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Macadamia is an evergreen tree belonging to the Proteaceae family. The two commercial
macadamia species, Macadamia integrifolia and M. tetraphylla, are highly prized for their
edible kernels. TheM. integrifolia genome was recently sequenced, but the genome ofM.
tetraphylla has to date not been published, which limits the study of biological research and
breeding in this species. This study reports a high-quality genome sequence of M.
tetraphylla based on the Oxford Nanopore Technologies technology and high-
throughput chromosome conformation capture techniques (Hi-C). An assembly of
750.87Mb with 51.11 Mb N50 length was generated, close to the 740 and 758Mb
size estimates by flow cytometry and k-mer analysis, respectively. Genome annotation
indicated that 61.42% of the genome is composed of repetitive sequences and 34.95% is
composed of long terminal repeat retrotransposons. Up to 31,571 protein-coding genes
were predicted, of which 92.59% were functionally annotated. The average gene length
was 6,055 bp. Comparative genome analysis revealed that the gene families associated
with defense response, lipid transport, steroid biosynthesis, triglyceride lipase activity, and
fatty acid metabolism are expanded in the M. tetraphylla genome. The distribution of
fourfold synonymous third-codon transversion showed a recent whole-genome
duplication event in M. tetraphylla. Genomic and transcriptomic analysis identified 187
genes encoding 33 crucial oil biosynthesis enzymes, depicting a comprehensive map of
macadamia lipid biosynthesis. Besides, the 55 identified WRKY genes exhibited
preferential expression in root as compared to that in other tissues. The genome
sequence of M. tetraphylla provides novel insights for breeding novel varieties and
genetic improvement of agronomic traits.
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INTRODUCTION

Macadamia is an evergreen nut tree belonging to the Proteaceae family, genus Macadamia F.
Muell, commercially grown for their high-value kernels (Toft et al., 2018). The genus
Macadamia F. Muell. contains four different species, namely, M. integrifolia, M. tetraphylla,
M. ternifolia, and M. jansenii (Akinsanmi et al., 2017), but only M. integrifolia, M. tetraphylla,
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and their hybrids (M. integrifolia ×M. tetraphylla) are used for
commercial nuts production (Hardner, 2016). Due to the
large-scale commercial cultivation in Hawaii (United States)
in 1948 (Ahmad Termizi et al., 2014), macadamia was also
named as Hawaiian Nuts, which is native to the subtropical
rainforest of Queensland, New South Wales, Australia (Neal
et al., 2010; Shapcott and Powell, 2011).

Macadamia kernels are rich in unsaturated fatty acids, essential
amino acids, trace elements, and vitamins, butmonounsaturated fatty
acids and palmitoleic acid contents are extremely high (Kaijser et al.,
2000). Macadamia nuts are eaten directly or used as raw material for
processing high-grade edible oil (Navarro and Rodrigues, 2018).
Macadamia nuts are very nutritious and deeply subjected to a
large consumer approbation fancy, to whom it is also known as
the “Queen of nuts.” Long-term consumption of macadamia lowers
blood cholesterol and viscosity of platelets, prevents arteriosclerosis,
reduces heart disease, myocardial infarction, and other cardiovascular
diseases (Garg et al., 2003; Garg et al., 2007), World consumption of
macadamia nuts has rapidly grown in recent years with more than
400,000 tons in demand (FAO statistics, year), yet the current global
supply is only ~40,000 tons. Within the current and future periods,
macadamia nuts production is still in short supply (Trueman and
Turnbull, 1994). The commercial growing areas of macadamia are
located in the tropical and subtropical belts, although the traditional
cultivated area is in the United States and Australia (Trueman and
Turnbull, 1994). The totalmacadamia planted area has rapidly grown
over the past decade because the cultivation technology is simple,
planting high income, the plants are more cold-resistant than rubber
trees, bananas, and other traditional tropical crops, yet very suitable
for the cool weather of tropical and subtropical countries. Globally,
the largest macadamia orchard area is in China (300,000 ha),
followed by South Africa, Australia, Kenya, Guatemala, and the
United States in that order.

