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Abstract: Fusarium Head Blight is the most common fungal disease that strongly affects Triticum
spp., reducing crop yield and leading to the accumulation of toxic metabolites. Several studies
have investigated the plant metabolic response to counteract mycotoxins accumulation. However,
information on the precise location where the defense mechanism is taking place is scarce. Therefore,
this study aimed to investigate the specific tissue distribution of defense metabolites in two Triticum
species and use this information to postulate on the metabolites’ functional role, unlocking the
“location-to-function” paradigm. To address this challenge, transversal cross-sections were obtained
from the middle of the grains. They were analyzed using an atmospheric-pressure (AP) SMALDI MSI
source (AP-SMALDI5 AF, TransMIT GmbH, Giessen, Germany) coupled to a Q Exactive HF (Thermo
Fisher Scientific GmbH, Bremen, Germany) orbital trapping mass spectrometer. Our result revealed
the capability of (AP)-SMALDI MSI instrumentation to finely investigate the spatial distribution of
wheat defense metabolites, such as hydroxycinnamic acid amides, oxylipins, linoleic and α-linoleic
acids, galactolipids, and glycerolipids.
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1. Introduction

Fusarium Head Blight (FHB), the most common fungal disease that strongly affects
Triticum spp., causes grain yield losses and an accumulation of toxic secondary metabolites
called mycotoxins [1,2]. The impact of these highly toxic fungal metabolites in the agro-food
chain is extremely relevant, with up to 80% of food crops being contaminated worldwide [3]
with deoxynivalenol (DON) and zearalenone present in most of the samples and at the
highest concentrations. In addition, the annual loss caused by this contaminant in farming
and aquaculture industries is estimated to be about 1 billion metric tons of food [4,5]. This
scenario is expected to be exacerbated by climate change, due to the changing condition
of temperature and humidity, favorable for fungal growth [6,7]. To tackle this challenge,
the use of resistant cultivars able to mitigate the mycotoxins accumulation is considered
the most promising approach [8,9]. This strategy requires a deep comprehension of the
defense mechanisms activated in plants after fungal invasion for developing possible
strategies to facilitate precise breeding. However, the host resistance mechanisms are
still poorly understood. In the past decade, metabolomic strategies have compared mock
vs. Fusarium-inoculated samples to decipher the chemical defense that cereals employ to
counteract Fusarium spp. [10–14]. Both polar metabolites [13,15–17] and lipids [12,18] have
been found to be modulated in plants following this biotic stressor. This approach has
extended our knowledge, revealing some biological pathways by which the plant interacts
against fungal attacks.
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Nevertheless, the primary constraint is related to the complexity of the plant metabolome.
On the one hand, these metabolites cannot be isolated by a single extraction procedure, and
consequently, a single analytical method cannot take the entire picture. On the other hand,
metabolomics approaches miss spatial information due to the extraction process. Localizing
where the defense mechanism is taking place is essential to postulate on the biochemical
process and assign each metabolite a specific role. The need to unlock the “location-to-
function” paradigm in plant science has also been discussed by the international Plant Cell
Atlas initiative [19,20].

In recent years, visualization has become an essential feature in plant science, enabling
us to study the metabolites’ distributions within a tissue. In this regard, mass spectrometry
imaging (MSI) has become a powerful tool capable of achieving spatial distributions
and chemical specificity by enabling unprecedented details of metabolic biology to be
uncovered. However, the scientific literature mainly focuses on describing the alteration of
physiological mechanisms, and limited information is available regarding the distribution of
mycotoxins and defense-related metabolites, not taking full advantage of modern analytical
tools, such as those made available by MSI. Recently, few studies [21–23] have visualized in
situ the chemical response of cereals to FHB, revealing the spatial distribution of carnitine
and tetra-hexose [21], antimicrobial flavonoid glycosides [23], chlorophyll derivates [23],
terpenoids, and hydroxycinnamic acid amide [22]. However, the complex and integrated
network of events that cereals can orchestrate to resist Fusarium spp. includes a broader
range of metabolites. For instance, upon pathogen infection, various crops accumulate
essential signaling lipids, including glycerophospholipids and galactolipids. Furthermore,
the growing literature reports the central role of oxylipins as key signaling compounds
involved in the plant-pathogen cross-talk [12,18,24,25].

