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Abstract

Background: Advances in machine learning (ML) provide great opportunities in the prediction of hospital
readmission. This review synthesizes the literature on ML methods and their performance for predicting hospital
readmission in the US.

Methods: This review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-
Analysis Extension for Scoping Reviews (PRISMA-ScR) Statement. The extraction of items was also guided by the
Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies (CHARMS). Electronic
databases PUBMED, MEDLINE, and EMBASE were systematically searched from January 1, 2015, through December
10, 2019. The articles were imported into COVIDENCE online software for title/abstract screening and full-text
eligibility. Observational studies using ML techniques for hospital readmissions among US patients were eligible for
inclusion. Articles without a full text available in the English language were excluded. A qualitative synthesis
included study characteristics, ML algorithms utilized, and model validation, and quantitative analysis

assessed model performance. Model performances in terms of Area Under the Curve (AUC) were analyzed using R
software. Quality in Prognosis Studies (QUIPS) tool was used to assess the quality of the reviewed studies.

Results: Of 522 citations reviewed, 43 studies met the inclusion criteria. A majority of the studies used electronic
health records (24, 56%), followed by population-based data sources (15, 35%) and administrative claims data (4,
9%). The most common algorithms were tree-based methods (23, 53%), neural network (NN) (14, 33%), regularized
logistic regression (12, 28%), and support vector machine (SVYM) (10, 23%). Most of these studies (37, 85%) were of
high quality. A majority of these studies (28, 65%) reported ML algorithms with an AUC above 0.70. There was a
range of variability within AUC reported by these studies with a median of 0.68 (IQR: 0.64-0.76; range: 0.50-0.90).

Conclusions: The ML algorithms involving tree-based methods, NN, regularized logistic regression, and SVM are
commonly used to predict hospital readmission in the US. Further research is needed to compare the performance
of ML algorithms for hospital readmission prediction.
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Background

The continuing efforts to reduce hospital readmission
rates in the US have largely been driven by the great un-
derstanding of readmission rates among individuals and
the associated costs to the health system. Hospital read-
missions are common for patients discharged following
hospitalization in the US, especially among the popula-
tion with baseline comorbidities [1], and the elderly
population group [2]. Readmission causes a significant
financial burden for public and private payers [3, 4]. In
response to such problems, multiple initiatives have
been mandated through the Affordable Care Act in the
efforts to reduce hospital readmissions [5]. The Hospital
Readmission Reduction Program (HRRP) that penalizes
hospitals with higher than average readmission rates is
among the most prominent initiatives [6, 7]. In addition,
reduction in readmission rates has been recognized as a
part of national strategies for quality improvement
through other incentives of health care policies [8, 9].
Therefore, models for predicting readmission risk are in
great demand, and these tools could help to identify and
reduce readmission with a goal to improve overall pa-
tient care and reduce healthcare costs.

The Centers for Medicare and Medicaid Services
(CMYS) uses risk-standardized readmission models based
on hierarchical logistic regression [10-13]. Meanwhile,
there has been growing interest among payers in devel-
oping models for readmission risk to reduce costs and
improve care, given readmission reduction is a part of
quality of care imperatives. Machine Learning (ML)
techniques are gaining popularity for clinical utility amid
the growing availability of healthcare data [14—16]. ML
is a powerful method of data analysis that is based on
the concepts of learning and discovering data patterns
rather than being programmed, and it is capable of ana-
lyzing diverse data types with great flexibilities [17, 18].
ML techniques contain multiple types of classification
methods, and common methods for health service re-
search include regularized logistic regression, decision
trees, neural networks (NN), and deep learning [19-21].

Recent reviews have demonstrated that ML tech-
niques can be applied for prediction of various types of
outcomes, including disease diagnosis [22, 23], disease
prognosis [24—-26], or therapeutic outcomes [27, 28].
With respect to predicting readmission outcomes, very
few reviews systematically gathered information of pre-
dictive models for readmission outcomes [29-33], and
even fewer reviews involved the use of ML techniques
for readmission outcomes [29-31]. Only three reviews
involved the use of ML techniques for the readmission
outcomes, but none of these reviews conducted ML
method-focused evaluation of predictive models on hos-
pital readmission [29-31]. One review specifically fo-
cused on electronic medical record (EMR) data-based
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readmission models between 2015 and 2019 and pro-
vided an evaluation of all such validated models. How-
ever, this review included models based on all types of
data analysis, without focused evaluation of ML tech-
niques [29]. Another review provided an overview of
predictive models for readmission until 2017 based on
all types of statistical methods, including ML algorithms
[30]. Christodoulou et al. specifically evaluated the use
of ML for all clinical outcomes, without a focus on re-
admission outcomes [31]. Therefore, a gap still exists in
the latest knowledge about predictive models for hos-
pital readmission that leverages the ML techniques
based on all types of databases across different health-
care settings in the US. This review focuses on predictive
models of readmission that specifically use ML tech-
niques. The objective of this scoping review was to
synthesize the current literature on the types of ML
techniques utilized in predicting hospital readmissions
in the US. The secondary objective of this scoping
review was to summarize predictive performance in
terms of Area Under the Curve (AUC) across different
ML algorithms for hospital readmission prediction.

Methods

Data sources and systematic searches

This scoping review used the Preferred Reporting Items
for Systematic Reviews and Meta-Analysis Extension for
Scoping Reviews (PRISMA-ScR) statement [34] to guide
conduct and reporting. The Checklist for Critical
Appraisal and Data Extraction for Systematic Reviews of
Prediction Modelling Studies (CHARMS) [35, 36] was
used to guide items to extract from the prediction
models. With the assistance from an academic librarian
for the Health Sciences, the authors developed the
search strategies. The authors searched the databases of
PUBMED, MEDLINE, and EMBASE from January 1,
2015 to December 10, 2019 to identify all potentially ob-
servational studies of applying ML techniques in hospital
readmission risk prediction based on datasets of the US
population. Only studies published after 2015 were in-
cluded because we wanted the most recent evidence.
The exact search syntax was also customized for the da-
tabases of PUBMED, MEDLINE, and EMBASE. The
search syntax included search terms related to “hospital
readmission” and “machine learning”. The readmission
outcome refers to the readmission following any-or-all-
cause index hospitalization, and ML techniques encom-
passed a broad range of methods; search syntax related
to these terms was developed based on previous litera-
ture [19, 23, 37-39]. Searches were also limited to stud-
ies published in the English language as the review
focused on the US population. The information on com-
prehensive search strategies and results obtained from
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each database are provided in Additional supporting
file 1: Supporting Information Part L.

Eligibility criteria and study selection

The initial citations and records found through database
searching were imported into the COVIDENCE online
software [40]. All duplicate studies were then identified
and removed by the software. The titles and abstracts of
these resulting articles were independently screened by
two authors (Y.H. and A.T.) to identify articles that con-
tained the concepts of ML-based hospital readmission
predictive models, and any disagreement between the
two authors was solved by a third reviewer (S. C.). The
full text documents of these resulting articles identified
as potentially relevant based on their title and abstract
were retrieved, added into COVIDENCE platform, and
further screened for eligibiity. Inclusion and exclusion
criteria for full-text eligibility were made prior to the lit-
erature search and were in accordance with the search
strategy in the identification process. The full-text arti-
cles of these potentially relevant references were evalu-
ated for final inclusion independently by two authors
(Y.H. and A.T.). Any discrepancies between the two re-
viewers were resolved by a third reviewer (S.C.).

