. As shown in

Fig. 1A, our lysX mutant was generated by removing most of the

coding sequence responsible for producing the mprF and lysU

activities. We demonstrated that L-PG was not produced in the

lysX mutant and that maintenance of the membrane potential and

resistance to CAMPs were dependent on LysX activity. Impor-

tantly, we showed that LysX activity was required for full virulence

Figure 7. Select cytokine responses of macrophages. Panel A:
MDMO were infected with Mtb strains, and TNF-a release was measured
by ELISA. PMA was used as a positive control. TNF-a levels in panel A
were measured after 24 h. * Represents P,0.05 compared to Rv-03, Rv-
81ami, control (untreated cells) and PMA. Panel B: Secretion of IL-6 by
MDMO after 48 h of infection. * P,0.05 compared to Rv-03, Rv-81ami
and control. The experiments were done in duplicate, and represen-
tative results are shown. Data are mean6standard error. Student-
Newman-Keuls Method was used.
doi:10.1371/journal.ppat.1000534.g007
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in mice and guinea pigs. These results underscore the importance

of lysX function in Mtb survival upon infection. One limitation of

our results, however, is that the complemented Rv-81ami was not

able to restore the lysX defect in vivo, although it did restore

defects in other assays reported in this study. One possibility is that

the expression of lysX in-trans at an attB locus was not sufficient to

restore the LysX activity to optimal levels, and small changes in

activity could have consequences for the complementation

phenotype in vivo. Further studies are required to address this

issue.

L-PG appears to be a minor lipid species, yet the loss of L-PG

production affected membrane potential and Mtb growth in vitro

and in vivo. It is interesting to note that PG, the purported

substrate of L-PG, is also a minor lipid species in Mtb and other

mycobacterial species [2,3,30,31]. This raises the question of how

the lysinylation of a minor PL species contributes to the observed

phenotype. It is known that PG is a biosynthetic intermediate of

CL, one of the major PL species of mycobacteria. Indeed, the

enzymatic activities responsible for CL production from PG pools

have been detected in mycobacteria [32]. PG also accumulates as

a result of CL catabolism and, if unregulated, could be further

processed to produce a diacylglycerol intermediate via the action

of phospholipases [33,34]. Accordingly, we speculate that the

lysinylation step helps to prevent PG degradation such that the

optimal membrane potential required for Mtb survival upon

infection is maintained. Our results also suggest that changes in

membrane potential are a potential mechanism for regulating

CAMP sensitivity in Mtb and possibly in the mprF mutants of other

bacteria; therefore, this could be exploited to develop novel

antimicrobial compounds. It is tempting to speculate that by

Figure 8. Growth of lysX and WT strains in vivo. Panel A: C57BL/6 female mouse lungs were infected with lysX (triangles) and WT (dark
diamonds) strains via an aerosol route. The mean CFU counts were obtained from lung homogenates of at least three mice per group and plated on
Middlebrook 7H10 agar plates. All plates were incubated at 37uC for at least three weeks before colonies were counted. Panel B: Guinea pigs (Hartley
strain) were infected with lysX (open symbols) or WT (dark symbols) strains via an aerosol route. Five guinea pigs were sacrificed at days 1, 21 and 42
days after infection, and the survival of Mtb strains in the entire lung homogenate was determined by plating on agar medium as described above.
Panels C, D: Gross pathology of the lungs infected with the Rv-80lys and Rv-03 Mtb strains. Lungs from mouse -C- and guinea pig -D- were excised,
stored in 10% formalin, embedded, and stained with hematoxylin and eosin for histopathological analysis. Note the presence of tubercles on the
surface of the lungs for Rv-03 compared to Rv-80lys. Panels E, F: Histopathology of mouse -E- and guinea pig -F- lungs infected with the Rv-80lys
and Rv-03 Mtb strains. Hematoxylin-eosin staining confirmed that the lungs infected with Rv-03, but not those infected with Rv-80lys, had extensive
inflammation in both species and showed caseating granulomas in guinea pigs.
doi:10.1371/journal.ppat.1000534.g008
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manipulating LysX activity, we could promote the action of other

conventional antibiotics against Mtb.

Methods

Ethics statement
Mouse and guinea pig infection protocols were approved by the

Animal Care and Use Committee at Johns Hopkins School of

Medicine, Baltimore, MD for mice and at Texas A & M

University, College Station, TX for guinea pigs, under the NIH

contract (Tuberculosis Animal Research and Gene Evaluation

Task force).