The present study aims to visualize the tissue distribution of metabolites and lipids
with a role in mediating the wheat response to Fusarium and DON accumulation. To address
this challenge, transversal cross-sections of two Triticum spp. were obtained from the middle
of the grains and were analyzed using an atmospheric-pressure (AP) SMALDI MSI source
(AP-SMALDI5 AF, TransMIT GmbH, Giessen, Germany) coupled to a Q Exactive HF
(Thermo Fisher Scientific GmbH, Bremen, Germany) orbital trapping mass spectrometer.
The metabolites previously reported in the literature, including hydroxycinnamic acids,
oxylipins, linoleic and α-linoleic acids, galactolipids, and diacylglycerols, were imaged in
infected vs. non-infected common and durum wheat kernels.

2. Results and Discussion

The metabolites previously reported in the literature to have a role in modulating
wheat response [10,12,15] were imaged in infected vs. non-infected wheat kernels. Their
spatial distribution was studied using a transversal cross-section made from the middle of
the grains.

Common and durum wheat samples were analyzed one year from each other and
using two instruments. Therefore, the consistent results strengthened the hypothesis on
the role of the identified metabolites in the Fusarium pathogenicity and indicated the high
reproducibility of the measurements.

To reduce the measurement time, the pixel size was not set to the smallest possible
value (such as 3 µm as demonstrated by Rompp et al., [26]). The selected pixel resolution
of 20 µm was found to be well-adapted to the tissue and the histological question.

A simultaneous analysis of healthy (DON < limit of detection) and diseased (DON
content > 2000 µg/Kg) wheat kernels was performed. Infected and non-infected kernels
were mounted on the same glass slide to ensure the results to be comparable. The optical
images (Figure 1C,D) make it possible to distinguish the two because the infected grain is
shriveled and lighter in weight and is usually whitish [27]. The section used in this study
contained seed coat (pericarp and testa), aleurone, endosperm, and vascular bundle (Vb)
(Figure 1C,D).
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clusters were identified. The hierarchy relations between clusters are shown in the legend. 

2.1. Unsupervised Data Mining 
At first, the exploratory unsupervised data mining, including the segmentation anal-

ysis, was performed, revealing different regions of interest (ROI) (Figure 1A,B). 

Figure 1. Bisecting k-means exploratory data analysis for AP-SMALDI imaging of durum (A) and
common wheat (B) samples to visualize inter- and intra-sample comparison. (C,D) Optical images of
(C) durum and (D) common wheat cross-sections. Segmentation clusters expanded to the third layer.
Out-of-tissue (green) and in-tissue (blue, purple, and orange) clusters were identified. The hierarchy
relations between clusters are shown in the legend.

The metabolites detected in the two Triticum species (common and durum wheat) in
response to the infection are reported in Table S1, while those discussed throughout the
manuscript are listed in Table 1.

Table 1. Differentially accumulated metabolites in infected vs. non-infected kernels, whose m/z
images are reported in the manuscript (qualitative abundance are reported as: N.D., not detected; ++,
detected with high relative abundance).

Class Compounds Localization Infected
Kernel

Non-
Infected
Kernel

Molecular
Formula Adduct Exact

Mass
Error
ppm

Diacylglycerols DG (33:4) Pericarp ++ N.D. C36H62O5 [M + K]+ 613.4228 0.77
Diacylglycerols DG (33:3) Pericarp ++ N.D. C36H64O5 [M + K]+ 615.4385 0.64

Glycosyldiacylglycerols DGDG (36:4) Endosperm N.D. ++ C51H88O15 [M + K]+ 979.5755 0.18
Glycosyldiacylglycerols MGDG (36:4) Endosperm N.D. ++ C45H78O10 [M + K]+ 817.5227 0.24

Hydroxycinnamic
acids amides Coumaroylagmatine Pericarp and

testa ++ N.D. C14H20N4O2 [M + H]+ 277.1659 −0.31

Classes have been taken from LIPID MAPS and PlantCyc databases. MGDG: monogalactosyl-diacylglycerol;
DGDG: digalactosyl-diacylglycerol.

