
Frontiers in Immunology | www.frontiersin.

Edited by:
Valentina Tomassini,

University of Studies G. d’Annunzio
Chieti and Pescara, Italy

Reviewed by:
Trygve Holmøy,

Akershus University Hospital, Norway
Marco Capobianco,

University Hospital S. Luigi,
Orbassano, Italy

*Correspondence:
Krista D. DiSano

Krista.D.DiSano@dartmouth.edu

Specialty section:
This article was submitted to

Multiple Sclerosis
and Neuroimmunology,
a section of the journal

Frontiers in Immunology

Received: 05 March 2021
Accepted: 11 May 2021
Published: 08 June 2021

Citation:
DiSano KD, Gilli F and Pachner AR
(2021) Memory B Cells in Multiple

Sclerosis: Emerging Players
in Disease Pathogenesis.

Front. Immunol. 12:676686.
doi: 10.3389/fimmu.2021.676686

REVIEW
published: 08 June 2021

doi: 10.3389/fimmu.2021.676686
Memory B Cells in Multiple
Sclerosis: Emerging Players
in Disease Pathogenesis
Krista D. DiSano*, Francesca Gilli and Andrew R. Pachner

Department of Neurology, Geisel School of Medicine & Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States

Multiple Sclerosis (MS) is an inflammatory demyelinating disease of the central nervous
system. Once thought to be primarily driven by T cells, B cells are emerging as central
players in MS immunopathogenesis. Interest in multiple B cell phenotypes in MS
expanded following the efficacy of B cell-depleting agents targeting CD20 in relapsing-
remitting MS and inflammatory primary progressive MS patients. Interestingly, these
therapies primarily target non-antibody secreting cells. Emerging studies seek to explore
B cell functions beyond antibody-mediated roles, including cytokine production, antigen
presentation, and ectopic follicle-like aggregate formation. Importantly, memory B cells
(Bmem) are rising as a key B cell phenotype to investigate in MS due to their antigen-
experience, increased lifespan, and rapid response to stimulation. Bmem display diverse
effector functions including cytokine production, antigen presentation, and serving as
antigen-experienced precursors to antibody-secreting cells. In this review, we explore the
cellular and molecular processes involved in Bmem development, Bmem phenotypes,
and effector functions. We then examine how these concepts may be applied to the
potential role(s) of Bmem in MS pathogenesis. We investigate Bmem both within the
periphery and inside the CNS compartment, focusing on Bmem phenotypes and
proposed functions in MS and its animal models. Finally, we review how current
immunomodulatory therapies, including B cell-directed therapies and other
immunomodulatory therapies, modify Bmem and how this knowledge may be
harnessed to direct therapeutic strategies in MS.
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INTRODUCTION

Multiple Sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous
system (CNS), with a highly variable and unpredictable disease course that can manifest as a variety
of physical and cognitive symptoms. Although cellular inflammation in MS has historically focused
on one key player in adaptive immunity, T cells, B cells are now recognized as central mediators in
MS pathogenesis. B cell antibody-mediated immunity has been implicated in MS pathogenesis since
the discovery of elevated CSF IgG in 1942 (1). Subsequently, in 1959 oligoclonal bands (OCBs) in
the cerebrospinal fluid (CSF) were identified (2) and, to date, OCBs remain a diagnostic hallmark in
MS (3). OCB presence indicates niches of clonally-related antibody-secreting cells (ASC), including
org June 2021 | Volume 12 | Article 6766861
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plasmablasts and plasma cells, within the CNS. Since the
discovery of OCBs in MS, researchers have dedicated intense
focus towards identifying the antigenic targets of ASC in the CNS
compartment. However, in contrast to CNS neuroinflammatory
diseases such as neuromyelitis optica, with clear autoantibody
targets (aquaporin-4), probing antibody specificity in MS has not
revealed consistent targets (4, 5), with some studies implicating
diverse CNS self-antigens (6, 7) and viral antigens (8). The role of
ASCs and OCBs in MS still remains elusive, with suggested
involvement in pro-inflammatory functions, including
autoantibody production, antibody- or complement-dependent
cellular cytotoxicity, and opsonization, or anti-inflammatory
functions, including production of the anti-inflammatory
cytokine IL-10 (9, 10).

Further interest in the role of non-ASC B cells as key players
in the MS immunopathogenesis followed the relatively recent
success of B cell depletion therapies targeting CD20. These
therapies, including rituximab (11, 12), ocrelizumab (13), and
ofatumumab (14) reduced new inflammatory lesions and
relapses despite the sparing of most ASCs, i.e. CD20- plasma
cells and some plasmablasts. These novel findings fueled
considerable interest in examining the phenotype and function
of non-ASC B cells in MS. Current research seeks to explore B
cell function in MS beyond antibody-dependent roles to define
antibody-independent mechanisms, including antigen
presentation, cytokine production, and ectopic lymphoid
follicle-like structures. Among non-ASC B cell subtypes,
increased attention has been directed towards the role of
memory B cells (Bmem) in regulating immune processes in
MS. Bmem have several unique features, including increased
longevity, the capacity to rapidly respond to re-exposure to
antigen, and the ability to serve as direct antigen-experienced
precursors to antibody-secreting cells. Due to the relatively
recent interest in Bmem, our knowledge regarding the exact
functions of Bmem in MS is expanding. This review aims to
explore our current understanding of this key component of
immunological memory in MS and its animal models.

In the first part of this review, we summarize the current
knowledge regarding Bmem development, trafficking, phenotypes,
and function during homeostasis and inflammatory conditions,
providing a basis for understanding the mechanisms in
which Bmem may contribute to MS and are targeted by
immunomodulatory therapies.

In the second part of this review, we describe Bmem in MS
and its animal models reviewing phenotypes and putative
functions, and finally, we examine the effectiveness of current
therapeutic approaches in targeting Bmem.
Bmem DEVELOPMENT