Macadamia is diploid (2n = 28) with genome size estimates of
652–780Mb (Chagné, 2015). In recent years, the genome sequences
of many important tropical crops have been reported, but reports on
the genome of macadamia are very few. The chloroplast genomes of
M. integrifolia, M. ternifolia, and M. tetraphylla were sequenced in
2014, 2017, and 2018 by Australian and Chinese researchers (Nock
et al., 2014; Liu et al., 2017; Liu et al., 2018), and the draft genome and
transcriptome of M. integrifolia cultivar 741 was sequenced in 2016.
The total assembly length is 518Mb, spanning ~79% of the estimated
genome size (Nock et al., 2016). However, there remains no report on
the genome sequencing ofM. tetraphylla to date.M. tetraphylla is an
important parent species of commercially grownmacadamia varieties
(Pisanu et al., 2009), and the genome sequencing ofM. tetraphyllawill
provide abundant genetic information and references for the
screening of breeding materials.

MATERIALS AND METHODS

Sample Collection, Library Construction,
and Sequencing
A cultivated M. tetraphylla plant was collected from
Xishuangbanna, Yunnan Province, China. The collected
plant samples were immediately frozen in liquid nitrogen

and stored at −80°C before DNA isolation. High-molecular-
weight genomic DNA was extracted using a Qiagen plant
genomic DNA extraction kit (QIAGEN, Hilden, Germany).
Sequencing library was prepared with Nanopore Genomic
Sequencing Kit SQK-MAP006 (ONT, United Kingdom) and
a PCR-free “native barcoding” kit provided by ONT. Blunt/TA
ligase Master Mix (M0367S, NEB) was used to ligate native
barcode adapters for 10 min at room temperature. A 1:1
volume of AMPure XP beads was used to purify the
barcoded DNA, and the DNA was eluted in 26 μL nuclease
free water. Hairpin adapters were ligated and added to the
pooled library DNA to give a final reaction volume of 100 μL.
The reaction mixture was incubated for 10 min at room
temperature. The final reaction was cleaned using
prewashed Dynabeads MyOne Streptavidin C1 beads
(65001; Thermo Fisher Scientific). The library was loaded
on a single R9.4 flow cell and sequenced on a GridION X5
platform (Oxford Nanopore Technology, OX4 4DQ, Oxford,
United Kingdom). Reads were trimmed according to a
minimum read quality of Q15. Reads with length shorter
than 30 bp were excluded and sequencing adapters were
removed. MinION (TM) 2D reads were filtered into passed
and failed reads using Metrichore basecaller.

To construct the Hi-C library, ~4–6 g young leaves were
harvested and frozen in liquid nitrogen. The nuclear DNA was
cross-linked in situ in 2% formaldehyde at room temperature
before extraction. The nuclei extracted were then restricted
with HindIII restriction enzyme. Free ends were then
biotinylated, diluted and ligated randomly. The generated
libraries were sequenced on Illumina Hiseq4000 platform.

Total RNA was isolated from five tissues (young leaves,
young inflorescences, flowering inflorescences, proteoid roots,
and barks) using the Column Plant RNAout kit (TIANDZ,
Beijing, China). A 300-cycle kit was used for a 2 × 150 bp
paired-end run and the generated library was sequenced on the
Illumina HiSeq2500 platform.

Estimation of Genome Size and
Heterozygosity
The M. tetraphylla genome size was estimated by flow
cytometry following the protocol described by Dolezel
(Doležel et al., 2007) and k-mer frequency analysis. In brief,
Jellyfish v2.1.0 (Marçais and Kingsford, 2011) was used to
generate the 17-mer frequency distribution of paired-end
reads. The genome size was estimated according to the
formula: G = K_num/peak depth (G: genome size; K_num:
total number of k-mers; peak depth: depth of the major peak).
The GenomeScope (Vurture et al., 2017) estimated
heterozygosity of the M. tetraphylla genome is 1.03%.