2.1. Unsupervised Data Mining

At first, the exploratory unsupervised data mining, including the segmentation analy-
sis, was performed, revealing different regions of interest (ROI) (Figure 1A,B).

The segmentation clusters, expanded to the third layers, discriminate not only out-
of-tissue (green cluster) and in-tissue (blue, purple, and orange) signals but also nicely
distinguish between infected and control kernels. Furthermore, the segmentation clusters
for both common and durum wheat samples strongly correlate with the seed compartments,
such as the endosperm (violet cluster), aleurone (orange cluster), and pericarp (blue cluster)
(Figure 1A,B). From Figure 1, it can be seen that both durum (Figure 1A) and common
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(Figure 1B) wheat shared the same behavior, indicating a common response to the infection
despite their different genetic background.

In particular, the orange ROI, corresponding to the signals originating from the aleu-
rone layers, was almost exclusively present in the cross-sections of the non-infected kernels.
This is consistent with previous studies reporting severe damage and destruction of the
aleurone layers in Fusarium culmorum highly-colonized seeds [28]. Similar effects of the
infection were observed in maize kernels colonized by Fusarium verticillioides [29]. Thus,
the damage to the seed coat and the aleurone layers is indeed due to the spread of the
fungal hyphae, while the inner endosperm structure tends to remain intact. However,
chemical changes in the endosperm layer were observed with the accumulation of linoleic
acid, α-linoleic acid, and their metabolites, as displayed in Figures S1 and S2. In addition,
elevated concentrations of the polyunsaturated free fatty acids linoleic and α-linolenic acid
were previously detected in F. graminearum-infected wheat spike tissue, suggesting a role in
establishing full Fusarium virulence [30].

Oxylipins deriving from the 13-lipoxygenase (13-LOX) pathway were found to be
accumulated in the endosperm of infected common wheat kernels (Figures S1 and S2).
Thus, the accumulation of 13-LOX pathway-related oxylipins in DON-contaminated wheat
agrees with the literature since studies suggested that the 13-LOX pathway is activated
after pathogen assault as a defense response in wheat [12] and corn [24,25,31].

The endosperm was also found to be the accumulation tissue for lysophosphatidyl-
choline (lysoPC), including lysoPC(16:0), lysoPC(18:0), lysoPC(18:2), lysoPC(18:1), and
lysoPC(16:1), as shown in Figure S3. This tissue-dependent accumulation was previously
reported in rice [17], with PC being localized in the bran and their lyso forms in the en-
dosperm. The production of lysoPC and free fatty acids (i.e., linoleic acid and α-linoleic
acid) is a consequence of the activation of phospholipase-mediated signaling pathways
following pathogen recognition [32]. Phospholipase A (PLA) hydrolyzes membrane phos-
pholipids to produce free fatty acids and lysophospholipids.