Articles eligible for inclusion were as follows: (1) must
use at least one ML technique for hospital readmission
prediction; (2) must report details of the performance of
the predictive risk model in terms of AUC; (3) the pre-
dictive risk modeling involved US population-based da-
tabases; (4) be an original research paper; and (5) full
texts in the English language. In addition, studies with
the outcome of interests not relevant to hospital re-
admission were excluded, and studies that were random-
ized controlled trials (RCT), reviews, or conference
abstracts were also excluded. The PRISMA flow diagram
was used to guide the reporting of study identification
and selection [34]. The information on comprehensive
inclusion/exclusion criteria is provided in Additional
supporting file 1: Supporting Information Part II.

Data extraction

This review focused on summarizing ML techniques
utilized for modeling and corresponding model per-
formances. The list of extraction items was sup-
ported by prior literatures that involved the use of
ML in readmission prediction [29-31] and was re-
fined based on discussions among the authors. For
the eligible articles included for this review, one au-
thor (Y.H.) extracted the following information, and
all the information was validated by another author
(A.T.). Any discrepancies between the two reviewers
were resolved by a third reviewer (S.C.). The data
extraction spreadsheets with extracted items in-
volved Microsoft Excel. The extracted items were:

Page 3 of 14

(1) Study characteristics, including first author and
publication year, data source, population and set-
ting, sample size, outcomes studied (see Additional
supporting file 2: Supporting Information Table S1);
(2) Model performances, including ML-based algo-
rithm utilized, model description, model validation,
model discrimination (see Additional supporting
file 2: Supporting Information Table S2); (3) Vari-
ables used as predictors in the models (see Add-
itional supporting file 2: Supporting Information
Table S3); (4) Other model performance measures,
including accuracy, sensitivity, specificity, precision,
recall, F1 score and method of addressing class im-
balance problem (see Additional supporting file 2:
Supporting Information Table S4); and (5) Quality
assessment (see Additional supporting file 2: Sup-
porting Information Table S5). All supporting infor-
mation was organized based on the ML method to
allow the cross-linkage between the tables. The
items reported in this scoping review according to
PRISMA-ScR and CHARMS guidelines can be
found at Additional supporting file 3 and Add-
itional supporting file 4, respectively.

Quality assessment

The Quality in Prognosis Studies (QUIPS) tool was used
to assess the quality of included studies [41]. This vali-
dated quality assessment tool includes six domains:
study population, study attrition, prognostic factor meas-
urement, outcome measurement, study confounding,
and statistical analysis/reporting. The QUIPS tool was
used to assess the quality of studies by prior studies in-
volving modeling for readmission [30, 32] or clinical
outcomes [42], and was tailored for scoping review based
on prior reviews related to ML modeling for readmis-
sions [29, 31].

From each reviewed study, the following items in each
domain were elaborated in this scoping review: (1) Study
population: ‘is there an adequate description of study
population?’; (2) Study attrition: ‘did the study provide
an adequate description of follow-up information, e.g.,
describing any method for handling loss-to-follow-up or
deaths?; (3) Prognostic factor measurement: ‘did the
study provide an adequate description of measurement
of prognostic factors, e.g., describing any imputation
method for handling missing data?’; (4) Outcome meas-
urement: ‘is there a clear definition of the readmission
outcome?’; (5). Study confounding measurement and ac-
counting: ‘did the study accounted for potential con-
founding factors from more than three of following
domains, such as demographic factors, social determi-
nants of health (SDoH), primary diagnosis or comorbid-
ity index, illness severity, mental health comorbidities,
overall health and functional status, prior use of medical
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services hospitalizations?’; and (6) Statistical analysis/
reporting: ‘did the study conduct any model validation
procedure?’

The ratings of ‘yes’, ‘partly, ‘no’ or ‘unclear’ were
scored to each individual domain to grade the studies.
The quality for each study was defined with low’, ‘mod-
erate,” or ‘high’ based on the combined results of individ-
ual domains [42, 43]. The study was considered as ‘high’
quality if the answer was ‘yes’ or ‘partly’ for more than
four domains. The study was considered as ‘moderate’
quality if more than three domains were the answer of
‘ves’ or ‘partly’. Lastly, the overall study was defined as
‘low’ quality if only two or less than two domains were
provided with the answer of ‘yes’ or ‘partly’. The quality
assessment was performed by two investigators (Y.H.
and A.T.), and a third independent investigator (S.C.) re-
solved any disagreements for which consensus could not
be reached by the two reviewers (Y.H. and A.T.).

Data synthesis and analysis

Firstly, a qualitative review and synthesis of study char-
acteristics were performed, with a focus on summarizing
information on data sources, sample size, study popula-
tion, and types of readmission outcomes. Secondly, a
qualitative review and synthesis of model characteristics
were conducted, focusing on summarizing ML algo-
rithms utilized, model performance in terms of AUC,
model validation, and use of variables. All ML tech-
niques that were used for hospital readmission predic-
tion in each study were comprehensively synthesized.
The extracted ML algorithms were then grouped into
several broad ML categories, based on our knowledge
and previous literature that involved the use of ML algo-
rithms [19, 30, 31].

Model performance was extracted in terms of AUCs
of different ML models for each study (See Additional
supporting file 2: Supporting Information Table S2)
to further generate a comprehensive summarization of
model performance by ML method. Besides AUC, this
review also extracted other metrics, such as precision,
and recall, which are found to be more appropriate
for imbalanced datasets [44], however, the paucity of
studies reporting precision or recall metrics did not
permit an analysis of model performance by these
metrics (See Additional supporting file 2: Supporting
Information Table S4). If a study developed more
than one model for the same ML algorithm (e.g.,
based on different predictor sets or for more than
one outcome), the maximum AUC was recorded for
the ease of presentation of AUC by ML method in
data synthesis. In addition, AUC values in the follow-
ing order of priority were used: if studies provided
AUC both for training and validation datasets, only
validation AUC would be reported; however, when
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the study was ambiguous about the datasets where
the AUC was drawn from, the reported AUC
was used. Based on the extracted data, the AUCs of
different types of ML algorithms were visually pre-
sented in boxplot and beeswarm plot stratified by the
ML category. On further analysis, the AUCs by differ-
ent ML categories were summarized in descriptive
statistics, including estimates of mean, median, range,
Interquartile range (IQR), standard deviation (SD).
The data visualization plotting and analysis of AUCs
calculation were done by R software [45].

Results

Among 921 studies identified, the titles and abstracts of
522 unique papers were screened after removing dupli-
cates. After excluding 393 records, the remaining 129
resulting citations in full-text form were assessed for
full-text eligibility. A total number of 43 studies that met
our inclusion criteria were identified in this scoping re-
view (Fig. 1 [34]). The characteristics of these included
studies are listed in detail in Additional supporting file 2:
Supporting Information Table S1.