Genome Assembly
De novo assembly pipeline was used to alleviate the dual effects
of the highly heterozygous genome and highly repetitive DNA
sequences. The Nanopore raw reads were corrected and
trimmed using the Canu v1.8 (Koren et al., 2017) software.
The corrected reads were uploaded to the WTDBG v2.2 (Ruan
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and Li, 2020) for genome assembly using the following
parameters: S 2 --edge-min 2 --rescue-low-cov-edges -x ccs
-g 800 m. Iterative polishing was performed using the Pilon
v1.23 (Walker et al., 2014) software with the Illumina genomic
data to fix bases, fill gaps, and correct local misassemblies. The
polished contigs were subsequently processed by the 3d-DNA
pipeline (version 170123) (Dudchenko et al., 2017) using
default parameters. Juicebox (https://github.com/aidenlab/
Juicebox) was used to visualize the resulting Hi-C contact
matrix, which was manually corrected based on the
neighboring interactions. A total of 14 high-confidence
clusters were identified in the M. tetraphylla genome. A
visualization of the assembly contiguity was generated using
assembly-stats (https://github.com/rjchallis/assembly-stats).

The Illumina sequencing reads were mapped to the genome
using bowtie2 v2.2.6 (Langmead and Salzberg, 2012) to assess
the completeness and accuracy of the genome assembly.
Additionally, the assembly was evaluated by BUSCO
(Benchmarking Universal SingleCopy Orthologs) (Simão
et al., 2015). To further evaluate the genome assembly, the
RNA reads were mapped to the genome using HISAT2
(Daehwan et al., 2015). The GC content was calculated with
a 2 kb non-overlapping sliding window. To assess the accuracy
of the genome assembly, we also mapped the ONT long reads
to the genome using minimap2 v2.17-r941 (Li, 2018) with the
“map-ont” option.

Repeat Annotation
Two complementary methods were used to identify repetitive
sequences in the M. tetraphylla genome. First, the Tandem
Repeats Finder v4.09 (Benson, 1999) was employed to identify
the tandem repeats. Second, a combined strategy was selected
to predict transposable elements (TEs). For the homology-
based annotation of TEs, RepeatMasker v1.332 (http://www.
repeatmasker.org) was employed to search the RepBase
database (v18.07) (Bao et al., 2015) for repetitive DNA, and
RepeatProteinMasker (Tarailo-Graovac and Chen, 2009) to
search the protein database for TE-related proteins. A de novo
library was constructed using three software, including
RepeatModeler v1.05 (http://www.repeatmasker.org/
RepeatModeler.html), RepeatScout v1.05 (Price et al., 2005),
and Piler v1.06 (Edgar and Myers, 2005). The RepeatMasker
was then applied to identify TEs comprehensively.

Simple sequence repeats (SSRs) in the M. tetraphylla
genome were identified using the MISA program (Thiel
et al., 2003) with the following parameters: at least twelve
repeats for monomer, six repeats for the dimer, four repeats for
trimer, three repeats for tetramer, pentamer, and hexamer.

Gene Prediction and Functional Annotation
The Augustus v2.7 (Mario et al., 2004) and SNAP v2006-07-28
(Korf, 2004) software were used to perform de novo prediction.
Genes were predicted from the combination of de novo,
homology, and EST predictions. The assembled transcripts
were used for iterative self-training, and the optimized
parameters were applied for further annotation by the
Augustus and SNAP software. For homology prediction,

protein sequences from Arabidopsis thaliana (Initiative, 2000),
Malus domestica (Velasco et al., 2010), Nelumbo nucifera (Ming
et al., 2013), and Rosa chinensis (Saint-Oyant et al., 2018) were
aligned to the genome using the genblastA v1.0.1 (She et al., 2009)
software. The homologous genomic regions of the target genes
were extended in both 3′ and 5′ directions and then loaded to the
GeneWise v2.2.0 (Birney et al., 2004) software to obtain accurate
spliced alignments. The transcripts were also mapped to the
genome to generate spliced alignments using the Program to
Assemble Spliced Alignments (PASA) pipeline (version 2.0.2)
(Haas et al., 2003). Finally, all these predictions were consolidated
into a consensus gene set using EVidenceModeler (r2012-06-25)
(Haas et al., 2008).