2.2. Localization of Signaling Molecules: Glycerolipids and Galactolipids

In addition to oxylipins and PCs, different lipid signaling molecules can be produced
because of membrane modifications following fungal invasion, such as diacylglycerols
(DG). These lipids result from the hydrolysis of phosphatidylinositol 4,5-bisphosphate
operated by phospholipase C (PLC) [32,33]. Here, we detected DG (33:4) and DG (33:3) in
the DON-contaminated common and durum wheat kernels. The latter DG was previously
reported as a marker of DON-contaminated common wheat samples [12]. As shown in
Figure 2, DGs were found to be localized in the outer layers of the seeds, which is in
agreement with González-Thuillier et al., 2015 [34], who investigated the distribution of
lipid species in common wheat using pearling fractioning. DGs were exclusively found in
the contaminated samples, probably due to membrane alteration after a pathogen attack.
Indeed, the activation of the enzyme responsible for the production of DGs (PLC) has
been reported as essential for the growth and development of Fusarium spp. and having
a possible role in trichothecene biosynthesis [35]. On the contrary, using a PLC-specific
inhibitor results in a dose-dependent reduction in mycelial growth, conidiation, conidial
germination, inhibition of perithecium, and colony formation [35].
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dicate that MGDG and DGDG are the main polar lipids of wheat-seed endosperm in-
cluded in the membrane of amyloplasts. DGDG (36:4) and MGDG (36:4) are reported to 
be the predominant species, accounting for 45−61% and 3−18%, respectively, of total galac-
tolipids in common wheat [34]. The decrease of glycolipid contents has been previously 
reported for wheat and barley, following abiotic stressors, such as water stress [37]. On 
this account, it has been recently discovered that one of the main symptoms of Fusarium 
infection is the wilting of the entire plant, which could be caused by mycotoxins such as 
DON or a blockage of water transport [38,39]. 

Some Fusarium spp. have the ability to hydrolyze galactolipids by removing one or 
two fatty acids, due to the presence of enzymes named galactolipases [40], leading to the 
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galactolipids are preferred substrates for oxidation reactions catalyzed by lipoxygenases 
[42]. 

Figure 2. Spatial distribution of diacylglycerols in durum (A,B) and common wheat (C,D) cross-
sections. (A,C) DG (33:4) [M + K]+ m/z 613.4228 and (B,D) DG (33:3) [M + K]+ m/z 615.4385 were
found exclusively in the infected seeds. MS images were generated with (A,B) 336 × 138 pixels;
20 µm pixel size; m/z bin width: ±5 ppm; scale bars: 500 µm; (C,D) 300 × 220 pixels; 15 µm pixel size;
m/z bin width: ±5 ppm; scale bars: 200 µm.

On the other hand, the exclusive accumulation of DGs in infected kernels may also be
used as building blocks for major galactolipids in chloroplasts and endoplasmic reticulum.
Monogalactosyl-diacylglycerol (MGDG) (36:4) and digalactosyl-DG (36:4) showed the op-
posite trend as they were found to be solely accumulated in the non-infected kernels. As
displayed in Figures 3 and 4 these two lipids were found localized mainly in the endosperm
tissue. This localization is consistent with previous reports [34–36], which indicate that
MGDG and DGDG are the main polar lipids of wheat-seed endosperm included in the
membrane of amyloplasts. DGDG (36:4) and MGDG (36:4) are reported to be the predom-
inant species, accounting for 45−61% and 3−18%, respectively, of total galactolipids in
common wheat [34]. The decrease of glycolipid contents has been previously reported for
wheat and barley, following abiotic stressors, such as water stress [37]. On this account,
it has been recently discovered that one of the main symptoms of Fusarium infection is
the wilting of the entire plant, which could be caused by mycotoxins such as DON or a
blockage of water transport [38,39].
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block, namely fatty acids and the disaccharide headgroup (galactopyranosyl-glucopyra-
nosyl) that the plant will re-use for further biochemical reaction. As reported in Figure S4, 
we observed the accumulation of trisaccharides (galactopyranosyl-galactopyranosyl-
arabinose), among other carbohydrates (see Table S1) in the endosperm of infected com-
mon and durum wheat kernels. 