Readmission risk prediction involved a variety of ML
techniques. Some studies used traditional statistical
modeling such as logistic regression [46—48], generalized
linear model (GLM) [49], Poisson regression [50], or
other previously published algorithms for predicting
hospital readmissions, such as Stability and Workload
Index for Transfer (SWIFT) score and Modified Early
Warning Score (MEWS) scores for Intensive Care Unit
(ICU) readmission risk [51], CMS risk prediction model
for Inpatient Rehabilitation Facilities (IRF) readmission
rate [52] and current standard LACE score or Hospital
Scores for hospital readmission rate [53]. Given the re-
view focused on ML-based predictive models, only ex-
tracted information about ML-based algorithms was
utilized; additionally, if traditional modeling methods,
such as logistic regression, were applied with the ML
strategy, such as regularization for variable selection,
then they were included and grouped as “regularized lo-
gistic regression” for further evaluation. The details of
model characteristics, other reported model perfor-
mances, and the use of variables are summarized in
Additional supporting file 2: Supporting Information
Table S2-S4, respectively.

Characteristics of the selected studies

Data sources and sample size

Forty-two (98%) studies clearly specified the type of data
utilized for model development, and one study did not
mention the type of data (2%). The majority of studies
were based on EMR data (24, 56%). Studies utilized a
single hospital-based EMR (10, 26%), multiple hospitals
in a single region or affiliated within the same health
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system (11, 26%), and national wide hospital data (2,
5%). Another common data source was population-
based data sources (15, 35%) from payers, national sur-
veys, and direct study of patients, including Medicare
database (4, 9%), national surveys (American College of
Surgeons National Surgical Quality Improvement Pro-
gram (ACS NSQIP) (4, 9%), US renal data system (1,
2%), Healthcare Cost and Utilization Project (HCUP) (3,
7%)), patient registry (2, 5%), and randomized controlled
trial datasets (1, 2%). The remaining four studies utilized
administrative claims data (4, 9%), with studies utilizing

a health system administrative claims (3, 7%) and one
study utilizing administrative claims cross-matched to
EHR data (1, 2%). The median total sample size was 23,
882 (range: 132-594,751).

Study population and readmission outcomes

The readmission outcome was binary in all the studies
that were included in this review. A total of 42 studies
(98%) clearly specified the type of readmission outcomes
with detailed information about the definition for re-
admission outcomes to be predicted in the study, and
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only one study (2%) did not clearly mention the type of
readmissions outcome [54]. The majority of studies con-
sidered only one type of readmission rate (39, 91%),
while other studies (4, 9%) used more than one readmis-
sion rate. A majority of studies used 30-day readmission
(36, 84%), among which some studies were focusing on
unplanned or unpreventable readmission (7, 16%), while
other studies (7, 16%) used other outcome measures, in-
cluding 60-day readmission, 90-day readmission, and 1
year-readmission.

Use of variables

The number and type of predictors differed across dif-
ferent studies. For comparative reasons, variables were
categorized into the following domains: demographic
factors, social determinants of health (SDoH), primary
diagnosis or comorbidity index, illness severity, mental
health comorbidities, overall health and functional sta-
tus, prior use of medical services hospitalizations, based
on previous literature that involved hospital prediction
models [32]. Only one study had considered all these
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above domains, and about half of these studies (21, 49%)
had considered variables of more than four above do-
mains. All these studies considered demographic charac-
teristics and primary diagnosis or comorbidity index as
input predictors, and the majority of these studies con-
sidered variables of pre-index utilization (40, 93%). More
than half of these studies had considered SDoH (26,
60%) and illness severity (23, 53%). Some studies had
considered mental health comorbidities (12, 28%), and a
few studies had considered overall health status and
functional status (10, 23%).

Model characteristics

Use of ML

Various ML techniques were utilized in these selected 43
studies. Most studies (25, 58%) have applied more than
one ML technique, and the details of all these ML tech-
niques are summarized in Table 1. The most popular al-
gorithm was tree-based methods (23, 53%), including
decision trees (DT) [46, 52, 54—60], random forests (RF)
[48-50, 59—71] and boosted tree methods [47, 49-51, 53,

Table 1 ML algorithms used in the studies and corresponding featuring studies. (N =43 studies)

Type of ML Algorithms

Number of Studies’ (Percent)

Featuring Studies

Tree-based methods
Decision Tree
Random Forest
Boosted tree methods®
Regularized Logistic Regression (penalized method)
Lasso (L1 regularization)
Ridge Regression (L2 regularization)
Elastic-Net
Support Vector Machine
Neural Networks
NN (with multiple hidden layers, e.g. deep Ieaming)b
CNN
RNN
Deep stacking network
Deep neural networks
Ensemble of DL methods
NN (with a single or unclear number of hidden layers, or unclear)
Other algorithms
Naive Bayes network
KNN
Ensemble of methods*

Bayesian Model Averaging

23 (53%)

9 [46, 52, 54-60]

16 [48-50, 59-71]

18 [47,49-51, 53, 54, 59, 64-67, 71-77]
12 (28%)

9 (53, 64, 65, 67, 70, 71, 78-80]
4 (64, 70, 71, 80]

3 [49, 72, 81]

10 (23%) [54, 60, 63, 65, 66, 70, 71, 82-84]
14 (33%)

10 [60, 69-71, 77, 79, 80, 85-87]
3 [60, 71, 80]

5 [70, 71, 79, 80, 86)

1 [69]

2 [77, 85]

1 [87]

5 (5819, [601%, [68]%, [491°, [66]°
10 (23%)

4 49, 54, 70, 84]

2 (54, 65]

3 (50, 67, 84]

1 [49]

Abbreviations: ML machine learning, Lasso least absolute shrinkage and selection operator, NN neural networks, CNN convolutional neural network, RNN recurrent
neural network, DL deep learning, KNN The k-nearest neighbors. %it includes adaboost, gradient boosting, gradient descent boosting, boosting, XGBoost; Pit
includes CNN, RNN, DNN, deep stacking networks, and ensemble of DL methods; “DT ensembled with SVM, RF combined with SVM, tree-augmented naive

Bayesian network; “one hidden layers; °did not specify number of layers

fSince most studies have applied more than 1 machine learning algorithms, therefore the sum of the number of studies by machine learning method is greater

than 43



Huang et al. BMC Medical Research Methodology (2021) 21:96

54, 59, 64-67, 71-77] (e.g. gradient descent boosting,
XGboost, adaboost). The second most popular algorithm
was NN (14, 33%): many studies used multiple hidden
layers based deep learning techniques [60, 69-71, 77, 79,
80, 85-87] (e.g., recurrent NN, convolutional NN, deep
NN, and ensemble of DL networks), while a few other
studies either used one hidden layer [58, 60, 68] or did not
specify the number of layers [49, 66]. Regularized logistic
regression (12, 28%), including Least Absolute Shrinkage
and Selection Operator (LASSO) regression [53, 64, 65,
67,70, 71, 78-80] (L1 regularization), ridge regression [64,
70, 71, 80] (L2 regularization) and elastic-net [49, 72,
81]were third most used ML algorithm, followed by Sup-
port Vector Machine (SVM) [54, 60, 63, 65, 66, 70, 71,
82-84] (10, 23%). The other less commonly used ML al-
gorithms included naive Bayes network [49, 54, 70, 84], K-
Nearest Neighbors (KNN) algorithm [54, 65], ensemble of
methods [50, 67, 84], ,and Bayesian Model averaging [49].

