
Review Article
Reactive Carbonyl Species In Vivo: Generation and
Dual Biological Effects

Halyna M. Semchyshyn

Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, 57 Shevchenko Street,
Ivano-Frankivsk 76025, Ukraine

Correspondence should be addressed to Halyna M. Semchyshyn; semchyshyn@pu.if.ua

Received 30 August 2013; Accepted 31 October 2013; Published 21 January 2014

Academic Editors: C. Cassier-Chauvat, S. Ueda, and E. Vassiliou

Copyright © 2014 Halyna M. Semchyshyn. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Reactive carbonyls are widespread species in living organisms and mainly known for their damaging effects. The most abundant
reactive carbonyl species (RCS) are derived from oxidation of carbohydrates, lipids, and amino acids. Chemical modification of
proteins, nucleic acids, and aminophospholipids by RCS results in cytotoxicity andmutagenicity. In addition to their direct toxicity,
modification of biomolecules by RCS gives rise to amultitude of adducts and cross links that are increasingly implicated in aging and
pathology of awide range of humandiseases. Understanding of the relationship betweenmetabolismof RCS and the development of
pathological disorders and diseases may help to develop effective approaches to prevent a number of disorders and diseases. On the
other hand, constant persistence of RCS in cells suggests that they perform some useful role in living organisms.Themost beneficial
effects of RCS are their establishment as regulators of cell signal transduction and gene expression. Since RCS canmodulate different
biological processes, new tools are required to decipher the precise mechanisms underlying dual effects of RCS.

1. Introduction

Reactive carbonyl species (RCS) include a large number of
biological compounds with one or more carbonyl groups
that are continuously produced in various groups of organ-
isms, from bacteria to man, and mainly known for their
damaging effects. The steady-state concentration of RCS is
maintained in a certain range and, according to homeostasis
theory, fluctuates in the cell similar to other parameters.
However, RCS level may leave the range due to changes
occurring inRCSproduction and/or elimination.An increase
in steady-state level of reactive carbonyls is the key cause
of the phenomenon called carbonyl stress, a contributing
factor to aging, pathogenesis of metabolic syndrome, chronic
complications associated with diabetes and renal failure, neu-
rodegenerative, and other disorders [1–9]. On the other hand,
constant persistence of RCS in the cells at low concentrations
can be considered to be the emergence of RCS as an important
part of immune response, regulators of gene expression, and
cellular signaling messengers [2, 8, 10]. Therefore, like other
reactive species, RCS play a dual role in vivowhich appears to
be dose- and time-dependent [10–15].

2. Generation of Reactive Carbonyls In Vivo

Reactive carbonyls are compounds found widespread
throughout biological life and can be endogenous or exogen-
ously derived. More than 20 RCS have been identified
in biological samples [10]. Figure 1 demonstrates most
common saturated and unsaturated RCS detected in living
organisms. Some reactive carbonyls (e.g., acrolein, cro-
tonaldehyde, glyoxal, acetone, and formaldehyde) are
ubiquitous industrial pollutants which can readily enter the
cell from the environment [16–18]. Other exogenous sources
of RCS are products of organic pharmaceutical chemistry,
cigarette smoke, food additives, and browned food [19–24].

There is increasing evidence that RCS are produced
endogenously [10, 15, 25, 26]. Table 1 demonstrates most
widespread biological reactive carbonyls generated during
nonenzymatic or enzymatic reactions in vivo. A wide diver-
sity of intracellular unstable RCS is readily produced by such
nonenzymatic processes as lipid peroxidation, amino acid
oxidation, and glycation [2, 9, 10, 27–31].

A key feature of lipid peroxidation is the free radical
chain breakdown of polyunsaturated fatty acid residues in
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Table 1: Carbonyl compounds and sources of their generation in vivo.

Nonenzymatic Enzymatic
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Figure 1: The structures of most common biological reactive carbonyl species.

cholesterol esters, phospholipids, and triglycerides that yields
a broad array of RCS, including malondialdehyde (MDA),
glyoxal (GO), 4-hydroxy-2-nonenal (4-HNE), and 4-oxo-
trans-2-nonenal [2, 10, 32, 33]. Such amino acids as threonine
and glycine can be converted to RCS (e.g., methylglyoxal
(MGO)) or their precursors (e.g., aminoacetone and succiny-
lacetone) during oxidative modification [34].