A key player in immunological memory, Bmem can be defined as
a B cell that has encountered antigen and remains in a quiescent
state until re-exposed to antigen, at which point the cell rapidly
responds to the second challenge. Upon first pathogen
encounter, the majority of Bmem are derived from germinal
Frontiers in Immunology | www.frontiersin.org 2
center (GC) reactions. GCs are specialized structures within
secondary lymphoid tissue (SLT) where mature, antigen-
experienced B cells undergo cognate interactions with T cells,
proliferate, undergo somatic hypermutation to increase B cell
receptor (BCR) affinity for antigen, perform immunoglobulin
(Ig) isotype switching, and are selected based on affinity for a
specific antigenic target. Select GC B cells ultimately differentiate
to produce antigen-specific, isotype-switched ASC or Bmem.
Though GC B cells serve as the precursor for both ASC and
Bmem, the mechanisms regulating Bmem versus ASC
differentiation remain poorly understood. Numerous factors
have been proposed to contribute to Bmem formation, but no
“master regulator” for Bmem differentiation has been identified.
Animal models have suggested the transcription factor BACH2
selects GC B cells with intermediate affinity to differentiate into
Bmem (15). Additionally, Bmem generation is associated with an
increased expression of factors including ZBTB32 (16), KLF2 (17,
18), ABF-1 (19), STAT5, BCL-6 (20, 21), and SKI (21), which, in
general, repress differentiation to an ASC phenotype. Cytokines,
including IL-24 (22) and IL-9 (17) can enhance Bmem
formation. Moreover, in vitro, IL-2, IL-10, and CD40L were
demonstrated to be involved in differentiating GC B cells to a
Bmem phenotype (23). Outside of GC, a small proportion of
antigen-experienced B cells may additionally be selected for
based on low affinity to form Bmem in an early wave prior to
GC formation (24, 25). GC-independent isotype-unswitched
(IgM) or –switched (IgG) Bmem exhibit low affinity due to
unmutated Ig variable genes (26). In humans, few Bmem lack
somatic mutations for antigen (27), suggesting most Bmem are
GC-derived. Following Bmem formation, these cells may reside
in survival niches including SLT such as the spleen (28) for years
in a resting state independent of antigen; however, these niches
are localized near areas of antigen encounter (29). Bmem are also
observed in the tonsils and the bone marrow and may enter into
circulation to patrol at low levels (28). Bmem express higher
levels of the adhesion molecules LFA-1 and VLA-4 compared to
naive B cells, with VLA-4 primarily mediating Bmem retention
in SLT (30). In vitro, Bmem migrate towards CXCL12 (23, 31),
CCL19, and CXCL13 (23, 32) suggesting these chemokines may
be involved in movement within the SLT and trafficking to
survival niches or sites of inflammation. If the humoral
immunity generated from long-lived plasma cells residing in
the bone marrow is not sufficient to eliminate pathogens, Bmem
become actively involved in the inflammatory response. Upon
re-exposure to antigen, Bmem will generate a more rapid and
potent antigen-specific response relative to naïve B cells (33).
Bmem PHENOTYPES

In humans, Bmem are conventionally identified by the
expression of tumor necrosis factor superfamily member
CD27, a protein regulating entry into plasma cell lineage and
properties associated with Bmem including isotype switching
and Ig variable gene mutation (34, 35). However, CD27 is not
exclusive to Bmem and is likely a marker of GC and post-GC
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activation as CD27 is also expressed on GC B cells and post-GC
B cells, including ASC (Figure 1). Thus, CD27 expression should
be coupled with low levels of CD23 (36) and the lack of
expression of the ASC marker CD138 (syndecan-1) to identify
Bmem in humans. Further inclusion of specific patterns of CD38
(37), CD21 (38), CD24 (39), CD19 (40), B220 (41), FCRL4
(FcRH4) (38, 42) and CD25 (43, 44) can delineate heterogeneous
Bmem populations (Figure 1). Thus far, the main populations of
CD19+CD27+CD138- Bmem present in peripheral blood and
bone marrow include three isotype-unswitched Bmem
phenotypes, including IgM+IgD+, IgM- IgD+, IgM+IgD− (IgM-
only memory cells), and isotype-switched IgM-IgD- phenotypes,
including IgG, IgA, or IgE+ Bmem. Bmem are typically isotype-
switched and primarily express IgG subclasses. IgG+ Bmem
comprise 15-20% of peripheral blood B cells, including
predominately IgG1, IgG2, IgG3 subclasses (45). Among IgG
Bmem, it should be noted that a small proportion of “atypical”
IgG Bmem may lack CD27 (38, 45, 46). Isotype-switched IgA
Bmem comprise around 10% of B cells in peripheral blood and
are generally implicated in mucosa-associated tissues (45) while
IgE Bmem involved in allergic responses are rarely detectable in
humans and mice and their development and lifespan is poorly
understood (45). Among isotype-unswitched phenotypes, IgM
and IgD-expressing Bmem, including IgM+ IgD+ (15% of B
cells), IgM- IgD+ (1%), or IgM+IgD- (5%) may be found within
the blood or bone marrow (34, 47, 48).
Frontiers in Immunology | www.frontiersin.org 3
In rodent models, Bmem identification is hampered by the low
frequency of Bmem (49) and the lack of CD27 expression among
Bmem (50). Further definitive Bmem markers in mice have
remained elusive. Exploration of novel Bmem markers in mice
have relied on several methods including 1) boosting Bmem
frequencies using antigen-based cell enrichment protocols (51,
52), 2) protein immunization in BCR transgenic mice with a fixed
BCR specificity (29), 3) adoptive transfer of antigen-specific B cells
(53), or 4) genetic tagging of activation-induced cytidine deaminase
(AID), an enzyme essential for isotype switching and somatic
hypermutation identifying GC-derived B cells including Bmem
and ASC (33). Murine studies have proposed at least 10 Bmem
subsets utilizing Ig isotyping combined with surface expression of
CD80 (49, 54, 55), PDL2 (54, 55), CD73 (55, 56), CD38 (57).
However, these markers may be expressed on other murine B cell
subtypes, so a diverse panel of surface markers is necessary for
identifying Bmem (Figure 2). For isotype-switched Bmem, IgG
surface (IgGs) versus intracellular (IgGi) expression (58, 59) in
combination with CD138 or Blimp-1 (60, 61) may be used to
distinguish ASC (IgGihi/+, igGslow, CD138+, Blimp-1+) (62) and
Bmem (IgGilow, IgGshi/+, CD138-, Blimp-1-). Moreover, similar to
assaying human Bmem, in vitro stimulation using polyclonal
activators (i.e. CpG DNA, R848 TLR7/8 agonist) to convert
Bmem into ASC, combined with a conventional Enzyme-linked
ImmunoSPOT (ELISPOT) assay, may be used to quantify Bmem
and determine antigen specificity and Ig isotype in mice (63–65).
FIGURE 1 | Bmem phenotyping markers in humans. Overview of B cell differentiation in humans, focusing on naïve B cell to ASC phenotypes, with BCR isotype
and surface marker expression. Surface marker levels simplified to highlight relative expression, including low, intermediate, or high levels.
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Bmem FUNCTION