Model performance

The majority of these studies (28, 65%) reported ML al-
gorithms with AUC above 0.70, which is an indication of
modest to high discrimination ability. Figure 2 showed
the boxplot and beeswarm plot of AUC stratified by ML
techniques. Table 2 showed the descriptive statistics of
AUC by ML category. There was a range of variability
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within AUC reported by these studies with an average of
0.69 (0.08) and a median of 0.68 (IQR: 0.64—0.76; range:
0.50—-0.90). The mean value of AUC for NN, boosted
tree algorithms, random forest, decision tree, regularized
logistic regression, SVM and other ML algorithms was
0.71(0.07), 0.70 (0.06), 0.68 (0.09), 0.70 (0.10), 0.69
(0.08), 0.70 (0.11), and 0.68 (0.04), respectively. The me-
dian AUC for NN algorithms was 0.71 (IQR: 0.64—0.78;
range: 0.61-0.81). Median AUC was 0.70 (IQR: 0.66—
0.75; range: 0.59-0.81), 0.64 (IQR: 0.63-0.72; range:
0.53-0.90), and 0.67 (IQR: 0.63-0.77; range: 0.59-0.88)
for boosted tree algorithms, random forest and decision
tree, respectively. The median AUC for regularized logis-
tic regression, SVM, and other ML algorithms was 0.65
(IQR 0.64—0.75; range: 0.58—0.84), 0.68 (IQR: 0.65-0.78;
range: 0.5-0.86), and 0.68 (IQR: 0.66—0.71; range 0.62—
0.77), respectively.

In addition to AUC as a performance measure as spe-
cified by the current review criteria, almost half of the
selected studies reported performance measure in terms
of accuracy (19, 44%), while other commonly used per-
formance measures in these selected studies, including
sensitivity (22, 51%) and specificity (21, 49%). A small
number of studies reported precision (5, 12%), recall (5,
12%), or F1 score (5, 12%). Only a few studies reported
the methods to address imbalanced data (7, 16%).

Boxplot and Beeswarm Plot of AUC by ML category
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Table 2 Descriptive statistics of AUC by ML category

ML category Number of Studies® Mean (STD) Median Min Max IQR

NN 15 0.71 (0.07) 071 0.61 0.81 0.64-0.78
Boosted tree” 17 0.70 (0.06) 0.7 0.59 0.81 0.66-0.75
RF 16 0.68 (0.09) 0.64 053 09 0.63-0.72
DT 9 0.70 (0.10) 0.67 0.59 0.88 0.63-0.77
Regularized Logistic Regression” 16 0.69 (0.08) 0.65 0.58 0.84 0.64-0.75
SVM 10 070 (0.11) 0.68 05 0.86 0.65-0.78
Other ML algorithms® 10 0.68 (0.04) 0.68 0.62 0.77 0.66-0.71

Abbreviations: ML machine learning, NNs neural networks, RF random forest, DT decision tree, SVM support vector machine, STD standard deviation, QR the
interquartile range. °the total number of studies is larger than total number of included studies, because some studies used more than 1 ML algorithms. It
includes adaboost, gradient boosting, gradient descent boosting, boosting, XGBoost; PIt includes Lasso (L1 regularization), ridge regression (L2 regularization), and
elastic-net algorithms; “It includes: DT ensembled with SVM, RF combined with SVM, tree-augmented naive Bayesian network

Model validations

Thirty-seven studies (86%) applied some method for
validation, and six studies did not use any type of val-
idation method (14%). Table 3 showed the model val-
idation methods among these included studies. The
details of the types of model validation used in each
study could be found in Additional supporting file 2:
Supporting Information Table S2. Twenty-one studies
(49%) randomly partitioned data into training/testing
parts or training/validation/testing parts [51, 53, 55,
56, 58, 60, 65-67, 70, 73, 74, 76, 78, 79, 82—87], and
most of these studies utilized some form of cross-
validation in the training sets for model construction.
Thirteen studies (30%) validated using various types
of resampling procedures, such as k-fold cross-
validation [49, 54, 57, 61, 68, 69, 77, 81] (19), strati-
fied k-fold cross-validation [61, 80], repeated k-fold
cross-validation [48], and repeated random test-train
splits [50]. Only four studies (9%) used some form of
external validation methods, including splitting train-
ing/test datasets by time [48, 59, 63], or used separate
independent data for validation [57].

Quality assessment

Most studies (37, 86%) were of high quality based on the
appraisal of six domains of the QUIPS tool. A few stud-
ies failed to report how to handle a loss to follow-up is-
sues (such as deaths or other reasons causing the
missing values). Many studies did not provide an ad-
equate definition of outcome measures (such as inclu-
sion or exclusion criteria). The full description of quality
assessment for all included studies is summarized in
Additional supporting file 2: Supporting Information
Table S5.

Discussion

In this scoping review, 43 studies involving ML predic-
tion models for hospital readmission were evaluated.
These models were developed and tested in a variety of
settings and populations in the US using health care data
from insurance claims, EMRs, or surveys. Tree-based
methods, NN, and regularized logistic regression were
the most popular ML approaches used to predict re-
admission risk. There was variation in model perform-
ance in terms of AUC across these prediction models.

Table 3 Overview of methods for model validation across studies (N =43)

Type of validation

Number of studies (Percent)

Featuring studies

Internal validation 33 (77%)
Training/testing split 21 (49%)
Resampling 12 (28%)
k-fold cross-validation 8
Stratified k-fold cross-validation 2
Repeated k-fold cross-validation 1
Repeated random test-train splits 1
External validation 4 (9%)
Split by time 3
Separate dataset 1

No Validation 6 (14%)

[51, 53, 55, 56, 58, 60, 65-67, 70, 73, 74, 76, 78, 79, 82-87]

[49, 54, 57, 61, 68, 69, 77, 81]
[61, 80]

(48]

(50]

[48, 59, 63]
(57]
[46,47, 52,62, 72, 88]




Huang et al. BMC Medical Research Methodology (2021) 21:96

Most of the studies have applied multiple methods for
validation. Domains of variables, including sociodemo-
graphic factors, SDoH, primary diagnosis or comorbidity
index, illness severity, comorbidities, overall health, and
functional status, were generally included for the devel-
opment of ML prediction models. The overall quality in
most of these studies was high.