Strains, media and culture conditions
The Mtb strains were cultured in Middlebrook 7H9 broth

supplemented with 10% OADC (oleic acid, albumin, dextrose,

catalase) and 0.05% Tween-80. As needed, 50 mg/ml hygromycin

(hyg), 10 mg/ml kanamycin (kan) or 50 mg/ml gentamycin (gm)

was added. For the determination of viable colonies and the

scoring of recombinants, bacterial cells were plated on Mid-

dlebrook 7H11 agar plates containing the appropriate antibiotics.

In some experiments, cultures were grown in the presence of L-

[U-14C]-lysine (300 mCi/mmol, Amersham Pharmacia Biotech)

or [1,2-14C] acetic acid (46 mCi/mmol, PerkinElmer), and total

lipids were extracted and resolved by TLC. The radioactivity

present in the L-PG spot was determined and normalized relative

to total in put radioactivity.

Construction of the lysX deletion and complemented
derivative strains

The lysX coding region was cloned downstream of the amidase

promoter in an integration-proficient, hygromycin-resistant plas-

mid and electrotransformed into Mtb in order to generate the lysX

merodiploid strain. The chromosomal copy of the lysX gene was

disrupted in the lysX merodiploid background by homologous

recombination as described previously [35]. Using this approach,

90% of the lysX coding region was replaced with a 900-bp

gentamycin resistance cassette. This strain, designated as Rv-

81ami, was the lysX complemented strain. Next, the resident

integrated plasmid encoding the functional lysX gene was replaced

with an empty kanamycin-resistant plasmid to generate the lysX

mutant strain, designated as Rv-80lys, as described [14,35,36,37].

A cartoon depicting the lysX mutant and complemented strain

construction is shown (Fig. 9). All strains were confirmed by PCR

and Southern blot analysis.

For the generation of the lysX complemented strain expressing

the mprF domain, a 1,950 bp lysX gene encoding the mprF domain

was amplified by PCR using the primers MVM530lysF (59-

GGCGAATTCCATATGGGACTCCACTTAACTG-39) and

lys650MM606R (59-AGC AGCAAGCTTCTAGAATCACGC-

CAACCGCTCGGGACTGC-39) and cloned into the pJFR19

vector under the control of the amidase promoter [38]. The

integrity of cloned insert was verified by DNA sequencing. This

recombinant plasmid was used to replace the resident empty

plasmid in the Rv-80lys mutant to generate Rv82-med. This strain

was confirmed by PCR and Southern blot analysis.

Intracellular growth measurements
The human monocyte cell line THP-1 (American Type Culture

Collection, Rockville, Maryland) was used. Cells were grown in

RPMI 1640 (Invitrogen, CA) supplemented with 2 mM L-

glutamine, 1 mM sodium pyruvate, 10% fetal bovine serum

(Invitrogen) and 100 U/ml penicillin G (Sigma, MO). The

viability of the macrophages was determined using trypan blue

Figure 9. Cartoon showing construction of the lysX mutant and
complemented strains. A- refers to the wild type strain carrying the
lysX gene at its native locus. B- refers to the Rv-80 merodiploid (hygr)
strain produced by the integration of a plasmid expressing the lysX
gene from the amidase promoter. C- refers to a single crossover (SCO,
hygr, kanr, gmr) recombinant produced by integration of the suicide
recombination plasmid. D- refers to a mutant double crossover (DCO,
hygr, kans, gmr) produced following a reciprocal recombination event.
E- refers to Rv-80lys (kanr, gmr) produced following switching of the
resident integrated plasmid (hygr) with the incoming pMV306 plasmid
(kanr). F- refers to Rv-82med (hygr, gmr) produced following switching
of the resident pMV306 plasmid (kanr) with the incoming plasmid
expressing the mprF fragment from the amidase promoter (hygr).
doi:10.1371/journal.ppat.1000534.g009
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staining. Monocytes were differentiated into macrophages by

exposure to 50 nM PMA (phorbol 12-myristate 13-acetate; Sigma)

and 7.5 ng/ml IFN-c (human interferon-gamma, Peprotech) for

24 h, followed by a 24 h incubation with 50 nM PMA alone. The

macrophages were washed three times with RPMI 1640 medium

and incubated in medium that was not supplemented with PMA

or IFN- c for the next 24 h. Single cell suspensions of Mtb strains

in RPMI 1640 media were used to infect 4.56105 macrophages in

triplicate in a 24-well plate at a multiplicity of infection of 1:2–4.

After 3 hours of infection, macrophages were lysed in 0.09% SDS,

and viability was determined to get a t0 count. No statistical

differences in viability among these strains were noted at t0.

Subsequently, macrophages at 3 and 6 days post-infection were

also processed in order to determine Mtb viability. The lysX strains

were no more sensitive than the other strains in terms of the

concentrations of SDS used to lyse the macrophages and process

them for viability determination (see Figure S3).