Compared to naïve mature B cells, Bmem display several
distinctive features. Bmem have enhanced longevity and can
survive for years and perhaps for the lifetime of the host
independent of antigen (66, 67). In comparison, naïve mature
B cells have a lifespan of weeks (68). Furthermore, since most
Bmem are GC-derived, Bmem are generally clonally expanded,
isotype-switched, and have undergone somatic hypermutation of
Ig variable genes to increase antigen affinity. Unlike naïve or
activated mature B cells, Bmem are able to rapidly proliferate and
differentiate into ASC with minimal stimulation requirements,
including re-exposure to low levels of antigen (69, 70), T cell help
(71–73), or polyclonal stimulation (73, 74). Bmem enter cell
cycle, differentiate into ASC, and potentially re-seed GC quicker
than mature B cells (75, 76). These advantages are likely due to a
combination of factors, including reduced quiescence factors
(Kruppel-like factor 4 and 9; PLZF) (77), higher expression of
co-stimulatory molecules (CD80, CD86) (78, 79), CD27 (50),
IL21R (80), SLAM (signaling lymphocytic activation molecule)
(79), TLR7/9 (81), and anti-apoptotic molecules (BCL2) (82).
Once activated, Bmem can follow two paths: 1) rapidly
differentiating into ASC or 2) re-entering into secondary GC
reactions to undergo further affinity maturation and isotype-
switching. In murine studies, IgG Bmem show a greater
proclivity to differentiate into ASC, while IgM Bmem are often
selected for re-entry in GC reactions (33, 51). Bmem
differentiating to ASC can contribute to the rapid and copious
production of high affinity antibodies to supplement antibody
produced by terminally differentiated plasma cells residing in
niches, such as the bone marrow. In addition to rapid
Frontiers in Immunology | www.frontiersin.org 4
differentiation to ASC, Bmem are potent antigen-presenting
cells (APCs), expressing MHCII (83) that enables not only the
efficient recognition of antigen, but the ability to process antigen
for presentation to activate other immune cells, including T cells
(84). Finally, Bmem produce a wide array of cytokines including
TNF (85, 86), GM-CSF (86), IL-6 (86, 87), lymphotoxin (LT)
(85), and IL-10 (85).
Bmem IN MULTIPLE SCLEROSIS

In MS, B cells are located within multiple compartments in the
CNS, including the CSF, parenchyma, and meninges. However,
studies exploring Bmem in MS have primarily focused on the
peripheral blood and CSF, with few studies examining Bmem
localization in the parenchyma and meninges. Among these
studies, there are notable discrepancies in defining Bmem, with
the majority of studies defining Bmem based exclusively on
CD27 expression. Therefore, for each mentioned study, the
surface markers utilized to define Bmem will be noted.

Phenotype, Trafficking, and Localization
In MS, Bmem frequencies are elevated in the CSF compared to
peripheral blood (88, 89) and Bmem comprise the majority of B
cells populating the CSF (90, 91) (CD27+ IgD- (88, 91);
CD19+CD27+ (89); CD27+ CD138- (90); CD19+ CD27+ IgD-
and IgD+). In contrast to the peripheral blood, the proportion of
CD19+ B cells among total lymphocytes is significantly lower in
the CSF (91). However, the proportion of class-switched B cells,
including isotype-switched Bmem, among CD19+ B cells is
enriched in the CSF (91). Further studies have confirmed the
FIGURE 2 | Bmem phenotyping markers in murine models. Overview of B cell differentiation in mice, focusing on naïve B cell to ASC phenotypes, with BCR isotype
and surface marker expression. Surface marker levels simplified to highlight relative expression, including low, intermediate, or high levels.
June 2021 | Volume 12 | Article 676686
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majority of Bmem populating the CSF display an isotype-
switched phenotype (71%; CD19+ CD27+ IgD- IgM-) (92). In
agreement with these findings, B cells populating the CSF,
including Bmem, bear extensive somatic mutations and exhibit
clonal expansion (88). Conversely, in a recent pre-print, Bmem
in peripheral blood from MS patients displayed an Ig isotype
distribution of 50% IgM, 30% IgA, and 20% IgG (93). In MS
patients, ASC populating the CSF exhibit a selective enrichment
towards the IgG1 allotype G1m1 compared to the peripheral
blood (94). In a recent pre-print, Bmem in the intrathecal
compartment did not exhibit the same dominance towards the
G1m1 allotype constant region polymorphism, suggesting
certain B cell-lineages may preferentially differentiate (95). To
date, it remains unclear if skewed Ig allotypes influence MS risk
and phenotype (96, 97).

Bmem are not restricted to the CSF compartment, and Bmem
(CD27+) are found within the brain parenchyma (98, 99).
Furthermore, B cells recovered from MS plaques display
mutations and clonal expansion (100, 101), suggesting
primarily differentiated B cells (Bmem/ASC) occupy the
parenchymal space, similar to the CSF. It has been suggested
that BCR mutations and clonal expansion may be acquired in the
CNS compartment (89), possibly aided by inflammatory
aggregates in the brain meninges mimicking some features of
ectopic lymphoid follicles (102). In a recent pre-print, extensive
clonal connections were found among Bmem and ASC in the
CSF compartment (95). Clonal connections between Bmem and
ASC were also found to span different isotypes, including IgM/
IgG1, IgG1/IgG2, and IgM/IgA1. These findings suggest ASC
and Bmem share a common origin, although it remains unclear
whether these clonal similarities originate in the periphery or the
intrathecal compartment. At least a proportion of B cells appear
to undergo an active exchange between the periphery and CNS in
MS, with CD27+ IgD- B cells sharing similar repertoires between
the peripheral blood and CSF (91, 103). Moreover, Stern et al.
demonstrated the B cell clonal families observed in MS brain
tissue were frequently derived from founders in the deep cervical
lymph nodes (104). Regardless of the mechanism promoting
Bmem persistence in the CNS, the exact chemokines initiating
and/or sustaining Bmem trafficking to the CNS compartment in
MS remain to be determined. Several chemokine receptors
including CXCR4 (105), CXCR5 (91), CXCR3 (95), CCR1,
CCR2 and CCR4 (88) have been implicated in trafficking and
are upregulated on CSF B cells compared to paired-peripheral
blood. Adhesion molecules regulating Bmem entry into the CNS
meninges and parenchymal compartments are less clearly
understood. VLA-4 has been implicated in aiding B cell
transmigration in ex vivo culture studies (106) and murine
studies (107), though these studies have examined global B cell
migration and further studies are required to determine whether
VLA-4 is essential for Bmem transmigration.