Higher abundances of sugars such as galactopyranose and myo-inositol derivatives 
are considered resistance-related metabolite-induced, following Fusarium [43] and not fol-
lowing only DON application. In addition, these signaling metabolites can regulate plant 
hormone receptors and participate in fungal recognition, mediating the plant wound re-
sponses [43–45]. 
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ary metabolites is vital for the control of pathogen ingress. The rapid accumulation of hy-
droxycinnamic acid amides (HCAA), such as coumaroylagmatine, in response to DON-
producing Fusarium strains, along with the described antimicrobial activity, indicates that 
the compounds can be classified as phytoalexins, playing a pivotal role in the plant re-
sponse to pathogens [10]. Growing evidence also supports the role of this metabolite and 
other cinnamic acid derivatives in inhibiting the biosynthesis of mycotoxins, such as DON 
[11].The importance of HCAA metabolites is also due to their role as cell wall strengthen-
ing agents. One of the most accepted hypotheses is based on the ability of HCAA to bind 
to cell wall components by cross-linking to polysaccharides, resulting in a strengthening 
of the physical barrier that prevents or reduces fungal infection. Here, the specific tissue 

Figure 4. Tissue-specific changes, induced by mycotoxins accumulation in wheat kernels. (A) RGB
overlay of m/z images of PE (37:1) m/z 798.5396 (red), DGDG (36:4) [M + K]+ m/z 979.5735 (blue) and
MGDG (34:1) [M + K]+ m/z 795.383 (green). (B) RGB overlay of m/z images of coumaroylagmatine
[M + H]+ m/z 277.1659 (red), linoleic acid [M + K]+ m/z 319.2033 (blue) and falcarindione [M + H]+

m/z 257.1536 (green). MS images were generated with (A) 336 × 138 pixels; 20 µm pixel size; m/z bin
width: ±5 ppm; scale bars: 500 µm; (B) 300 × 220 pixels; 15 µm pixel size; m/z bin width: ±5 ppm;
images normalized to the total ion count on a 0–60% intensity scale; scale bars: 200 µm.
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Some Fusarium spp. have the ability to hydrolyze galactolipids by removing one or
two fatty acids, due to the presence of enzymes named galactolipases [40], leading to the
production of fungal oxylipins [41]. On the other hand, galactolipids may also be substrates
for plant oxylipins production, since polyunsaturated fatty acids released from the galac-
tolipids are preferred substrates for oxidation reactions catalyzed by lipoxygenases [42].

The activity of galactolipases will lead to the accumulation of galactolipid building-block,
namely fatty acids and the disaccharide headgroup (galactopyranosyl-glucopyranosyl) that
the plant will re-use for further biochemical reaction. As reported in Figure S4, we observed
the accumulation of trisaccharides (galactopyranosyl-galactopyranosyl-arabinose), among
other carbohydrates (see Table S1) in the endosperm of infected common and durum
wheat kernels.

Higher abundances of sugars such as galactopyranose and myo-inositol derivatives
are considered resistance-related metabolite-induced, following Fusarium [43] and not
following only DON application. In addition, these signaling metabolites can regulate
plant hormone receptors and participate in fungal recognition, mediating the plant wound
responses [43–45].