Functional assignment was performed using BLASTP (with
1e-5 e-value) to search against the SwissProt database (Bairoch
and Apweiler, 2000). The KAAS server (Yuki et al., 2007) was
used to map the predicted genes onto KEGGmetabolic pathways.
InterProScan v5.10-50.0 (Jones et al., 2014) software determined
the motifs and functional domains. The GO term and Pfam
domains were directly obtained from the InterProScan results.

The Arabidopsis gene (TAIR10) was used to search for genes
related to the oil biosynthesis pathway (Supplementary Table
S1). Target genes with ≥50% sequence coverage in length and
functional annotations were classified into corresponding gene
families. The identified genes were further refined by searching
the Pfam database.

Noncoding RNA Annotation
Five types of noncoding RNA genes, tRNA, rRNA, snRNA,
snoRNA, and miRNA, were identified in the M. tetraphylla
genome. The tRNA genes were identified using the tRNAscan-
SE v2.0 (Schattner et al., 2005) software with default parameters.
The RNAmmer v1.2 (Lagesen et al., 2007) software was
performed to predict rRNAs and their subunits with default
parameters. The snRNA genes were predicted using the
INFERNAL software (v1.1.2) (Nawrocki et al., 2009) with cm
models from the Rfam database (Griffiths-Jones et al., 2005). The
snoRNA genes were identified by the snoscan v0.9.1 (Lowe and
Eddy, 1999) software.

Comparative Genome Analyses
Orthologous gene clusters were computed using the OrthoMCL
pipeline (Li et al., 2003) with the following finished genomes:
Actinidia chinensis, Coffea canephora, Populus trichocarpa,Oryza
sativa, A. thaliana, R. chinensis, N. nucifera, and M. tetraphylla.
An all-against-all comparison was performed using the BLASTP
search tool with a 1e-5 e-value. For each single-copy gene family,
protein sequences were aligned by the MUSCLE software (Edgar,
2004) and subsequently joined into one supergene for each
species. The phylogenetic tree was inferred using the RAxML
software (Stamatakis, 2014) with PROTGAMMAWAG model
and 1000 bootstraps. The CAFE (Computational Analysis of
Gene Family Evolution) tool (De Bie et al., 2006) was used to
detect gene family expansion and contraction with a probabilistic
graphical model. The GSEA (Gene Set Enrichment Analysis) was
performed with the Fisher’s exact test (p-value < 0.05) on
InterPro domains.
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To further analyze the major evolutionary events in M.
tetraphylla, the 4DTv (fourfold synonymous third-codon
transversion) distribution in the M. tetraphylla genome was
calculated. The two proteomes were compared using BLASTP
(1e-5 e-value). Syntenic blocks were identified using the
MCscanX toolkit (Wang et al., 2012) with <5 intervening
genes between hits. The 4DTv between gene pairs located in
synteny blocks were calculated using an in-house Perl script.

RNA-Seq Data Analysis
The raw reads of RNA-seq data were trimmed using
Trimmomatic v0.32 (Bolger et al., 2014) to improve the
quality. The adaptors and low-quality reads with <15
average quality per base and a 4-base wide sliding window
were trimmed off. And then, the resulting clean data were
aligned to the reference genome using the HISAT2 (Kim
et al., 2015) software. The FPKM expression of target genes
was calculated using the Stringtie (Pertea et al., 2016)
transcript assembler.

RESULTS

Genome Sequencing and Assembly
The M. tetraphylla was sequenced on the Oxford Nanopore
Technologies (ONT) platform. A total of 68.17 Gb of data
were generated with an average read length of 20.16 kb
(Supplementary Table S2 and Supplementary Figure S1A)
from the Nanopore platform, and 88.27 Gb of short reads
from the HiSeq2500 platform (Illumina, CA, United States)
with 500 bp insert size to genome survey and assembly
polishing (Supplementary Table S3). After correcting, a total
of 26.34 Gb clean data was obtained with an average length of
29.89 kb (Supplementary Figure S1B). The M. tetraphylla
genome size was estimated by flow cytometry, and the
deduced genome size was 740 Mb. We also evaluated the
genome size using k-mer analysis. The cumulative k-mer
count suggested a 758 Mb genome size (Supplementary
Figure S2), similar to the flow cytometry results. A de novo
assembly pipeline was used to alleviate the dual effects of the
highly heterozygous genome and highly repetitive DNA