To our knowledge, this is the first review to provide a
focused evaluation of ML models for readmission risk pre-
diction. This scoping review suggests growing importance
of ML methods for a variety of medical outcomes. In re-
cent years, ML is increasingly used to predict a wide range
of clinically relevant outcomes with the availability of
health data, including cancer [25] or dementia [24] prog-
nosis, neurosurgical outcomes [26, 89], and clinical diag-
nostic outcomes [31]. The value of ML in the readmission
risk prediction has not been systematically investigated,
given the importance of readmissions as a quality indica-
tor. Hence, this review offers needed insights on the
cutting-edge applications of ML methods for readmission
risk prediction. The findings of this review are consistent
with other reviews indicating the popularity of tree-based
methods and NN in predicting hospital readmissions [29,
30]. Mahmoudi et al., limited to EMR data sourced stud-
ies, found that the random forest and NN as the most
popular ML methods for predicting readmission [29].
Artetxe et al. also found that tree-based methods and
SVM were the most utilized ML algorithms for predicting
readmission outcomes [30]. While these two reviews ex-
amined both traditional regression and ML models, this
review specifically evaluated ML predictive models for
hospital readmission and associated model parameters,
data sources, and others to provide contemporary empir-
ical evidence on the applications of ML techniques.

In this review, the performance of ML methods varied.
The NN and boosted tree algorithms generally per-
formed better based on the C-statistic. These observa-
tions are in alignment with the existing body of
literature showing that the strong performance of
boosted tree algorithms and NN algorithms for readmis-
sion risk prediction [29-31]. The NN performed well in
other clinical outcome predictions as it recognizes the
patterns of data through labeling/clustering of raw input
data and applying layers of neuron-like processing units
[90, 91]. The boosted tree algorithm is an ensemble
method for regression and classification problems by
combining the strengths of regression trees and boost-
ing, and it builds the prediction model in an adaptive
and iterative fashion [92, 93]. Besides C statistics, most
of the reviewed models did not report other measures,
such as precision or recall, nor discussed the methods to
address imbalanced data. This finding highlighted the
need for a complete reporting on a comprehensive list of
metrics for model evaluation to enable an insightful
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comparison of model performance by ML methods. A
study comparing strategies for addressing class-
imbalance problems is also needed, so that future re-
searchers may benefit from addressing imbalanced out-
comes for readmission prediction.

The variability of AUC across these evaluated models
should be considered in light of factors influencing the
predictive performances, including types of ML classifi-
cation methods, predictors included for modeling, and
selection of validation methods. Firstly, more complex
models, such as deep learning methods, namely NNs
with multiple layers, are considered to have the greatest
potential to boost predictive performance [60, 68-70, 77,
79, 85], and often dominated comparative models with
other ML algorithms [60, 66, 68-70, 77, 79, 85]. How-
ever, these sophisticated modeling approaches, especially
deep learning models, involve a time-consuming process
of parameter tuning and are difficult for interpretion.
Secondly, one challenge with achieving a model with
high performance for the readmission outcome is to
have an inclusion of rich information of varieties of pre-
dictors, given the multidimensional nature of readmis-
sion problem [94, 95] and the dependence of the
performance of ML techniques on the quality and infor-
mation of input data [96-98]. This review noted the ab-
sence of studies that incorporated variables in the
domains of overall health and function or mental health
comorbidities, and such problems have been identified
by prior reviews [29, 32]. This review also found the im-
provement in prediction ability offered by models aided
with natural language processing techniques that are
able to extract unstructured information, such as topic
features or frequently used words from clinical notes
and/or discharge dummies [71, 77, 83, 86, 87]. Future
studies should include a comprehensive list of factors to
study readmission problem. Innovation in analyzing un-
structured data can also help to collect relevent variables
types for inclusion. Furthermore, different types of valid-
ation methods were conducted for the ML models, and
most models involved internal validation. The problem
of lack of standardized validation methods [99] and ab-
sence of external validation using independent datasets
[23, 28] in ML studies has been noted by other reviews.
The external validation of these predictive models might
increase the model generalizability. More importantly,
the frameworks for ML model development, including
standardized validation procedures, are needed to facili-
tate the implementation of ML for predicting readmis-
sions and other clinical problems.

This review synthesized and evaluated predictive
models for hospital readmissions in the US that leverage
the ML techniques. This review has several strengths.
Firstly, this review concurs with a body of existing litera-
ture indicating the growing use of ML approaches for
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clinical risk prediction problems and advances the evi-
dence on the common ML methods designed specifically
to address the readmission risk prediction problem.
Given the limited and emerging body of ML-related lit-
erature on readmission predictive modeling, this review
is the first attempt to conduct a focused synthesis of the
literature on ML approaches for predicting readmission
outcomes. Secondly, the review included a list of evalu-
ation metrics to assess the model performances of the
ML models and were able to generate some insights on
the performances of these ML methods in predicting
readmission outcomes. In addition, this review gathered
some important parameters involved in the ML model
development, including data sources and validation
methods. This review was performed in accordance with
two guidelines: the PRISMA-ScR checklist and the
CHARMS guidelines for consistency and transparency.
Most of the included studies were of high quality and
thus ensuring that the internal validity of the finding in
this scoping review is high.

This review has several limitations. Firstly, this re-
view focused on the ML approaches used for predict-
ing readmission outcomes and did not summarize the
most predictive features for readmission risk. This is
a limitation because understanding significant contrib-
uting variables driving readmission risk might be use-
ful for clinicians in making actionable care plans for
readmission reduction. Secondly, in order to provide
a comprehensive summary of the latest ML methods
for building readmission risk prediction, studies were
not limited by diagnosis within the population and
therefore cannot comment on the performance of ML
methods for readmission prediction among a specific
disease population. Given readmission problem is
disease-specific, future studies should further evaluate
the relative value of different ML approaches in asses-
sing disease-specific readmission outcomes. Further-
more, this review did not investigate which factors
influence the difference in performance within each
ML method. These factors are dependent on the par-
ticular application of the ML method in question, and
such factors should be best analyzed by comparing
different scenarios on the same data sets. Several lim-
itations should also be noted among studies develop-
ing these predictive models: as discussed above, most
of the reviewed studies did not report other metrics
besides AUC; therefore, the performance of these pre-
dictive models based on such measures was not eval-
uated. Also, most validations were done internally,
and this limits their generalizability to a new setting.
Lastly, this review specifically focused on ML ap-
proaches for readmission outcome prediction and
therefore cannot comment on the performance of
traditional statistical methods. Future comparative
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studies on the performance between these traditional
statistic methods with ML methods could guide iden-
tifying the method with optimal performance in re-
admission risk prediction.

Overall, this review provides promising support for
ML for the development of advanced risk prediction
models for readmission in the US population. Com-
parison of ML readmission risk modeling methods in
terms of performance should be considered in light of
the unique characteristics of each study and model
performance parameters. The benefits of developing
ML models for predicting readmission in clinical set-
tings will continue to increase with the inclusion of
additional clinical measures from unstructured data
and the implementation of standardized validation
methods. Future research should focus more on iden-
tifying which algorithms have optimal performance
for readmission prediction and studying the model
development framework to optimize relevant ML al-
gorithms for predicting readmission risk.