Function
Antibody Production and Antigen Specificity
Tracking Bmem conversion into ASC to investigate antibody
production and specificity in vivo remains challenging and often
Frontiers in Immunology | www.frontiersin.org 5
requires specialized murine models. Alternatively, in vitro,
Bmem can be stimulated to convert into ASC utilizing
polyc lonal act ivators spec ifica l ly tr igger ing Bmem
differentiation, including the TLR7/8 agonist R848 (108, 109).
Bmem may subsequently be quantified and Ig isotype and
antibody production may be evaluated. Limited studies exist
examining Bmem conversion to ASC and antibody production
in MS. Hohmann et al. isolated B cells from the peripheral blood
of MS patients and compared IgG antibodies produced by ASCs
or Bmem-derived ASCs, i.e. B cells in vitro stimulated using R848
and IL-2 by ELISPOT (110). Bmem-derived ASCs generated
larger spot size compared to ASCs, suggesting enhanced IgG
secretion from Bmem-derived ASCs.

B cell antigen specificity in MS has remained unclear and is
documented as heterogeneous, with antibody targets ranging
from self-antigens to viral antigens. With regards to Bmem, there
have been few studies on this topic. Hohmann et al. exclusively
examined reactivity to normal human brain lysates (110).
Among 15 of the 30 relapsing-remitting MS (RRMS) patients
tested, brain-reactive Bmem-derived ASC were present in the
peripheral blood. In some patients, brain-reactive Bmem were
present in relapse and remission, while other patients displayed
brain-reactive Bmem in the relapse only. The presence of brain-
reactive B cells, including Bmem, predicted relapse. Brain-
reactive B cells were not observed in the peripheral blood of
healthy donors or other neurological disease controls (111).

Antigen Presentation
Bmem are conventionally regarded as potent APCs. In MS, CSF
Bmem (CD27+ IgD-) display upregulated expression of two co-
stimulatory molecules key in antigen presenting functions, CD80
and CD86, compared to naïve B cells (88). Although this is a
well-known feature of Bmem regardless of disease pathogenesis,
this finding suggests Bmem in the CSF of MS patients also
display an enhanced ability to engage with immune cells,
including T cells. In alignment with these findings, ex vivo
Bmem (CD19+ CD27+) isolated from RRMS patients elicited
autologous CD4 T cell proliferation in the presence of antigens
including, tetanus toxoid, myelin basic protein (MBP), and
myelin oligodendrocyte protein (MOG) (112). Moreover,
Bmem isolated from some RRMS patients are capable of
activating CD4 T helper (Th) cells in the presence of myelin
antigens in vitro, inducing T cell proliferation and IFNg
production (112). Furthermore, the in vitro spontaneous
proliferation of Th1 cells observed in patients carrying the risk
allele HLA-DR15 was found to be mediated by Bmem (CD27+)
with high MHCII surface receptor HLA-DR expression (113).

Cytokine Production
B cells, including Bmem, in MS patients may exhibit a propensity
towards a dysregulated cytokine network. An increased
frequency of Bmem (CD27+) producing GM-CSF was observed
in the peripheral blood obtained from MS patients compared to
healthy controls (86). Furthermore, in vitro stimulated B cells
isolated from the peripheral blood of RRMS and SPMS patients
exhibit a decreased production of the anti-inflammatory
June 2021 | Volume 12 | Article 676686
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cytokine IL-10 compared to healthy controls, while LT and TNF
levels were comparable (85). Further studies demonstrated
stimulated Bmem (CD19+ CD27+) obtained from RRMS
patients produce elevated LT and lower IL-10 than naïve B
cells (112). However, Bmem isolated from healthy donors
produced comparable levels of both cytokines. In vitro
stimulated Bmem obtained from healthy donors also exhibited
lower levels of IL-10 production compared to naïve B cells (85),
thus, low levels of IL-10 production seems to be typical Bmem
feature regardless of disease pathogenesis. The reduced IL-10
production by B cells observed in RRMS and SPMS patients may
therefore be attributed to another B cell phenotype, including IL-
10-producing regulatory B cells or ASC (9, 114).

Associations With Clinical Disease
Recent studies have sought to investigate the association of Bmem
with clinical outcomes inMS. In RRMS patients, an increased CD5+

Bmem subpopulation was associated with the remitting stage
compared to the relapsing stage (115). Furthermore, Nissimov
et al. demonstrated elevated peripheral blood Bmem frequencies
were associated with a lower expanded disability status scale score
(116). Conversely, Comabella et al. determined that increases in
isotype-unswitched and -switched Bmem (CD19+ CD27+ IgD+ or
IgD-) in the peripheral blood from RRMS patients were associated
with an MRI phenotype with high neurodegeneration, defined by
increased contrast-enhancing lesions and non-enhancing black
holes on T1-weighted images, and decreased brain parenchymal
fraction (117). Bmem populations also differ in peripheral blood
obtained from pediatric and adult MS patients (118). In pediatric
MS, Bmem (CD20+ CD27+) are elevated in the peripheral blood
compared to healthy children and adolescents. In contrast to adult
MS patients who display elevated isotype-switched Bmem (CD20+

CD27+ IgD-) and plasma cells in peripheral blood, non-switched
Bmem (CD20+ CD27+ IgD+) and plasmablasts were increased in
frequency in pediatric MS patients.
Bmem IN ANIMAL MODELS OF MS

Murine models of MS generally have been limited in exploring
Bmem due to the lack of conventional Bmem markers, the low
quantity of Bmem (25), the shifted surface expression of
proposed murine markers on Bmem isolated from CNS
compartment (63), and the time-consuming methods
utilized to isolate Bmem and quantify by in vitro stimulation
assays (64, 65). In this section, we will review data on
Bmem obtained from pre-clinical models of MS, including
two viral models of demyelination, mouse hepatitis virus
(MHV) and Theiler’s murine encephalomyelitis virus (TMEV),
and the autoimmune model, experimental autoimmune
encephalomyelitis (EAE).

Viral Models of Demyelination
Viral immune-mediated demyelination models emulating
features of MS, including MHV (coronavirus family) and
TMEV (picornavirus family), require B cell and antibody
Frontiers in Immunology | www.frontiersin.org 6
responses for viral control (119, 120) and recruit diverse B
cell subtypes CNS (59, 121). There is also evidence for B cell
involvement in demyelination and clinical disability
(122–125).