sequences (Supplementary Figure S3). Finally, the M.
tetraphylla genome was assembled into 4,335 contigs, with an
N50 of 1,182,547 bp (Table 1). The assembly size (750.87 Mb) is
consistent with the estimated genome size based on flow
cytometry and k-mer analysis (740 and 758 Mb, respectively).
The N50 contig showed a 335.8-fold increase compared to M.
integrifolia (Figure 1A and Supplementary Table S4). Two Hi-C
libraries were constructed from young leaves of M. tetraphylla.
About 533 million 150-bp paired-end Illumina reads were
produced and uniquely mapped onto the draft assembly
contigs. The insertion size of Hi-C reads spanned
predominantly from dozens to hundreds of kilobases,
therefore providing efficient information for scaffolding
(Figure 1B and Supplementary Table S5). Notably, 95.29%
(715.17 Mb) of the genome anchored to 14 pseudo-
chromosomes combined with the valid Hi-C data (Figure 1C,
Supplementary Figure S4 and Supplementary Table S5). The
chromosome lengths varied from ~30.93 to ~87.10 Mb with
~51.11 Mb N50 size (Table 1, Supplementary Table S6).

Quality-filtered Illumina reads were mapped to the genome to
validate the completeness and accuracy of the genome assembly
(Supplementary Figure S5). Results showed that 94.25% of the
short reads mapped to the genome, with an 87.84% properly-
paired mapping rate (Supplementary Table S7). The accuracy
and completeness of the assembly were also assessed by mapping
the ONT long reads to the genome. Overall mapping rate of these
long reads was 99.81% for our assembly (Supplementary Table
S7). From the BUSCO software, ~89.72% (1,292 out of 1,440)
conserved genes in the embryophyta lineage were present in
the assembly (Supplementary Table S7). Additionally,
92.00% of the RNA-Seq data independently aligned to the
assembled genome. We have also calculated the GC content
with a 2 kb non-overlapping sliding window established no
obvious GC bias in the genome assembly (Supplementary
Figure S5). Altogether, these results suggest a high-quality
genome of M. tetraphylla.

Repeats and Gene Annotation
We identified 461 Mb of repetitive sequences, accounting for
61.42% of the genome. These repetitive sequences mainly
comprised transposable elements, including RNA
retrotransposons (Class I) and DNA transposons (Class II).
Long terminal repeat (LTR) retrotransposons represent the
most predominant class of transposable elements. The
assembled M. tetraphylla contains 34.95% LTR
retrotransposons, of which 22.00% are Gypsy-type elements,
and 5.94% are Copia-type elements (Supplementary Table
S8). A total of 510,893 SSRs were also identified in the M.
tetraphylla genome (Supplementary Table S9). Among the
repeat motifs, mono-nucleotide repeats were the most
predominant, followed by di-, tri-, tetra-, penta-, and hexa-
nucleotide (Supplementary Figure S6 and Supplementary
Table S9). The identified SSR markers may serve as potential
markers to M. tetraphylla breeding programs.

A total of 34.30 Gb RNA-seq data were obtained from five
tissues representing major tissue types and developmental stages
(Supplementary Table S3) to further aid in gene prediction. The

TABLE 1 | Summary of the M. tetraphylla genome assembly and annotation.

Assembly
Sequencing Depth (×) 89.93
Estimated genome size (Mb) 758
Assembled sequence length (Mb) 750.54
Scaffold N50 (bp) 51,109,939
Contig N50 (bp) 1,182,547

Annotation,
Number of predicted protein-coding genes 31,571
Average gene length (bp) 6,055
tRNAs 1,286
rRNAs 542
snoRNAs 74
snRNAs 251
Transposable elements (%) 61.42
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31,571 genes identified combine de novo, homology-based and
EST-based evidence. The average length of the identified genes,
exons, and introns were 6,055, 222, and 1,213 bp, respectively
(Table 1 and Supplementary Table S10). Overall, 29,233 genes