Co-localization of M. tuberculosis with phagosomes
expressing LAMP-1

THP-1 macrophages (56105) attached to glass coverslips were

infected with GFP-producing Mtb (Rv-03, Mtb Rv-80lys, Rv-

81ami and Rv-82med). The macrophages were fixed, blocked and

incubated with H4A3 monoclonal antibodies to LAMP-1,

followed by a rhodamine-conjugated goat anti-mouse IgG, as

described [38]. Bacterial co-localization with LAMP-1-positive

vesicles appeared as yellow spots. The experiments were done in

duplicate, and representative images are shown.

Cytokine measurement in MDMO
Peripheral blood mononuclear cells (PBMC) were isolated from

healthy volunteers by differential gradient centrifugation on Ficoll-

Paque Plus (Amersham Biosciences). Adherent monocytes were

isolated by seeding 56106 cells in 24-well plates in MDMO-media

(RPMI 1640 supplemented with 10% heat-inactivated human

serum) and incubating for 90 min at 37uC in 5% CO2. Following

the removal of non-adherent cells, MDMO-media was added, and

cells were incubated at 37uC for 4 days to mature into

macrophages and then used for infection with Mtb strains.

56105 macrophages were infected in triplicate in 24-well plates

at a multiplicity of infection of 1:5 as described previously [38]. At

indicated periods of infection, supernatants were removed, and the

TNF-a and IL-6 levels were measured using ELISA assays

(eBioscience, Inc., CA) according to the manufacturer’s instruc-

tions. In some experiments, MDMO were stimulated with 150 nM

PMA, and the secretion of TNF-a was measured.

Isolation of mycobacterial lipids
The extraction of total lipids from whole cells using chlor-

oform:methanol (2:1 v/v) and the separation of polar lipids in a

solvent system containing chloroform:methanol:water (65:25:4) in

the first dimension and chloroform:methanol:acetic acid:water

(80:12:16:4) in the second dimension were performed as described

previously [7,32,39]. Polar lipids were visualized by exposing the

plates to iodine vapors or staining them with ninhydrin in order to

detect amino acid-containing lipids. In some experiments,

autoradiography was used to detect radiolabeled lipids. For

PDIMs analysis hexane:diethylether:acetic acid (80:20:1, vol/

vol/vol) solvent system was used.

MALDI-MS, ESI-MS and ESI-MS/MS
MALDI-MS was performed using an UltraFlex TOF/TOF

(Bruker Daltonics, Billurica, CA) as described previously [39]. The

L-PG sample in acetonitrile was mixed 1:1 with 2,5-dihydrox-

ylbenzoic acid matrix for spotting onto the target plate.

Fatty acid analysis
The L-PG was hydrolyzed with 3 N HCl in methanol for 4 h at

80uC. The sample was dried and treated with silylation reagent

(TRI-SIL, Pierce Biotechnology, Rockford, IL) for 30 min at room

temperature. The trimethylsilylated derivatives were analyzed by

GC/MS. Specifically, the sample was applied to a DB-5 column at

an initial temperature of 60uC for 1 min, then increased to 130uC
at a rate of 30uC/min, and finally increased to 280uC at a rate of

5uC/min.

NMR spectroscopy
1H and 31PNMR were performed at a concentration of 2 mg L-

PG sample per 0.6 mL of CDCl3 on a Varian Inova 400 MHz

instrument.

Amino acid analysis
The purified L-PG was incubated overnight at 100uC in 6 N

HCl in a heat-block. Samples were cooled, evaporated to dryness,

resuspended in water and subjected to amino acid analysis.

Neutral red assay
Neutral red chemical staining of Mtb wild type and lysX mutants

was carried out following the protocol described by Soto et al.

[40].

Experiments evaluating the lysX phenotype
In order to evaluate the growth inhibitory effects of cationic

compounds, Van (1 ug/mL), PMB (100 units/uL), human

neutrophil peptide-1 (25 ug/mL) or lysozyme (0.5 mg/mL) was

added to the growth media. The human neutrophil peptide stock

was dissolved in 0.1% tri-fluoro acetic acid (TFA), and the cultures

contained 0.025% TFA. No growth inhibition was noted at this

concentration of TFA. The cultures were initially diluted to an

OD600 of 0.05, dispensed into a 96-well microplate (100 uL per

well) and incubated at 37uC with rotation at 60 rpm. At the

indicated time periods, the change in the optical density (A600) was

measured, and viability was determined. Low dose aerosol

infection experiments of mice (C57BL/6 female mice) and guinea

pigs (Hartely strains) for evaluating the growth and viability of lysX

strain were essentially as described previously [41].