Intracerebral MHV infection, including the A59 and JHM
strains, induces an acute inflammatory demyelinating disease,
with prominent B cell CNS infiltration mimicking the acute
inflammatory stages of MS. In MHV models, Bmem are present
in the CNS parenchyma as evaluated by flow cytometry (59),
genetic tagging of AID-expressing B cells (126), and in vitro
stimulation and evaluation via ELISPOT assays (63). Among
total CNS-infiltrating Bmem (CD19+, CD138-, IgD-, IgG2a/b
surface+, IgG2a/b intracellularlow) the majority comprise an
IgG2a/2b isotype-switched phenotype. ELISPOT analysis of in
vitro stimulated Bmem determined that ASC and Bmem are
initially recruited to the CNS (brain/spinal cord) with similar
kinetics, but during the chronic phase of infection (day 35 post
infection-p.i.), virus-specific IgG ASC persisted at higher
frequencies than IgG Bmem in the spinal cord, the
predominant site of inflammation and demyelination (63).
ELISPOT analyses revealed that antibody production levels
were similar between ASC and Bmem-derived ASC in both
brain and spinal cord tissues. Gene expression analysis of
chemokine receptors on CNS-infiltrating Bmem (CD19+ IgD-

CD138-) revealed highly upregulated expression of CXCR3 and
CCR7, with moderate expression of CXCR4 and CXCR5 (59).
Compared to ASC (CD138+), Bmem expressed higher levels of
CCR7 and CXCR5, with similar expression of CXCR4, and lower
expression of CXCR3. These results suggest multiple chemokine
receptors may be simultaneously regulated on Bmem to direct
recruitment. AID-genetically tagged Bmem and ASC were
continually recruited from the periphery to the CNS
concurrent with GC maturation (126). Moreover, once
recruited to the CNS, there was no evidence of AID mRNA
expression among Bmem, suggesting these cells were not
undergoing somatic hypermutation or isotype switching in the
CNS compartment during chronic infection (59). It still remains
unclear whether Bmem are required for sustaining the local
antibody production responsible for controlling viral
recrudescence. Future studies are also required to determine if
Bmem contribute to antibody-independent functions, including
local cytokine production and antigen presentation.

In the chronic progressive demyelinating disease model,
TMEV-induced demyelinating disease (TMEV-IDD), intracranial
infection with TMEV mimics several neurodegenerative and
clinical features of progressive MS (127). In chronic disease (day
120 p.i.) a phase of accumulating disability, Bmem (IgG+ CD138-)
were identified in spinal cord tissue (121). Although the function of
Bmem in TMEV-IDD remains to be determined, B cell depletion
therapy (anti-CD20) targeting non-ASC B cells, including Bmem,
exacerbated microglial activation, increased T cell infiltration,
demyelination, and axonal damage (123).

Autoimmune Models
Although a wide array of EAE models exist, the most commonly
utilized EAE models emulate the acute or relapsing/remitting stages
June 2021 | Volume 12 | Article 676686
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of MS (128) and are induced independent of B cells (128–130). Due
to the limited B cell involvement in these models, including the
MOG35-55 peptide model induced in C57BL/6 mice, the role of
Bmem in EAE models remains relatively unexplored.

Several therapeutic interventions targeting B cell subtypes
including Bmem may provide insights into Bmem function in
EAE autoimmune models of MS. In anti-CD20 studies in EAE,
clinical disease is suppressed in murine MOG35-55 (131, 132) and
marmoset EAEmodels (133, 134). CD20 depletion was also found
to ablate IL-6 producing B cells (131), including Bmem. In a T-
independent protein immunization murine model (TNP-LPS)
anti-CD20 administration depleted existing and adoptively
transferred Bmem (135). Mice deficient in B cell maturation
antigen (BCMA), an important receptor for B cell-activating
factor (BAFF) and a proliferating inducing ligand (APRIL)
regulating ASC differentiation and survival, showed exacerbated
EAE disease severity (136). In vitro, BCMA expression directly
inhibited Bmem expansion and anti-inflammatory cytokine
production, suggesting BCMA deficient mice may show
increased proportions of Bmem. Together, these studies suggest
Bmem may contribute to EAE pathogenesis. However, other
therapeutic interventions have suggested Bmem may play a
dispensable or, perhaps, beneficial role in EAE pathogenesis.
Atacicept, a TACI fusion protein that inhibits the B cell survival
factors B lymphocyte stimulator (BlyS) and APRIL, spares B cell
progenitors and Bmem (137). Atacicept’s use has been explored in
both the B cell-dependent recombinant human MOG1-125

(rhMOG) and B cell-independent MOG35-55 models. In both
models, prophylactic treatment resulted in reduced B cell
infiltration into the CNS, delayed disease onset, and attenuated
disease severity (138). In addition, a key cytokine promoting
Bmem survival, IL-15, was found to be enhanced in a murine
lupus model following TACI-IgG treatment (139).

Altogether, further studies are required to determine Bmem
function in EAE models of MS as anti-CD20 therapies, atacicept,
and BCMA deficiency all affect multiple B cell subsets. Following
the success of B cell-depleting therapies in MS, increasingly
studies are utilizing B cell-dependent EAE models, including
rhMOG EAE and EAE induced in IgHMOG transgenic mice
where 30% of B cells are specific for MOG (140). Future studies
utilizing these models may pinpoint the exact Bmem phenotypes
and Bmem functions involved in autoimmune models of MS.
MS IMMUNOMODULATORY THERAPIES
AND THE EFFECT ON Bmem

B Cell-Directed Immunomodulatory
Therapies
B cell depletion therapies targeting CD20, including rituximab,
ocrelizumab, and ofatumumab, deplete all B cells except ASC
and pro-B cells (141) (Figure 1; Table 1) and have shown
significant efficacy in reducing clinical relapse rates and new
lesion formation in RRMS patients (11, 196). Additionally, in
young, inflammatory primary progressive MS (PPMS) patients,
Frontiers in Immunology | www.frontiersin.org 7
ocrelizumab has been shown to reduce clinical disease
progression and brain atrophy (197). Following anti-CD20
therapies, B cells including Bmem are significantly decreased in
the peripheral blood of MS patients (142, 146) (Table 1), with
dramatic peripheral B cell depletion still evident by 6 months
post-treatment. In rituximab-treated patients, a reduction in CSF
B cells was also observed in RRMS patients (147, 148), while
PPMS patients were only shown to exhibit a moderate reduction
(149). In RRMS patients, rituximab treatment was shown to
normalize the ratio of GM-CSF to IL-10 producing B cells in the
peripheral blood (86). Eight-to-24 months post-treatment,
reappearing peripheral blood B cells were strongly diminished
in memory B cells (116).