2.3. Outer-Layers Localization of Secondary Antifungal Metabolites: Hydroxycinnamic
Acid Amides

The fungal colonization progresses from the outer to the inner layer of the kernel.
Therefore, reinforcing the outer protective layers is crucial for the plant to succeed in
the plant−pathogen interaction. Here, a metabolite belonging to the phenylpropanoid
pathway, coumaroylagmatine, was exclusively detected in infected wheat kernels (see
Figures 4 and 5 for the overlay). As highlighted in Figure 5, it was localized in the outer
cuticle of the pericarp of infected kernels. Its localization in the outer layers of infected
kernels is consistent with its biological activity as an antifungal compound [46], represent-
ing a passive defense against pathogens that colonize the rachis surface. The secretion
of antimicrobial secondary metabolites is vital for the control of pathogen ingress. The
rapid accumulation of hydroxycinnamic acid amides (HCAA), such as coumaroylagmatine,
in response to DON-producing Fusarium strains, along with the described antimicrobial
activity, indicates that the compounds can be classified as phytoalexins, playing a pivotal
role in the plant response to pathogens [10]. Growing evidence also supports the role of this
metabolite and other cinnamic acid derivatives in inhibiting the biosynthesis of mycotoxins,
such as DON [11].The importance of HCAA metabolites is also due to their role as cell
wall strengthening agents. One of the most accepted hypotheses is based on the ability
of HCAA to bind to cell wall components by cross-linking to polysaccharides, resulting
in a strengthening of the physical barrier that prevents or reduces fungal infection. Here,
the specific tissue accumulation of coumaroylagmatine (see Figure 4 for the overlay) in
the pericarp of infected kernels may suggest the reinforcement of the secondary cell walls
of those cells and the reduction of further spreading of the pathogen from the infected
site [10]. A similar speculation was reported by Negrel and co-authors [47] who localized
ether-linked ferulate amides in the wound periderm of potato tubers, suggesting that the
synthesis and integration of the compounds play a direct role in the early response to lesion
and pathogen attack.
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Figure 5. Spatial distribution of coumaroylagmatine in durum (A,B) and common wheat (C,D) cross-
sections. Coumaroylagmatine [M + H]+ m/z 277.1659 was found exclusively in the outer cuticle of the
pericarp in infected seeds. Optical image of durum (B) and common wheat (D) seed sections with
major morphological features labeled. MS images were generated with (A) 336 × 138 pixels; 20 µm
pixel size; m/z bin width: ±5 ppm; scale bars: 500 µm; (B) 300 × 220 pixels; 15 µm pixel size; m/z bin
width: ±5 ppm; scale bars: 200 µm.

Co-localized in the outer bran with HCCA, we also identified a carnitine metabolite
(see Figure S5). It was accumulated exclusively in the infected seed, according to previously
reported data [21], co-localized with the F. graminearum hyphae in infected wheat seeds.
Thus, L-carnitine and its metabolites may participate in protecting the plant cell against
different types of stress through an action on the abscisic acid signaling pathway, but its
role in plant physiology has been scarcely studied [48].

Another pathogenesis-related metabolite was found to be co-localized in the outer
pericarp of infected wheat kernels, named ergosterol. As depicted in Figure S6, it was
detected both as protonated and [M + H−H2O]+ adducts, and accumulated in the outer
layers, consistent with the progress of the fungal colonization. The detection of ergosterol
is considered an indicator for fungal invasion, being the predominant sterol in the fungal
cell membrane. Its content significantly correlates with that of trichothecene [49]. However,
DON was not spatially detected by AP-SMALDI MS imaging. As discussed in a previous
study, the reason could be the low ionization efficiency of trichothecene mycotoxins by
MALDI [50]. This distribution indicates a relationship with the pathogen infection since
Fusarium spp. preferably colonizes this peripheral tissue in mature seeds.

3. Materials and Methods
3.1. Chemicals

The deoxynivalenol (DON) (10 mg L−1 in acetonitrile) was obtained from Romer
Labs (Tulln, Austria). The 2,5-dihydroxybenzoic acid (DHB), trifluoroacetic acid (TFA),
bidistilled water, MS-grade acetone, and acetonitrile were purchased from Sigma-Aldrich
(Steinheim). The gelatin was obtained from VWR International (Darmstadt, Germany). The
glass microscope slides (ground edges, super frost) were obtained from R. Langenbrinck
(Emmendingen, Germany).
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3.2. Plant Material

The control and contaminated grain seeds of common (Triticum aestivum) and durum
wheat (Triticum durum) were randomly picked from the bulk of seeds. Wheat samples were
previously checked for the presence of DON using the LC-MS (Liquid chromatography–
mass spectrometry) technique.