Membrane potential analysis
Cytoplasmic membrane potential changes were determined

using the slow response, membrane potential-sensitive cyanine dye

DiOC2(3) (Sigma). Briefly, actively growing cultures of Mtb strains

(OD600 = 0.8) were incubated with 3 mM DiOC2(3) for 5 h.

Spectrofluorometry was used to detect the red fluorescence

(488 nm/620 nm) associated with aggregates of DiOC2(3), which

exhibits green fluorescence (488 nm/520 nm) in the monomeric

state. The assay was performed using white 96-well microtiter

plates (Perkin Elmer; Waltham, MA) and a Cary Eclipse

spectrofluorometer (Varian; Palo Alto, CA). A negative (depolar-

ized) control of 100 mM m-chlorophenylhydrazone CCCP (Sig-

ma), a proton ionophore that destroys the proton gradient and

eliminates the bacterial membrane potential, was included. The

membrane potential was measured as the ratio of red fluorescence

(associated with membrane potential changes) to green fluores-

cence (a cell size-dependent, membrane potential-independent

signal). Preliminary optimization studies revealed that 5 h

incubation was optimal for the measurements.
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Statistical analysis
Differences between groups were analyzed by multiple com-

parison procedures (Student-Newman-Keuls Method) with a

simple one-way ANOVA or Mann Whitney Rank Sum Test,

using SIGMASTAT (SPSS Science, Inc., Chicago, IL). A P value

of less than 0.05 was considered significant.

Supporting Information

Figure S1 Viability of Mtb strains in the absence -A- and

presence -B- of Van 1.0 mg/ml. At day six of growth, viability was

determined by plating cells on Middlebrook 7H11 agar and

counting. The bars represent mean6standard error.

Found at: doi:10.1371/journal.ppat.1000534.s001 (1.57 MB TIF)

Figure S2 Visualization of Fl-Van stained cells. Actively growing

cultures (optical density ,0.01 to 0.04) were grown with

fluorescent vancomycin BODIPY (Invitrogen) at a final concen-

tration of 1 mg/mL for 20 hours. The cells were harvested by low

speed centrifugation, fixed in 4% paraformaldehyde for 24 h, and

imaged on a Nikon Eclipse microscope with a CCD camera;

bright field (BF) and fluorescent images (Van) were acquired.

Magnification was 1006, and data were analyzed using Meta-

morph software. At least 100 cells were imaged for each strain; the

images were scored for staining patterns and the presence or

absence of fluorescent staining. Approximately 35% of wild type

and 25% of lysX cells were not stained under these conditions. For

clarity, only select staining patterns are shown: defined dye

accumulation at the cell poles -A, D- and mid-cell (as in D) or

diffuse accumulation throughout the cell - B, E. In some cells, both

types of accumulation were observed -C, F. For the lysX mutant,

about 52% of cells showed diffuse staining, but this was only seen

in about 32% of wild type cells.

Found at: doi:10.1371/journal.ppat.1000534.s002 (2.97 MB TIF)

Figure S3 Effect of SDS on the viability of the lysX mutant: The

viability of Mtb strains was examined under the same conditions

used for macrophage infection and lysis in the presence of 0.09%

SDS. Actively growing cultures of Mtb strains were harvested,

exposed to 0.09% SDS for 3 min, diluted and spread on

Middlebrook 7H11 agar plates. Cells untreated with SDS were

processed similarly. All plates were incubated at 37uC, and

colonies were counted. No statistically significant differences

between the SDS treated and untreated groups were noted. Data

shown are mean 6 standard error.

Found at: doi:10.1371/journal.ppat.1000534.s003 (1.05 MB TIF)

Figure S4 Growth of the lysX mutant in the spleen of mice and

guinea pigs. Growth of the lysX mutant and Rv-03 strain in the

spleens of mice -A- and guinea pig -B. Following aerosol infection

of mice and guinea pigs, spleens were harvested at the indicated

time points. Homogenates were prepared, and viability was

determined on agar plates. The lysX mutant showed reduced and/

or delayed dissemination compared to wild type in both animal

models.

Found at: doi:10.1371/journal.ppat.1000534.s004 (1.64 MB TIF)

Figure S5 Neutral red staining and PDIM analysis: Panel A:

Wild type and lysX mutant cells were stained with neutral red and

photographed. As a control, the attenuated strain Mtb H37ra was

used. Panel B: The lipids were separated by silica thin-layer

chromatography (TLC) with hexane:diethylether:acetic acid

(80:20:1, vol/vol/vol) as solvent system. The lipids were visualized

by spraying with 10% phosphormolybdate in ethanol followed by

heating to about 110uC for 15 min.

Found at: doi:10.1371/journal.ppat.1000534.s005 (5.65 MB TIF)
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