Further B cell-directed therapies have sought to target a
more diverse range of B cell phenotypes. Inebilizumab
(MEDI-551), an anti-CD19 monoclonal antibody targets
pro-B cells through memory B cells, plasmablasts, and some
plasma cells (155, 198). In contrast to CD20 which is also
expressed on a subpopulation of CD4+ T cells, CD19 is
exclusively expressed on B cells (198). Similar to anti-
CD20 directed therapies, treatment in RRMS patients
results in reduced peripheral B cells (156, 157) and
decreased gadolinium-enhancing lesions (157). B cell
immunomodulatory therapies targeting B cell survival
factors have shown contrasting effects on clinical outcomes.
Atacicept treatment in RRMS patients resulted in an increased
annualized relapse rate and unaltered gadolinium-enhancing
lesions leading to the early termination of the phase II clinical
trial (199). In rheumatoid arthritis patients, atacicept
treatment led to an increase Bmem numbers in the
peripheral blood (152), confirming previous studies that
Bmem are spared (137). Similarly, tabalumab, an anti-BAFF
monoclonal antibody which blocks immature B cells, mature
B cells, and ASC survival, also fails to deplete Bmem (153,
154). Bmem were increased in the peripheral blood (154) and
no reduction in gadolinium-enhancing lesions was observed
in RRMS patients (200). The findings of unchanged or worse
clinical outcomes in atacicept and tabalumab may be due to
the minimal effect on Bmem (152, 201), although further
studies are required.

Recently, the landscape of MS therapies targeting B cells has
expanded to include Bruton’s tyrosine kinase (BTK) inhibitors.
BTK is a critical enzyme for signaling through the BCR, FcgR,
and GM-CSF receptor and is therefore involved in both adaptive
and innate immune responses (160, 202). BTK inhibition affects
myeloid cells, including microglia (203), and other
hematopoietic lineage cells with exception to T cells, plasma
cells, and natural killer cells (161). As small molecules, many
BTK inhibitors also rapidly penetrate the blood-brain barrier
(202, 203). The BTK inhibitors evobrutinib, tolebrutinib,
fenebrutinib, orelabrutinib, and B11091 are currently in clinical
development for relapsing and progressive forms of MS
(Table 1). In clinical trials, BTK inhibitors were shown to
reduce gadolinium-enhancing lesions (204) and new or
enlarging T2 hypointense lesions (205), but did not reduce
annualized relapse rates or disease progression in RRMS
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TABLE 1 | Immunomodulatory MS treatment effects on Bmem and B cell function.

MS
treatment

Target Target cells/pathways Bmem
phenotypic
markers

Memory B
cells in
blood

B cells in
CNS

compartment

Effects on B cell function Outcome FDA
approval/
clinical trial

phase

Immunomodulatory: B cell-directed
Rituximab Chimeric mAb

Anti-CD20
-Expressed on all B cells,
but terminally
differentiated plasma cells
(141)
-Some T cells express
CD20 (142, 143)
-Greater CDC than
ADCC (144)

CD19+,
CD27+,
IgD- (142)
CD19+
(145),CD27+
(86)

Decreased
(142, 146)

RRMS:
CSF CD19+
B cells
decreased
(147, 148)
PPMS:
Moderate
reduction in
CSF B cells
compared to
PB (149)

RRMS: Ratio of GM-CSF
to IL-10 producing B cells
in PB normalized (86)

RRMS:
patients:
-Reductions in
new brain MRI
lesions
-Reduced
clinical relapse
rates

Phase II

Ocrelizumab Humanized IgG1
Anti-CD20

-Expressed on all B cells,
but terminally
differentiated plasma cells
-Some T cells express
CD20 (143)
-Greater ADCC than
CDC (144)

N/A Decreased
total CD19+
B cells (150)

Decreased
CD19+
B cells (151)

N/A RRMS:
-reduced gd-
enhancing
lesions and
new lesion
formation
-reduced
clinical
relapses
PPMS:
-clinical
progression
reduced
-reduction
whole brain
atrophy and
WM lesion
volume

FDA
approved:
RRMS and
PPMS

Ofatumumab Fully humanized
IgG1 Anti-CD20

Expressed on all B cells,
but terminally
differentiated plasma cells
-Some T cells express
CD20 (143)
-Greater CDC than
ADCC activity (144)

N/A Decreased
total CD19+
B cells (145)

N/A N/A RRMS:
-reduction in
number of new
gd+ lesions

Phase 2b

Atacicept Fully human
recombinant
TACI fusion
protein

-Blocks mature B cells
and plasma cell survival
-Memory B cells
spared (137)

Rheumatoid
arthritis:
CD19+,
CD20+,
CD27+,
CD38− (152)

-Increase in
Rheumatoid
arthritis
patients
(152)

N/A N/A RRMS:
-Annualized
relapse rates
increased
compared to
placebo
-Similar gd-
enhancing
lesions

Phase II
-Early
termination

Tabalumab Fully humanized
IgG4 mAb anti-
BAFF
(membrane
bound and
soluble)

Blocks immature/
transitional B cells, naïve/
mature B cells and
plasma cell survival
(153, 154)

CD19+,
CD27+, IgD-
(154)
CD19+,
CD27+, IgD
+ (154)

-Increase
(154)

N/A N/A RRMS:
-No reduction
in gd-
enhancing
lesions

Phase II

Inebilizumab
MEDI-551

Humanized IgG1
mAb Anti-CD19
-Afucosylated
IgG Fc region
enhances ADCC
(155, 156)

Targets pro-B cells
through memory B cells,
plasmablasts, and some
plasma cells (155, 156)

N/A -Total CD20
+ (156, 157),
and PC
gene
phenotype
reduced
(157)

N/A N/A RRMS:
-Reduction in
new gd-
enhancing
lesions over 24
weeks

Phase I

(Continued)
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TABLE 1 | Continued

MS
treatment

Target Target cells/pathways Bmem
phenotypic
markers

Memory B
cells in
blood

B cells in
CNS

compartment

Effects on B cell function Outcome FDA
approval/
clinical trial

phase

BTK
inhibitors:
-Evobrutinib
-Tolebrutinib
-Fenebrutinib
-Orelabrutinib
-BIIB091

BTK binding
mechanism
(158):
Evobrutinib:
Covalent,
irreversible (159)
Tolebrutinib:
Covalent,
irreversible
Fenebrutinib:
Non-covalent,
reversible
Orelabrutinib:
Covalent,
irreversible
BIIB091:
Non-colavent,
reversible

B cells, myeloid cells, and
hematopoietic cell
lineages (160) except for
T cells, plasma cells, and
NK cells (161)

Evobrutinib:
CD19+
CD20+ IgD-
CD27+
CD38- (162)

Evobrutinib:
No reduction
in peripheral
blood Bmem
over 48
weeks (162)

N/A Evobrutinib:
Reduced CXCR3+ Bmem
migration across human
brain endothelial cells in
vitro (163)

Evobrutinib:
RRMS
-Reduced gd-
enhancing
lesions
-No effect on
annualized
relapse rates
or disability
progression
Tolebrutinib:
RRMS
Reduced new
gad-enhancing
lesions
-Reduced new
or enlarging T2
hypointense
lesions