Conclusions

The current review found that various types of ML tech-
niques have been utilized in hospital readmission predic-
tion with tree-based methods, NN, regularized logistic
regression, and SVM as the most commonly used algo-
rithms. There is also a variation of model performance
in terms of AUC among these algorithms, and the per-
formance of these ML models varied due to various rea-
sons. The boosted tree algorithms and NN algorithms
were often used and had a strong model performance.
Inclusion of variables across all domains and performing
external validation could allow for improved model per-
formance and reliability. These findings have implica-
tions for leveraging the ML methods for assessing
readmission risk. Continued efforts could be focused on
optimizing the performance of ML algorithms to predict
hospital readmissions and developing frameworks for
ML model building to integrate these models into clin-
ical operations with a goal to improve quality of care
and reduce health care costs.

Abbreviations

CMS: Centers for Medicare and Medicaid Services; ML: Machine Learning;
NN: Neural networks; AUC: Area Under the Curve; RCT: Randomized clinical
trial; PRISMA-ScR: the Preferred Reporting Items for Systematic Reviews and
Meta-Analysis Extension for Scoping Reviews; CHARMS: CHecklist for critical
Appraisal and data extraction for systematic Reviews of prediction Modelling
Studies; QUIPS: The Quality in Prognosis Studies; IQR: Interquartile range;
GLM: Generalized linear model; SWIFT: Stability and Workload Index for
Transfer; MEWS: Modified Early Warning Score; ICU: Intensive Care Unit;

IRF: Inpatient Rehabilitation Facilities; SDoH: Social determinants of health;
SVM: Support vector machine; KNN: K-nearest neighbor algorithm;

EMR: Electronic medical record; DT: Decision tree; RF: Random forest;

ROB: Risk of bias; CNN: Convolutional neural network; RNN: Recurrent neural
network; DL: Deep learning



Huang et al. BMC Medical Research Methodology (2021) 21:96

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/512874-021-01284-z.

Additional file 1: Search Strategy and Statement of Questions with
Reference to PICOS. This file includes Part | and Part II. Part I, Full
Electronic Search Strategies for PUBMED, MEDLINE and EMBASE
Databases and Results. This file includes the search terms used in the
above databases. Part Il, Inclusion/Exclusion criteria for screening articles.
(e.g. PICOS, timing, setting)

Additional file 2: Extracted Items for Included Studies. This file includes
Table S1-Table S5. Table S1. Information about study characteristics, in-
cluding first author and publication year, data source, population and set-
ting, sample size, and outcome studied. Table S2. Information about
model performances, including ML-based algorithm utilized, model de-
scription, model validation, and model discrimination. Table $3. Informa-
tion about variables used as predictors in the models. Table S4.
Information about other model performance measures, including accur-
acy, sensitivity, specificity, precision, recall, or F1 score, and method of ad-
dressing class imbalance problem. Table S5. Information about quality
assessment

Additional file 3: Reporting of PRISMA-ScR Checklist. This file includes
Table S1. Table S1. Reporting of PRISMA-ScR Checklist

Additional file 4: Reporting of CHARMS Checklist. This file includes
Table S1. Table S1. Reporting of CHARMS Checklist

Acknowledgments

The authors would like to thank Ms. Rachel Helbing, Director of library
services for the health science, for providing guidance for the search syntax.
The authors would also like to thank Dr. Maria A. Lopez Olivo for her
professional experience regarding the selection of quality assessment tool.

Authors’ contributions

RRA: Led the development and conceptualization of this scoping review and
provided guidance on methods and design of the scoping review. Revised
drafts and provided final approval for submission. YH: Led the development
of this paper and conceptualized the idea for this scoping review. Drafted
the work and revised it critically for important content. Contributions to
study search, study screening, and all data extraction work and quality
assessment, AT: Conceptualized the idea for this scoping review.
Contributions to study search, study screening, validation of data extraction
and quality assessment, proofreading and comments for manuscript. SC:
Resolve conflicts regarding study screening. Revised drafts and edited the
manuscript. All authors have read and approved the manuscript.

Funding
This research did not receive any specific grant from funding agencies in the
public, commercial, or not-for-profit sectors.

Availability of data and materials
The corresponding author can provide the material used and data analyzed
on request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests

Dr. Rajender R. Aparasu reports grants from Astellas, Incyte, Gilead, and
Novartis, outside the submitted work. The other authors have no personal or
financial conflicts of interest to report.

Page 11 of 14

Received: 26 December 2020 Accepted: 15 April 2021
Published online: 06 May 2021

References

1.

Dharmarajan K, Hsieh AF, Lin Z, Bueno H, Ross JS, Horwitz LI, et al.
Diagnoses and timing of 30-day readmissions after hospitalization for heart
failure, acute myocardial infarction, or pneumonia. JAMA. 2013;309(4):355-
63. https://doi.org/10.1001/jama.2012.216476.

Jencks SF, Williams MV, Coleman EA. Rehospitalizations among patients in
the Medicare fee-for service program. N Engl J Med. 2009;360(14):1418-28.
https://doi.org/10.1056/NEJMsa0803563 [PubMed: 19339721].

Hines AL, Barrett ML, Jiang HJ, Steiner CA. Conditions with the largest
number of adult hospital readmissions by payer, 2011. HCUP Statistical Brief
#172. Rockville: Agency for Healthcare Research and Quality; 2014. https.//
www.hcup-us.ahrg.gov/reports/statbriefs/sb172-Conditions-Readmissions-Pa
yer.pdf. Accessed October 22, 2015

Minott J. Reducing hospital readmissions. Washington, DC: Academy Health;
2008. www.btcstechnologies.com/wp-content/uploads/2013/02/
ReducingHospitalReadmissions.pdf Accessed 12 June 2015

Kocher RP, Adashi EY. Hospital readmissions and the affordable care act:
paying for coordinated quality care. JAMA. 2011;306(16):1794-5. https://doi.
0rg/10.1001/jama.2011.1561.

Centers for Medicare and Medicaid Services. Readmissions reduction
program. http://www.cms.gov/Medicare/Medicare-Fee-for-Service-Pa
yment/AcutelnpatientPPS/Readmissions-Reduction-Program.html. Accessed
26 May 2014

Public Law 111-148, Patient Protection and Affordable Care Act 2010: Part
IIl, Section 3025. 2010. Available at http//www.gpo.gov/fdsys/pkg/PLA
W-111publ 148/pdf/PLAW-111publ148.pdf. Accessed 17 Dec 2012.

US Department of Health and Human Services. 2012 Annual Progress
Report to Congress National Strategy for Quality Improvement in Health
Care. Available at http://www.ahrg.gov/workingforquality/ngs/ngs2012a
nnlrpthtm. Accessed 20 Dec 2012.

US Department of Health and Human Services. Strategic plan 2010-2015.
http://www.hhs.gov/secretary/about/priorities/priorities.html. Accessed 10
Sept 2011.

Keenan PS, Normand SL, Lin Z, et al. An administrative claims measure
suitable for profiling hospital performance on the basis of 30-day all-cause
readmission rates among patients with heart failure. Circ Cardiovasc Qual
QOutcomes. 2008;1(1):29-37. https://doi.org/10.1161/CIRCOUTCOMES.108.802
686.