Glycation, a nonenzymatic process involved reducing car-
bohydrates (e.g., glucose and fructose), attracts considerable
attention during the last decades [15, 35–37]. This could be
attributed to either an excessive consumption of carbohydrate
sweeteners in the modern human diet [37] or their opposite
dual effects in vivo [11, 14, 38–45]. Potential mechanisms
underlying both detrimental and beneficial effects of reduc-
ing carbohydrates are under debate. Recently we suggested

the involvement of RCS and reactive oxygen species (ROS)
in both the cytotoxic and defensive effects of such reducing
carbohydrate as fructose [14, 15].

In several enzymatic pathways involving carbohydrates
MGO, GO, and 3-deoxyglucosone (3-DG) are generated as
side products (Table 1). The polyol pathway is a two-step
metabolic pathway in which glucose is reduced to sorbitol,
which is then converted to fructose (Figure 2). Generally,
polyol pathway is associated with the production of 3-DG
[46, 47]. Glycolysis is probably the most thoroughly studied
metabolic pathway, the major enzymatic source of MGO in
vivo [48–51]. Figure 3 demonstrates themechanisms ofMGO
generation in glycolysis. Enediol phosphate, an intermediate
of triosophosphate isomerase reaction, may escape from
the active site of the enzyme and be rapidly decomposed
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to MGO and inorganic phosphate. MGO can also be formed
from the intermediates in the enzymatic oxidation of ketone
bodies [29, 31]. Different RCS are generated in vivo by acti-
vated human phagocytes. It has been found that stimulated
neutrophils employed the myeloperoxidase-H

2
O
2
-chloride

system produce 𝛼-hydroxy- and 𝛼,𝛽-unsaturated aldehydes
from hydroxy-amino acids in high yield [52].

The steady-state concentration of such carbonyl
metabolic intermediates as acetaldehyde, glyceraldehyde-
3-phosphate, and dioxyacetone phosphate are typically low
in the cell because of their rapid utilization by the next
step of the pathway. However, the concentration of reactive
carbonyl by products in enzymatic reactions is not so tightly
controlled in vivo. Therefore, under certain conditions,
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Figure 4: The structures of most common biological advanced lipoxidation and glycation end products.

biological effects of these carbonyl side products may be
more potent than the effect caused by carbonyl metabolic
intermediates.

3. Deleterious Effects of Reactive Carbonyls

Likemost intermediates and by products of metabolism, RCS
are electrophilic and therefore highly reactive toward differ-
ent cellular constituents majority of which are nucleophiles
[32]. It should be noted that unsaturated RCS are usually

an order of magnitude more reactive than their saturated
counterparts. Therefore, most of biological damages caused
byRCS are related to𝛼,𝛽-unsaturated aldehydes, dialdehydes
and keto-aldehydes [2, 53]. Such strong nucleophilic sites as
thiol, imidazole, and hydroxyl groups of biomolecules are
the most attractive targets for electrophilic attacks. MDA,
GO,MGO, 3-DG, glucosone, and ribosone are highly reactive
𝛼- or 𝛽-dicarbonyl compounds (Figure 1). Dicarbonyls react
with nucleophilic groups of macromolecules like proteins,
nucleic acids, and aminophospholipids, resulting in their
irreversible modification and formation of a variety of
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Figure 5: Involvement of reactive carbonyl species in signaling/transcription regulation.

adducts and cross links collectively named advanced glyca-
tion or lipoxidation end products (AGEs, ALEs) [53–59].