(92.59%) were functionally assigned to the public database, of
which 22,869 (72.44%) genes had Swiss-Prot homologs, 8,303
(26.30%) had KEGG homologs, 29,052 (92.02%) had InterPro
homologs, 17,864 (56.58%) had GO homologs and 21,925

FIGURE 1 | Landscape of macadimia genome. (A) Visualization of assembly stats (https://github.com/rjchallis/assembly-stats): the inner radius (highligthed in red
color) represents the length of the longest scaffold, the radial axis originates at the circumference indicates the scaffold length, the N50 and N90 scaffold lengths are
indicated respectively by dark and light orange arcs, respectively. The cumulative number of scaffolds within a given percentge of the genome is plotted in purple. The
outermost circular layer shows the base composition at the given coverage of the genome. (B) Hic-contact map of macadimia genome. (C) Circos plot of
macadimia genome. Tracks from outside to inside are the 14 chromosomes ofM. tetraphylla, gene density (density measured in 1000-Kb sliding windows), transposable
element (TE) density, Gypsy-type LTR retrotransposons density, Copia-type LTR retrotransposons density, DNA transposable element density. The syntenic blocks
within chromosomes of macadimia genome are displayed with connecting lines in different colors.
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(69.45%) had Pfam homologs (Supplementary Figure S7 and
Supplementary Table S11). Up to 1,286 tRNAs, 542 rRNAs, 251
snRNAs, and 74 snoRNAs were identified in the M. tetraphylla
genome (Supplementary Table S12).

Expanded Gene Families and
Whole-Genome Duplication
The sequencedM. tetraphylla genome was further compared with
seven other sequenced plant genomes, including A. chinensis, A.
thaliana, C. canephora, N. nucifera, O. sativa, P. trichocarpa, and
R. chinensis, to investigate the genetic basis underpinning the
distinct traits ofM. tetraphylla. A total of 24,346 orthologous gene
families consisting of 204,948 genes were identified
(Supplementary Figure S8 and Supplementary Table S13).

The eight plant species shared a core set of 107,264 genes
which belong to 6,823 gene families and represent ancestral
gene families (Figure 2A and Supplementary Table S13).
Besides, 965 gene families containing 4,337 genes were unique
to M. tetraphylla (Figure 2A and Supplementary Table S13).

The GO annotation revealed that the M. tetraphylla specific
gene families are highly enriched for the chitin catabolic process
(GO:0006032, p < 1.23E-02), polysaccharide binding (GO:
0030247, p < 3.99E-07), and ADP binding (GO:0043531, p <
5.94E-08). TheM. tetraphylla GO enrichment is probably related
to the thick shells of macadamia nuts (Supplementary Figure S9
and Supplementary Table S14). TheM. tetraphylla specific gene
families also mapped to the KEGG pathways of carbohydrate
metabolism, metabolism of other amino acids, biosynthesis of
other secondary metabolites, xenobiotics biodegradation,

FIGURE 2 | Evolution of macadimia genome. (A) Venn diagram showing shared and unique gene families among macadimia and other plant species. (B)
Comparative genomic analysis of macadimia and other plant species. (C) Distribution of 4DTv for pairs of syntenic paralogs.
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metabolism, and protein families for genetic information
processing, signaling, and cellular processes (Supplementary
Figure S10).

A phylogenomic tree constructed using 833 single-copy genes
from the eight plant species showed that M. tetraphylla is closely
related to N. nucifera but diverged ~132.2 million years ago
(MYA) (Supplementary Figure S11). The gene families with
significant change are often associated with distinct traits (Zhang
et al., 2017). A gene family evolutionary analysis of the eight plant
species showed that 3,065 gene families underwent expansion,
whereas 3,257 underwent contraction (Figure 2B,
Supplementary Figures S12A,B).

The GO enrichment analysis revealed that the expansion of
these families involved genes related to defense response (GO:
0042742, GO:0006952), lipid transport (GO:0006869), steroid
biosynthetic process (GO:0006694), triglyceride lipase activity
(GO:0004806), and fatty acid metabolic process (GO:0006631)
(Supplementary Table S15). On the KEGG pathway database,
the expanded gene families were functionally associated with
the oil biosynthesis pathway, including fatty acid biosynthesis
(ko00061), fatty acid elongation (ko00062), fatty acid
degradation (ko00071), and glycerolipid metabolism
(ko00561) (Supplementary Table S16). These findings
suggest that M. tetraphylla displayed an enhanced ability for
oil biosynthesis, a critical trait for flavor and quality in
macadamia.