Krumholz HM, Lin Z, Drye EE, Desai MM, Han LF, Rapp MT, et al. An
administrative claims measure suitable for profiling hospital performance
based on 30-day all-cause readmission rates among patients with acute
myocardial infarction. Circ Cardiovasc Qual Outcomes. 2011;4(2):243-52.
https://doi.org/10.1161/CIRCOUTCOMES.110.957498.

Lindenauer PK, Normand SL, Drye EE, et al. Development, validation, and
results of a measure of 30-day readmission following hospitalization for
pneumonia. J Hosp Med. 2011;6(3):142-50. https://doi.org/10.1002/jhm.890.
Bernheim SM, Grady JN, Lin Z, Wang Y, Wang Y, Savage SV, et al. National
patterns of risk-standardized mortality and readmission for acute myocardial
infarction and heart failure. Update on publicly reported outcomes
measures based on the 2010 release. Circ Cardiovasc Qual Outcomes. 2010;
3(5):459-67. https://doi.org/10.1161/CIRCOUTCOMES.110.957613.

Beam AL, Kohane IS. Big data and machine learning in health care. JAMA.
2018;319(13):1317-8. https://doi.org/10.1001/jama.2017.18391.

Chen JH, Asch SM. Machine learning and prediction in medicine - beyond
the peak of inflated expectations. N Engl J Med. 2017;376(26):2507-9.
https://doi.org/10.1056/NEJMp1702071.

Goldstein BA, Navar AM, Carter RE. Moving beyond regression techniques in
cardiovascular risk prediction: applying machine learning to address analytic
challenges. Eur Heart J. 2017,38(23):1805-14. https://doi.org/10.1093/eurhea
rtj/ehw302.

Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med.
2019;380(14):1347-58. https://doi.org/10.1056/NEJMra1814259.

Bastanlar Y, Ozuysal M. Introduction to machine learning. Methods Mol Biol.
2014;1107:105-28. https://doi.org/10.1007/978-1-62703-748-8_7.

Doupe P, Faghmous J, Basu S. Machine learning for health services
researchers. Value Health. 2019,22(7):808-15. https://doi.org/10.1016/jjval.2
019.02.012.


https://doi.org/10.1186/s12874-021-01284-z
https://doi.org/10.1186/s12874-021-01284-z
https://doi.org/10.1001/jama.2012.216476
https://doi.org/10.1056/NEJMsa0803563
https://www.hcup-us.ahrq.gov/reports/statbriefs/sb172-Conditions-Readmissions-Payer.pdf
https://www.hcup-us.ahrq.gov/reports/statbriefs/sb172-Conditions-Readmissions-Payer.pdf
https://www.hcup-us.ahrq.gov/reports/statbriefs/sb172-Conditions-Readmissions-Payer.pdf
http://www.btcstechnologies.com/wp-content/uploads/2013/02/ReducingHospitalReadmissions.pdf
http://www.btcstechnologies.com/wp-content/uploads/2013/02/ReducingHospitalReadmissions.pdf
https://doi.org/10.1001/jama.2011.1561
https://doi.org/10.1001/jama.2011.1561
http://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/Readmissions-Reduction-Program.html
http://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/Readmissions-Reduction-Program.html
http://www.gpo.gov/fdsys/pkg/PLAW-111publ148/pdf/PLAW-111publ148.pdf
http://www.gpo.gov/fdsys/pkg/PLAW-111publ148/pdf/PLAW-111publ148.pdf
http://www.ahrq.gov/workingforquality/nqs/nqs2012annlrpt.htm
http://www.ahrq.gov/workingforquality/nqs/nqs2012annlrpt.htm
http://www.hhs.gov/secretary/about/priorities/priorities.html
https://doi.org/10.1161/CIRCOUTCOMES.108.802686
https://doi.org/10.1161/CIRCOUTCOMES.108.802686
https://doi.org/10.1161/CIRCOUTCOMES.110.957498
https://doi.org/10.1002/jhm.890
https://doi.org/10.1161/CIRCOUTCOMES.110.957613
https://doi.org/10.1001/jama.2017.18391
https://doi.org/10.1056/NEJMp1702071
https://doi.org/10.1093/eurheartj/ehw302
https://doi.org/10.1093/eurheartj/ehw302
https://doi.org/10.1056/NEJMra1814259
https://doi.org/10.1007/978-1-62703-748-8_7
https://doi.org/10.1016/j.jval.2019.02.012
https://doi.org/10.1016/j.jval.2019.02.012

Huang et al. BMC Medical Research Methodology

20.

21,

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

(2021) 21:96

LeCun 'Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-44.
https://doi.org/10.1038/nature14539.

Miotto R, Wang F, Wang S, Jiang X, Dudley JT. Deep learning for healthcare:
review, opportunities and challenges. Brief Bioinform. 2018;19(6):1236-46.
https.//doi.org/10.1093/bib/bbx044.

Fleuren LM, Klausch TLT, Zwager CL, Schoonmade LJ, Guo T, Roggeveen LF,
Swart EL, Girbes ARJ, Thoral P, Ercole A, Hoogendoorn M, Elbers PWG.
Machine learning for the prediction of sepsis: a systematic review and
meta-analysis of diagnostic test accuracy. Intensive Care Med. 2020;46(3):
383-400.

Librenza-Garcia D, Kotzian BJ, Yang J, Mwangi B, Cao B, Pereira Lima LN,

et al. The impact of machine learning techniques in the study of bipolar
disorder: a systematic review. Neurosci Biobehav Rev. 2017,80:538-54.
https://doi.org/10.1016/j.neubiorev.2017.07.004.

Dallora AL, Eivazzadeh S, Mendes E, Berglund J, Anderberg P. Machine
learning and microsimulation techniques on the prognosis of dementia: A
systematic literature review. PLoS One. 2017;12(6):20179804. https://doi.
0rg/10.1371/journal.pone.0179804 Published 2017 Jun 29.

Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine
learning applications in cancer prognosis and prediction. Comput Struct
Biotechnol J. 2014;13:8-17. https://doi.org/10.1016/j.csbj.2014.11.005
Published 2014 Nov 15.

Senders JT, Staples PC, Karhade AV, et al. Machine Learning and
Neurosurgical Outcome Prediction: A Systematic Review. World Neurosurg.
2018;109:476-486.e1. https.//doi.org/10.1016/j.wneu.2017.09.149.

Gao S, Calhoun VD, Sui J. Machine learning in major depression: from
classification to treatment outcome prediction. CNS Neurosci Ther. 2018;
24(11):1037-52. https://doi.org/10.1111/cns.13048.

Lee Y, Ragguett RM, Mansur RB, Boutilier JJ, Rosenblat JD, Trevizol A, et al.
Applications of machine learning algorithms to predict therapeutic
outcomes in depression: a meta-analysis and systematic review. J Affect
Disord. 2018;241:519-32. https://doi.org/10.1016/}jad.2018.08.073.
Mahmoudi E, Kamdar N, Kim N, Gonzales G, Singh K, Waljee AK. Use of
electronic medical records in development and validation of risk prediction
models of hospital readmission: systematic review. BMJ. 2020;369:m958.
https://doi.org/10.1136/bmj.m958 Published 2020 Apr 8.