In general, ALEs and AGEs are poorly degraded
complexes, accumulation of which increases with age.
These adducts have been detected in various tissues and
peripheral blood and considered to be pathogenic. Car-
boxymethyl phosphatidylethanolamine and carboxymethyl-
guanosine represent the ALEs/AGEs derived from GO
and MGO interaction with nucleic acids and phospho-
lipids, respectively (Figure 4). Adducts such as GO-lysine
dimmer, MGO-lysine dimmer, carboxymethyllysine, car-
boxymethylcysteine, and argpyrimidine are the most com-
mon ALEs/AGEs resulted from protein modification (Fig-
ure 4). RCS react preferentially with arginine, cysteine, and
lysine residues with high reaction rates [35]. Physiological
RCSmay play important role in pathogenesis because of high
abundance of the amino acid residues within protein active
sites [60–63]. Carboxymethyllysinewas the first AGE isolated
from glycated proteins in vivo and together with pentosidine
and glucosepane (Figure 4) was later recognized as one of
the most important indicator of glycation in living organisms
[55, 57, 64]. RCS as well as ALEs/AGEs are found to induce
most features of the metabolic syndrome, including glucose
intolerance and hyperglycemia, abdominal obesity, elevated
blood pressure, inflammation, and renal injury [57, 59]. It
should be noted that ALEs/AGEs may continue covalent
interactions with biomolecules giving more complex cross-
links. In addition,ALEs andAGEs are efficient sources of RCS
and ROS in vivo [1, 28, 58, 65–67].

Generally, biological effects by RCS seems somewhat
similar to those by ROS thus it can be expected that physico-
chemical properties of both reactive groups should be similar

as well. However, RCS have a relatively long half-life time
and higher stability, in contrast to ROS. For instance, reactive
carbonyls have average half-life fromminutes to hours [2, 53].
At the same time, half-life of some ROS ranges from 10−9 to
10−6 s [68, 69]. It is well known that such uncharged ROS
as H
2
O
2
and HO

2

∙ are able to cross biological membranes
and diffuse for relatively long distances in the intracellular
environment. Higher stability of uncharged RCS allows them
even to escape from the cell and interact with targets far from
the sites of their generation.

4. Beneficial Impacts of Reactive
Carbonyl Species

Although excessive RCS may lead to pathological disorders
and accelerate aging, the reactive species may also exert
beneficial effects at low levels. An obvious question arises:
what are the “excessive” and “low” concentrations of RCS
in the cell? A measurement of physiological concentration
of RCS is often problematic due to (i) a vast variety of RCS
generated in vivo by different mechanisms; (ii) simultaneous
production, degradation, and excretion of RCS; (iii) depen-
dence of the above processes on different factors (intensity
of metabolism, oxygen concentration, temperature, etc.);
and (iv) since the cell is not homogenous structure, RCS
concentrations may differ to large extent in different cellular
compartments. In addition, there are no standard techniques
tomeasure RCS concentration in vivo, therefore controversial
results can be obtained in different laboratories. Nonetheless,
numerous studies report the RCS levels in biological samples.
For instance, in plasma of healthy individuals the total
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concentration of RCS derived from lipid peroxidation is
found below 1𝜇M [10]. The physiological concentration of
4-HNE and MGO in plasma ranges from 0.3 to 0.7 𝜇M and
from 0.12 to 0.65 𝜇M, respectively [8, 34, 70–72]. So, if the
concentration of RCS does not exceed “normal” level, RCS
involved inmany of the cellular functionsmay have beneficial
effects.

Phagocytic white blood cells that are of central impor-
tance in host defense mechanisms implicate RCS against
invading pathogens. It is demonstrated that, besides certain
ROS,myeloperoxidase generates such RCS as glycolaldehyde,
2-hydroxypropanal, acetone, and acrolein [52, 73]. Being
highly reactive and toxic, some RCS are found to be potent
anticancer agents. In the 1960s, it was proposed and then
provided strong experimental evidence that MGO acted as
an anticancer agent [72, 74–77]. Subsequent studies had
indicated that MGO inhibited both glycolysis and mito-
chondrial respiration of specifically malignant cells [76, 78,
79]. Besides anticancer effect, RCS demonstrate antibacterial,
antiprotozoal, antifungal, and antiviral activity [72].