Evobrutinib:
Phase 3
Tolebrutinib:
Phase 3
Fenebrutinib:
Phase 3
Orelabrutinib:
Phase 2
BIIB091:
Phase 1

Immunomodulatory
IFN-b
therapies

Binds to
Interferon a/b
receptor (IFNAR)

Widespread reduction in
cellular and molecular
pro-inflammatory
mediators and an
increase in anti-
inflammatory
mediators (164)

CD19+,
CD27+,
CD38-, IgM-
IgD- (165);
CD27+, IgD-
; and CD27
+, IgD+
(166)

Decreased
(165)
Decreased
(166)

N/A -Decreased MHCII on B
cells (167)
-Reduced CD80+ (168)
and CD40+ (169) B cells
-Increased IL-10
production by in vitro
stimulated B cells
(168, 170)

RRMS:
-Reduced
relapses
-Reduced MRI
lesion activity
-Reduced brain
atrophy
-Increased time
to reach CDMS
-Reduced risk
of sustained
disability
progression

FDA
approved:
RRMS

Glatiramer
acetate

Synthetic
polypeptide
mixture
resembling
myelin basic
protein

Widespread effects on
innate and adaptive
immunity; suppression of
pro-inflammatory
mediators; increase in
anti-inflammatory
mediators (171)

CD27+, IgD-
and CD27+,
IgD+ (172)

Decreased
(172)

(148) -Reduced CD69, CD25,
CD95 expression;
decreased TNFa
production; increased IL-
10 production (173)

RRMS
-Reduced
relapses
-Increased
proportion of
relapse free
patients
-reduction in
gd-enhancing
lesions and
new lesions

FDA
approved:
RRMS

Cladribine Synthetic
chlorinated
deoxyadenosine
analog

Preferential depletion of T
and B lymphocytes (174)

CD19+,
CD27+,
IgD-, IgM
(175)

Decreased
(175)

N/A N/A RRMS:
-Reduced
clinical relapse
-increased
proportion of
relapse-free
patients
-increased
proportion
patients free
from 3 month
confirmed
disability
progression
-reduced gd-

FDA
approved:
RRMS
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TABLE 1 | Continued

MS
treatment

Target Target cells/pathways Bmem
phenotypic
markers

Memory B
cells in
blood

B cells in
CNS

compartment

Effects on B cell function Outcome FDA
approval/
clinical trial

phase

enhancing
lesions and
active T2
lesions

Fingolimod Structural analog
to sphingosine

S1P receptor expressing
lymphocytes

CD19+, IgD
+, CD27+;
CD19+, IgD-
, CD27+;
CD19+,
CD20+,
CD27+ (93,
176)
CD19+,
CD27+,
CD38int/
high (177)
CD27var,
CD38- (178)

Decreased
(177, 178)

No change in
CSF B cell
percentage
(93, 179)

Impaired CSF B cell
clonal expansion (93)
-Reduced activation of
memory b cells (177)

RRMS:
-Reduced
number and
volume of gd-
enhancing
lesions
-Reduced new
and enlarging
T2 lesions
-Reduced
relapse rate
-Increased
percentage of
relapse-free
patients
-Delayed
disability
progression

FDA
approved:
RRMS

Dimethyl
fumarate

Fumaric acid
ester

Widespread anti-
inflammatory properties,
including shift from Th1
to Th2 profile (180)

CD27+
(181, 182)
CD27var,
CD38- (178)
CD27+, IgA
or IgG+
class-
switched
Bmem;
CD27+, IgM
+
unswitched-
Bmem (183)

Decreased
(178, 181,
182)
Class-
switched
and
unswitched
both
reduced
(183)

Decreased
(184)

-Reduction in GM-CSF,
TNF-alpha, IL-6
producing B cells (181,
183)
-reducing
phosphorylation of
STAT5/6 and NFƘB in
surviving B cells (183)
-IL-10 production by B
cells intact (182)

RRMS:
-Number of gd
+ lesions
reduced
-Reduced new
or enlarging T2
lesions and
new T1
hyopintensities
-Improved
annualized
relapse rate
-Reduced risk
of disability
progression

FDA
approved:
RRMS

Teriflunomide Active metabolite
of leflunomide

Rapidly proliferating cells,
including T and B cells
via inhibition of de novo
pyrimidine synthesis (185)

CD19+,
CD27dim/+,
CD38dim
(186)

B cells
reduced
(185), but no
change in
Bmem
percentages
(186)

N/A -Inhibits B cell
proliferation (187)

RRMS
-Reduced
annualized
relapse rate
-Fewer patients
experience 3
month
sustained
disability
worsening
-More patients
relapse free
-Reduced MRI
total lesion
volume and gd-
enhancing
lesions

FDA
approved:
RRMS

Mitoxantrone synthetic
anthracenedione
derivative

Immunosuppressive
including B cell, T helper
and T cytotoxic
lymphocytes (188, 189)

CD19+,
CD27+ (85)

Decreased
(85)

N/A No effect of B cell
proliferation (188)
-Preferential death of
CD27+ B cells vs CD27-
B cells

RRMS:
-Reduced
proportion of
patients with
confirmed

FDA
approved:
RRMS
SPMS
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TABLE 1 | Continued

MS
treatment

Target Target cells/pathways Bmem
phenotypic
markers

Memory B
cells in
blood

B cells in
CNS

compartment

Effects on B cell function Outcome FDA
approval/
clinical trial

phase

B cells show decrease in
lymphotoxin and TNF-a
production (85)
Increased IL-10
in vitro (85)

progression
over 2 years
-prolongs time
to first treated
relapse
SPMS:
-delayed
progression
-Reduced new
T2 lesions

Alemtuzumab Humanized mAb
IgGk anti-CD52

-High levels on T and B
cells

-Lower levels on NK
cells, monocytes,
DCs, macrophages,
and eosinophils

-Relative sparing of Tregs
and little/no
expression on
neutrophils, plasma
cells, hematopoietic
precursor cells
(190, 191)

CD19+,
CD27+ (192)

Decreased
(192)

N/A N/A RRMS:
-Reduced
annualized
relapse rate vs
subcutaneous
IFNb-1a
-Six-month
sustained
accumulation of
disability
reduced
-Improvement
of EDSS
-Increased
patients free
from any
clinical/MRI
disease activity

FDA
approved:
RRMS

Natalizumab humanized IgG1
mAb to a4b1
integrin

All leukocytes except
neutrophils (193, 194)

CD19, +,
CD27+,
IgD+ (193)
CD27var,
CD38- (178)

Increased
(178, 193)