3.3. Sample Preparation

The sample preparation for MALDI was performed following the protocol previously
optimized [21]. To put it briefly, embedded samples in 2% gelatin were cut from the middle
of each grain at −20 ◦C to obtain consecutive cryosections (20 µm thick). Due to the fragility
of the seed, adhesive tape kept over the trimmed sample was used during cryosectioning
(HM525 cryostat, Thermo Scientific, Dreiech, Germany). The sections on the glass slide
were kept at −80 ◦C until the analysis day. Before matrix application, the sections’ optical
images were captured by a digital microscope VHX-5000 (Keyence GmbH, Neu-Isenburg,
Germany). DHB (30 mg mL−1) in acetone:water (50:50, v/v, 0.1% TFA) was sprayed with
an ultrafine pneumatic sprayer (SMALDIPrep, TransMIT GmbH, Giessen, Germany) [51]
to ensure uniform coating of tissue sections with the microcrystalline matrix. The size
and uniformity of the deposited crystals were checked prior to AP-SMALDI MS imaging
experiments. At least two biological replicates were analyzed by MSI.

3.4. AP-SMALDI MS Imaging Analysis

The wheat seed sections imaging experiments were acquired using a high-spatial-
resolution (≥5 µm step size) atmospheric-pressure scanning microprobe matrix-assisted
laser desorption/ionization MSI ion source (AP-SMALDI5 AF, TransMIT GmbH, Giessen,
Germany) coupled to a Q Exactive HF orbital trapping mass spectrometer (Thermo Fisher
Scientific GmbH, Bremen, Germany).

The minimum laser beam focus results in an ablation spot diameter of 5 µm [26,52].
For the experiments described below, laser step sizes pf at 15 and 20 µm, respectively, were
set. The mass spectrometer was operated in positive-ion mode: scan range m/z 250–1000;
spray voltage +3 kV; capillary temperature 250 ◦C, automatic gain control (AGC) disabled;
cycle time 1.3 pixels/s. The internal mass calibration was performed using known matrix
ion signals as lock mass values (m/z 716.12461), providing a mass accuracy of better than
2 ppm root mean square error over the entire measurement.

3.5. Data Processing and Image Generation

LIPOSTARMSI software [53] was employed for data processing and image generation,
importing the raw data as imzML format.

The bisection k-means segmentation analyses [54] were applied to mine complex MSI
datasets applying spatial denoising and total ion current (TIC) normalization [55,56]. The
metabolite annotation of MSI data was performed against publicly available LIPID MAPS
and PlantCyc databases by accurate m/z matching within user-set tolerances. The ion images
of selected m/z values were generated with an m/z bin width of ±2 ppm and normalized to
TIC. The raw data were deposited on the METASPACE platform (https://metaspace2020.eu,
accession date 16 November 2021) [57].

4. Conclusions

Here, we reported the spatial distribution of plant defense metabolites involved in the
fungal-plant cross-talk. Lipids and antifungal metabolites were finely located in infected vs.
non-infected kernels thanks to the high-spatial resolution provided by (AP)-SMALDI MSI
instrumentation. An important challenge for future research is to visualize the potential
co-localization of major fungal metabolites (i.e., mycotoxins) with plant defense metabolites
to decipher if the priming effect can act at a distance. Unfortunately, as mentioned above,
the ionization of low m/z values mycotoxins by MSI is quite challenging, thus we could not
visualize a reliable co-localization of DON and plant metabolites. Such a scenario suggests

https://metaspace2020.eu
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the importance of screening new MALDI matrices to improve the ionization efficiency and
thus the metabolite coverage of a variety of natural toxins and small plant metabolites.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo12010048/s1, Table S1: List of metabolites imaged in common and durum wheat and dif-
ferentially accumulated in non-infected vs. infected kernels, Figure S1: Spatial distribution of linoleic
acid and oxylipins in common wheat cross sections, Figure S2: Spatial distribution of α-Linoleic
acid in common wheat cross sections, Figure S3: Spatial distribution of lyso-phosphatidylcholine
in durum and common wheat cross-sections, Figure S4: Spatial distribution of carbohydrates in
durum and common wheat cross-sections, Figure S5: Spatial distribution of N-acyl amines in durum
and common wheat cross-sections, Figure S6: Spatial distribution of ergosterol in durum wheat
cross-sections.
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