5. Reactive Carbonyls in
Signaling/Transcription Regulation

Understanding of the roles of RCS in intracellular signaling
has evolved during the last decades. This was preceded
by a discussion of RCS ability to participate in signal-
ing/transcription regulation. The main question was how
RCSmeet the requirements for signaling molecules? Regard-
less of the nature of molecules, they can be recognized as
signal if: (i) their level is tightly controlled in vivo; (ii) they are
sufficiently stable, small, and hydrophobic to diffuse across
biological membranes; (iii) they bind to specific receptors,
triggering a chain of events within the cell; and (iv) their
signaling effects are reversible. The enzymatic control of
RCS production/elimination, RCS ability to cross biological
membranes and diffuse for relatively long distances are the
undoubted arguments for signaling role of reactive carbonyls.
Recent studies from several laboratories show that RCS
activate specific receptors [8, 11, 33]. It is also supposed that
degradation and resynthesis of RCS-modified proteins are
involved in the reversible aspect of RCS signaling [8]. For
all the above-mentioned reasons, RCS seem among the best
candidates for signaling purposes.

Accumulating evidence from the last decades has shown
that such RCS as 4-HNE, MDA, MGO, and GO can function
as messengers that activate or inhibit signaling pathways
under physiologic or pathologic conditions (Figure 5). They
affect signaling mechanisms in a concentration- and time-
dependent manner [10–13]. It has been shown, for example,
that low levels of 4-HNE promote proliferation [80], but at
higher concentrations it induces differentiation and apoptosis
[81–83]. The underlying mechanisms by which RCS act as
signaling messengers have been discussed extensively [8,
11, 80, 84–87]. Several cell signaling pathways, including
the stress responses, proapoptotic events, kinase/phosphatase
activities, and nuclear transcription factor function can be

modulated by RCS in microorganisms, plant, and animals
[85, 86, 88].

Numerous studies from different laboratories using a
variety of mammalian cell lines have shown that 4-HNE
induces SAPK/JNK signaling pathway [11, 81, 89, 90].
SAPK/JNK is stress-activated protein kinase/c-Jun NH(2)-
terminal kinase, a member of MAPK family, activated by
different types of stress and extracellular signals. SAPK/JNK
activation plays essential role in organogenesis during mam-
mal’s development by regulating cell survival, apoptosis,
and proliferation [91]. In hepatic cells, 4-HNE activates
JNK through direct binding [89]. In other cells, 4-HNE
activates JNK through the redox-sensitive MAPK kinase
cascade [90]. It is suggested that 4-HNE-induced JNK acti-
vation promotes its translocation in the nucleus where JNK-
dependent phosphorylation of c-Jun and the transcription
factor activator protein (AP-1) binding take place [81, 92].The
AP-1 proteins are highly conserved among eukaryotes and
belong to unspecific groupof transcription factors controlling
gene response to different signals. In mammalian cells, AP-
1 proteins regulate the transcription of a number of genes
involved in proliferation, differentiation, immune response,
and adaptation to different stresses [88].

The vast majority of RCS, including 4-HNE and MDA,
modulate transcription through the Keap1-Nrf2 pathway,
which regulates the electrophile response element/antioxi-
dant response element (EpRE/ARE) [33, 88, 93]. The activ-
ity of transcription factor Nrf2 (NF-E2-related factor 2) is
dependent on its redox-sensitive inhibitor Keap1 (kelch-like
ECH-associated protein 1). Under nonstressful conditions,
the transcription factor Nrf2 is bound to Keap1.This complex
promotes the ubiquitination of Nrf2 that followed by pro-
teasomal degradation [93, 94]. Under cell exposure to RCS
due to change of its conformation Keap1 becomes unable to
form the complex with Nrf2 that results in the increased Nrf2
concentration. Further Nrf2 migrates into the nucleus, where
it upregulates the transcription of target genes encoding
superoxide dismutase, catalase, peroxiredoxin, glutathione
peroxidase, thioredoxin reductase, 𝛾-glutamylcysteine syn-
thase, glutathione reductase thioredoxine reductase, heme
oxygenase, quinone reductase, glutathione S-transferases,
glutathione reductase, and other defensive proteins [12, 84,
87, 93, 95]. Interestingly, the Arabidopsis thaliana genome
does not appear to encode Nrf2 homologues, although there
are genes showing similarity to Keap1 that are considered
to be involved in RCS signaling in plants [84]. The strong
parallels in RCS stimulated gene expression are found in
plants and animals (e.g., glutathione S-transferases, glutamyl-
cysteine ligase, glutathione reductase, thioredoxin reductase,
quinone reductase, heme oxygenase, and epoxide hydrolase).
In Saccharomyces cerevisiae, some of these genes are under
control of the yeast AP-1, called Yap1p transciptional factor
that can be activated by MGO [96].