Decreased B
cell
percentages
(179); Bmem
and
plasmablasts
(93)

- increased CD95+ B
cells, increased MHCII+ B
cells, increased CD40+ b
cell percentage, and
increases TNF and IL-6 in
in vitro stimulated B cells
(178)

RRMS:
-Reduced
annualized
relapse rate
Reduced risk of
sustained
disability
worsening at 2
years
-Decreased gd-
enhancing
lesions and
new/enlarging
T2-hypointense
lesions

FDA
approved:
RRMS

Daclizumab Humanized IgG1
mAb to CD25

Primarily CD4 T cells, but
also activated CD8 T
cells, dendritic cells,
NK cells, and activated
B cells and Bmem (195)

CD19+,
CD27+

Decreased N/A N/A RRMS:
-Reduced
annualized
relapse rate
-Reduced
contrast-
enhancing
lesions and
new/enlarging
T2 lesions
-Improved
clinical rating
scales

FDA
approved:
RRMS
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patients (204). Preliminary studies monitoring peripheral blood
B cells in evobrutinib-treated RRMS and SPMS patients revealed
no clinically relevant changes in the number of total B cells or
Bmem over the 48 week treatment period (162). However, in
vitro assays demonstrated an alteration in Bmem function, with
reduced CXCR3+ Bmem migration across human brain
endothelial cells (206).

Other Immunomodulatory Therapies
Numerous immunomodulatory therapies utilized in MS have
also been observed to affect Bmem. Although not traditionally
viewed as modulating the B cell compartment, these therapies
can have direct or indirect effects on Bmem survival and
function. Interferon (IFN)-b, glatiramer acetate, fingolimod,
dimethyl fumarate, and mitoxantrone all reduce Bmem
numbers in peripheral blood and alter global B cell function
following therapeutic treatment (Table 1). Peripheral blood B
cells obtained from IFN-b-treated patients exhibit reductions in
MHCII expression (167), reduced co-stimulatory molecules
CD80 (168) and CD40 (169), and an increase in IL-10
production (168, 170), suggesting a shift in the overall B cell
profile to an anti-inflammatory state. IFN-b treatment was also
found to increase Bmem apoptosis (115). Glatiramer acetate-
treated MS patients also show alterations in B cell function,
resulting in reduced activation markers (CD69, CD95),
decreased TNF production, and increased IL-10 production
(173). Fingolimod, which targets SIP receptor-expressing
lymphocytes such as T cells and B cells results in impaired
CSF B cell clonal expansion (93), including Bmem, and reduced
Bmem activation in peripheral blood from MS patients (177).
Dimethyl fumarate treatment results in similar modulation
reducing B cell activation (183) and the production of
the pro-inflammatory cytokines GM-CSF, TNF, and IL-6
(181, 183), while IL-10 production is unaltered (182).
Mitoxantrone treatment, immunosuppressive to T cells and B
cells, does not affect B cell proliferation (188), but results in the
preferential death of CD27-expressing B cells and a shift to an
anti-inflammatory state, with reduced LT and TNF production,
and increased IL-10 production in vitro (85). Conversely,
natalizumab, which blocks leukocyte a4b1-mediated entry
into the CNS, results in a 2.4-fold increase in Bmem in the
peripheral blood (178, 193), but a reduction of Bmem in the
Frontiers in Immunology | www.frontiersin.org 12
CSF (93). In contrast to the aforementioned therapies, B cell
activation (CD95, CD40, MHCII expression) and TNF and IL-6
production was increased in the peripheral blood of
natalizumab-treated MS patients (178). Multiple other
immunomodulatory therapies which have shown to be
effective in improving clinical outcomes in RRMS patients,
including cladribine, teriflunomide, daclizumab, and
alemtuzumab all decrease peripheral Bmem numbers
(Table 1), though findings related to the functional changes
in B cells following therapeutic treatment remain to
be determined.

Bmem and Tailoring Therapeutic
Treatment
Bmem in peripheral blood may prove useful for monitoring
therapeutic effects in MS. In one study, Novi et al. utilized a
Bmem-based reinfusion protocol for rituximab administration.
Bmem monitoring (CD19+ CD27+ PBMCs) was used to
orchestrate rituximab reinfusion, leading to a reduced number
of reinfusions while still reducing disease activity (146). This
study highlights the potential role for monitoring Bmem to tailor
immunomodulatory treatments in MS. Future studies may also
investigate the utility of monitoring Bmem in peripheral blood to
predict response to therapy, including B cell depletion, in MS.
Bmem monitoring in peripheral blood is a currently utilized
strategy for predicting response to B cell depletion therapies in
several autoimmune diseases implicating B cells including
Sjogren’s syndrome, system lupus erythematosus, and
rheumatoid arthritis (207–209).

Altogether, future studies are required to determine the exact
effects on Bmem function following immunomodulatory
treatment, including whether Bmem are central to the efficacy
of disease-modifying therapies, and whether Bmem monitoring
can be used to “personalize” immunotherapy.
CONCLUDING REMARKS AND
FUTURE DIRECTIONS

The cause of MS is unknown but growing evidence suggests
multiple B cell phenotypes are central players in MS
pathogenesis. In MS, Bmem in both the peripheral and CNS
compartments are increasingly being explored to define the exact
relationship with disease development and progression.
Important observations highlighted in the current review
include the presence of Bmem alterations in both the
peripheral blood and CNS compartments in MS; evidence for
potential roles in antibody production, antigen presentation, and
cytokine production (Figure 3); and effective targeting of Bmem
using currently available immunomodulatory therapies.
Future studies should aim to address several key unresolved
questions to provide more in-depth insights regarding Bmem
in MS (Table 2), including trafficking mechanisms, action
within the CNS compartment, functional relevance in MS
immunopathogenesis, and defining associations with clinical
TABLE 2 | Bmem in MS: Unresolved questions.

What mechanisms promote Bmem trafficking to the CNS? Adhesion molecules,
chemokines etc.
Do Bmem participate in meningeal inflammation?
Do Bmem play a significant role in sustaining local ASC/Ab in the CNS?
What is the antigen specificity of Bmem recruited to the CNS? Is it the antigen
diversity similar to CSF Abs?
Are Bmem pro-inflammatory, anti-inflammatory, or do Bmem play a pleiotropic
role in MS?
Do Bmem phenotypes, kinetics, and functions differ by MS disease phenotype?
How do Bmem interact with other immune cells and CNS resident cells within the
CNS?
How can Bmem be utilized to monitor and optimize therapeutic effects?
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outcomes. These insights may help to guide therapeutic
strategies to develop novel agents specific for Bmem and tailor
current therapeutic treatment regimens.
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