WGD (whole-genome duplication) events are of great
importance in generating species diversity during evolution
(Fu et al., 2021). We used 4-fold synonymous third-codon
transversion (4DTv) to detect the WGD events in the M.
tetraphylla genome. In a self-alignment of M. tetraphylla, a
total of 581 syntenic genomic blocks covering 8,953 genes
were identified in the macadamia genome. The orthology
within macadamia genome showed 4DTv distance peaks at
~0.10 and ~0.42, respectively (Figure 2C), suggesting that two
rounds of WGD events occurred in the macadamia genome. We
also compared the M. tetraphylla genome with grape genome
sequences, and a peak (4DTv ~0.14) was observed. These results
indicated thatM. tetraphylla has undergo a species-specificWGD
event after the divergence between M. tetraphylla and grape
(Figure 2C), and M. tetraphylla shared an ancient WGD event
(At-γ) with grape (Figure 2C).

Analysis of Oil Metabolism Genes
The high fat content of macadamia kernels is the most prominent
feature of this fruit tree, especially the high content of unsaturated
fatty acids, which determines its benefits to human health.
According to the determination of our research team,
macadamia nuts contain up to 80% fatty acids consisting of 13
different types. The three most abundant fatty acids are oleic acid
(57–66%), palmitoleic acid (10–18%), and palmitic acid
(10–18%), and the other ten fatty acids constitute <4% of the
total fatty acids content.

The 187 genes encoding 33 crucial oil biosynthesis enzymes,
including those involved in de novo fatty acid synthesis,
elongation, and TAG assembly, were manually annotated to
expound on the evolution of oil metabolism genes of M.

tetraphylla (Figure 3). The RNA-seq data from leaves,
young flowers, mature flowers, roots, and barks identified
member genes from key enzyme gene families
(Supplementary Table S17). The acetyl-CoA carboxylase
(ACCase, EC: 6.4.1.2) is the key enzyme determining the
metabolic pathways that lead to oil or protein biosynthesis
in the seed (Chen et al., 1999). Ten ACCase genes were
identified in the M. tetraphylla genome but exhibited
diverse expression patterns in different tissues (Figure 3
and Supplementary Table S17). Gene MTE004907 of the
ACCase gene family was highly expressed in all tissues, but
the expression levels were substantially higher in leaves and
flowers than roots and barks.

The FAD protein family catalyzes the desaturation of fatty
acids (Park et al., 2008). FAD2 and FAD3 are the main
enzymes responsible for linoleic acid desaturation. FAD2 is
reported to be accountable for polyunsaturated lipid synthesis
in the developing seed of oil crops. Two FAD2 genes were
identified in the M. tetraphylla genome, but none was
expressed in the five sequenced tissues. Other gene families,
including KAR, SAD, and PLD, contained the maximum
number of gene copies, implying their central role in the oil
formation pathway.

Genome-Wide Investigation of WRKY Gene
Family
The WRKY transcription factors (TFs) are among the most
widespread gene families in higher plants (ülker and Somssich,
2004). The WRKY proteins play a crucial role in plant defense
against biotic stress (Levée et al., 2009; Pandey and Somssich,
2009; Kloth et al., 2016). Fifty-five WRKY proteins were
identified based on a WRKY domain and BLAST searches
(Supplementary Table S18). The identified WRKY proteins
were 134 aa (MTE002361) to 1,050 aa (MTE011780) long
(Supplementary Table S18). Multiple sequence alignment
was performed to check the phylogenetic relationship of the
WRKY proteins. The WRKY domains covered three groups
corresponding to the groups I, II, and III. Group II was
dominant which contained 30 members (Figure 4A and
Supplementary Table S18). As previously reported, the
WRKY domains from the N-termini and C-termini were
grouped into different clades, indicating that the two
domains underwent parallel evolution (Tao et al., 2018).
The WRKY genes possessed at least two exons, including
the optimal number of exons to a maximum of twenty
(Figure 4B). To further confirm whether different tissues
influenced the expression level of WRKY genes, we
calculated the FPKM (Fragments Per Kilobase per Million)
value of each gene. Forty-one WRKY genes were expressed in
all five sampled tissues, with 20 genes showing constitutive
expression (FPKM >1 in all samples) (Supplementary Table
S19). However, gene MTE017431 was not expressed in any of
the five sampled tissues, suggesting a pseudogene (Figure 4C).
Interestingly, the WRKY genes showed higher transcript
abundance in roots than other tissues (Figure 4C),
suggesting that defense in macadamia primarily occurs in
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this organ, probably against soil microorganisms and
pathogens.