In the middle of the 1980s, it was demonstrated
that macrophages could specifically recognize, uptake, and
degrade AGEs/ALEs-modified proteins in vitro [97]. This
observation led to an active search for high affinity
AGEs/ALEs receptors on various cells. The first discov-
ered multiligand receptor able to bind AGEs/ALEs-modified
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proteins with high affinity was RAGE (the receptor for AGE,
member of the immunoglobulin superfamily of cell surface
molecules) [98]. RAGE interacts with distinct molecules
implicated in homeostasis, inflammation, and certain dis-
eases [55, 99].

In the presence of extracellular AGEs/ALEs, susceptible
cells can rapidly upregulate expression of RAGE on their
membranes (Figure 5). Engagement of RAGE by a ligand
triggers activation of key cell signalling pathways such as
p21ras, protein kinase C, MAP kinases, cdc42/rac, and NF-
kB, thereby reprogramming cellular properties [2, 99, 100].
For example, activation of nuclear factor NF-kB due to
AGEs/ALEs and RAGE interaction was shown to be involved
in the regulation of the gene transcription for various fac-
tors: endothelin-1 (ET-1), vascular endothelial growth factor
(VEGF), transforming growth factor 𝛽 (TGF-𝛽), and tumor
necrosis factor 𝛼 (TNF-𝛼) [55, 101]. Also, NF-kB controls the
expression of almost 100 proinflammatory genes encoding
cytokines, adhesion molecules, and ROS/RCS generating
enzymes such as NADPH-oxidase, superoxide dismutase,
inducible nitric oxide synthase, and myeloperoxidase [100–
103].

Search for new AGEs/ALEs receptors has resulted in
the identification of macrophage scavenger receptors (MSR)
types A and B1 (CD36), oligosaccharyl transferase-48 termed
AGE receptor 1 (AGE-R1), 80K-H phosphoprotein (AGE-
R2), and galectin-3 (AGE-R3) [100, 101], but the best studied
is the RAGE receptor.

The TOR (target of rapamycin) signaling pathway inte-
grates a large number of environmental changes and regulates
cell growth and aging through control of certain anabolic and
catabolic processes [104]. In clinical biology, TOR is impli-
cated in many diseases. Although there is no information
on the relationship between RCS and TOR pathway, it has
been suggested that rapamycin decreases MGO generation
in vivo by inhibiting TOR activity [105]. In our preliminar
experiments, yeast parental strain and its isogenic derivatives
defective in TOR demonstrated significantly different intra-
cellular levels of RCS and susceptibilities to RCS-induced
stress. Therefore, potential interplay between certain reactive
carbonyls and TOR signaling cascade cannot be excluded.

6. Conclusions

There is sufficient experimental evidence that reactive
species, and RCS in particular, have the ability to modulate
homeostasis at various levels, probably by both damaging bio-
logicalmolecules and participating in signaling/transcription
regulation. Different signaling networks are involved in both
deleterious and beneficial effects of reactive carbonyls. This
dual nature of RCS biological effects appears to be dose-
and time-dependent. Since RCS can modulate such biolog-
ical processes as proliferation, differentiation, reproduction,
maintenance of metabolic equilibrium, immune response,
adaptation to different stresses, apoptosis, necrosis, aging and
development of certain pathologies, new tools are required
to decipher the mechanisms underlying the dual effects.
Understanding of the relationship between metabolism of

RCS and the development of pathological disorders and
diseases will also make a contribution not only to our
knowing of how RCS cause biological effects, but also on how
to define effective therapeutic approaches to prevent them.
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