DISCUSSION

M. tetraphylla L. Johnson, is a tropical to subtropical tree that
has its origins in southeastern Queensland and northeastern
New South Wales in Australia (Mulwa and Bhalla, 2000). It is
highly valued for its versatile nut. However, production of
macadamia is hampered by low yield. Here, we generated a
chromosome-scale assembly of M. tetraphylla genome
combing Oxford Nanopore Technologies and Hi-C

technology. The N50 contig showed a striking 335.8-fold
increase compared to M. integrifolia. Repeated sequence
insertion has been proved to be a main force for the
expansion of plant genome as observed in tea tree and
rubber tree (Liu et al., 2020; Zhang et al., 2020). Similar to
these species, Gypsy-type elements contributed the most to the
macadamia tree genome.

We have identified lineage-specific genes that likely control the
thick shells of macadamia, in particular genes encoding enzymes
involved in the chitin catabolic process. Our comparative analyses
indicate that M. tetraphylla is closely related to N. nucifera and
diverged ~132.2 million year ago. A high proportion of gene
families related to fatty acid metabolism were expanded in the

FIGURE 3 | Expression level of oil biosynthesis-related genes. Acetyl-CoA is converted into C16 and C18 fatty acids in the plastid. TAG is synthesized in the
endoplasmic reticulum and packed in the oil bodies. The isozymes and metabolites involved in oil biosynthesis were colored in red and black, respectively. The
expression levels of oil-biosynthesis genes from leaf, young flower, mature flower, root and bark, are presented with the heat map.
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macadamia tree genome, indicating M. tetraphylla displayed an
enhanced ability for oil biosynthesis. A similar result was
observed in the tung tree, which is an economically important
woody oil plant that produces tung oil rich in eleostearic acid
(Zhang et al., 2019). A recent WGD event was also detected in the
M. tetraphylla genome.

Like many other nuts, macadamia nuts are high in
monounsaturated fatty acids. Monounsaturated fatty acids
have been linked to reduced cholesterol in the blood (https://
www.medicinalfoodnews.com/). A total of 187 genes encoding 33
crucial oil biosynthesis enzymes were identified. ACCase is a key
enzyme determining the metabolic pathways toward oil or
protein biosynthesis (Chen et al., 1999). Ten ACCase genes
were identified but the expression levels varied, which may be
a cause of different fatty acids content in different tissues. We
have also observed the KAR, SAD, and PLD gene
families contained the maximum number of gene copies,
implying their central role in the oil formation pathway. A
total of 55 WRKY genes were identified in the M.
tetraphylla genome. We have found that most of the WRKY
members showed higher expression level in roots, indicating that
this tissue may play a crucial role in plant defense against soil
microorganisms and pathogens. We believe that the genome

sequencing efforts summarized in this study would facilitate
the breeding of this elite nut tree.

CONCLUSION

This paper presents the sequencing, assembly, and annotation
of the M. tetraphylla genome. The extensive datasets and
analyses presented will provide novel insights into the
genome evolution of this species and facilitate the breeding
strategies for genetic improvement. As a woody plant, breeding
for any new variety often takes decades, and molecular marker-
assisted screening offers a practical approach to shorten the
breeding cycle. The genomic data obtained in this study will
also provide the primary data for mining genes and developing
molecular markers hence the foundation for molecular
breeding of macadamia.
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