Artetxe A, Beristain A, Grana M. Predictive models for hospital readmission
risk: a systematic review of methods. Comput Methods Prog Biomed. 2018;
164:49-64. hitps://doi.org/10.1016/j.cnpb.2018.06.006.

Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, Van Calster B.
A systematic review shows no performance benefit of machine learning
over logistic regression for clinical prediction models. J Clin Epidemiol. 2019;
110:12-22. https//doi.org/10.1016/jjclinepi.2019.02.004.

Kansagara D, Englander H, Salanitro A, Kagen D, Theobald C, Freeman M,
et al. Risk prediction models for hospital readmission: a systematic review.
JAMA. 2011;306(15):1688-98. https://doi.org/10.1001/jama.2011.1515.

Zhou H, Della PR, Roberts P, Goh L, Dhaliwal SS. Utility of models to predict
28-day or 30-day unplanned hospital readmissions: an updated systematic
review. BMJ Open. 2016,6(6):e011060. https:;//doi.org/10.1136/bmjopen-201
6-011060 Published 2016 Jun 27.

Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group. Preferred
reporting items for systematic reviews and meta-analyses: the PRISMA
statement. PLoS Med. 2009;6(7):e1000097. https://doi.org/10.1371/journal.
pmed1000097.

Debray TP, Damen JA, Snell K, et al. A guide to systematic review and
meta-analysis of prediction model performance. BMJ. 2017,356:16460.
https://doi.org/10.1136/bm;.i6460 Published 2017 Jan 5.

Moons KG, de Groot JA, Bouwmeester W, et al. Critical appraisal and data
extraction for systematic reviews of prediction modelling studies: the CHAR
MS checklist. PLoS Med. 2014;11(10):e1001744. https://doi.org/10.1371/
journal.pmed.1001744 Published 2014 Oct 14.

Ngiam KY, Khor IW. Big data and machine learning algorithms for healthcare
delivery [published correction appears in Lancet Oncol. 2019 Jun20(6)293]. Lancet
Oncol. 2019,20(5)e262-73. https//doiorg/10.1016/51470-2045(19)30149-4.
Handelman GS, Kok HK, Chandra RV, Razavi AH, Lee MJ, Asadi H. eDoctor:
machine learning and the future of medicine. J Intern Med. 2018;284(6):
603-19. https://doi.org/10.1111/joim.12822.

Krittanawong C, Bomback AS, Baber U, Bangalore S, Messerli FH, Wilson
Tang WH. Future Direction for Using Artificial Intelligence to Predict and
Manage Hypertension. Curr Hypertens Rep. 2018;20(9):75. https://doi.org/1
0.1007/511906-018-0875-x Published 2018 Jul 6.

40.

41.

42.

45.

46.

47.

48.

49.

50.

51,

53.

54.

55.

56.

57.

Page 12 of 14

COVIDENCE systematic review software, Veritas health innovation,
Melbourne, Australia. Available at https://www.covidence.org. Accessed 18
Dec 2019.

Hayden JA, van der Windt DA, Cartwright JL, Coté P, Bombardier C.
Assessing bias in studies of prognostic factors. Ann Intern Med. 2013;158(4):
280-6. https://doi.org/10.7326/0003-4819-158-4-201302190-00009.

Shung D, Simonov M, Gentry M, Au B, Laine L. Machine learning to predict
outcomes in patients with acute gastrointestinal bleeding: a systematic
review. Dig Dis Sci. 2019;64(8):2078-87. https.//doi.org/10.1007/510620-019-
05645-z.

Zarshenas S, Tam L, Colantonio A, Alavinia SM, Cullen N. Predictors of
discharge destination from acute care in patients with traumatic brain
injury. BMJ Open. 2017;7(8):e016694. https://doi.org/10.1136/bmjopen-2017-
016694.

Powers DMW. Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness and correlation. J Mach Learn Technol. 2011;2(1):
37-63 Archived from the original (PDF) on 2019-11-14.

R Core Team. R: A language and environment for statistical computing.
Vienna: R Foundation for Statistical Computing; 2019. URL https.//www.R-
project.org/

Yeo H, Mao J, Abelson JS, Lachs M, Finlayson E, Milsom J, et al.
Development of a nonparametric predictive model for readmission risk in
elderly adults after Colon and Rectal Cancer surgery. J Am Geriatr Soc. 2016;
64(11):2125-30. https//doi.org/10.1111/jgs.14448.

Jones CD, Falvey J, Hess E, Levy CR, Nuccio E, Bardn AE, et al. Predicting
hospital readmissions from home healthcare in Medicare beneficiaries. J Am
Geriatr Soc. 2019,67(12):2505-10. https//doi.org/10.1111/jgs.16153.

Zack CJ, Senecal C, Kinar Y, Metzger Y, Bar-Sinai Y, Widmer RJ, et al.
Leveraging machine learning techniques to forecast patient prognosis after
percutaneous coronary intervention. JACC Cardiovasc Interv. 2019;12(14):
1304-11. https://doi.org/10.1016/},jcin.2019.02.035.

Goyal A, Ngufor C, Kerezoudis P, McCutcheon B, Storlie C, Bydon M. Can
machine learning algorithms accurately predict discharge to nonhome
facility and early unplanned readmissions following spinal fusion? Analysis
of a national surgical registry [published online ahead of print, 2019 Jun 7].
J Neurosurg Spine. 2019;(4):1-11. https://doi.org/10.3171/2019.3.SPINE1813
67.

Mortazavi BJ, Downing NS, Bucholz EM, Dharmarajan K, Manhapra A, Li SX,
et al. Analysis of machine learning techniques for heart failure readmissions.
Circ Cardiovasc Qual Outcomes. 2016;9(6):629-40. https://doi.org/10.1161/
CIRCOUTCOMES.116.003039.

Rojas JC, Carey KA, Edelson DP, Venable LR, Howell MD, Churpek MM.
Predicting intensive care unit readmission with machine learning using
electronic health record data. Ann Am Thorac Soc. 2018;15(7):846-53.
https://doi.org/10.1513/AnnalsATS.201710-7870C.

Fisher SR, Graham JE, Krishnan S, Ottenbacher KJ. Predictors of 30-day
readmission following inpatient rehabilitation for patients at high risk for
hospital readmission. Phys Ther. 2016,96(1):62-70. https://doi.org/10.2522/
ptj.20150034.

Tong L, Erdmann C, Daldalian M, Li J, Esposito T. Comparison of predictive
modeling approaches for 30-day all-cause non-elective readmission risk.
BMC Med Res Methodol. 2016;16:26. https://doi.org/10.1186/512874-016-012
8-0 Published 2016 Feb 27.

Lodhi MK, Ansari R, Yao Y, Keenan GM, Wilkie D, Khokhar AA. Predicting
hospital re-admissions from nursing care data of hospitalized patients. Adv
Data Min. 2017;2017:181-93. https.//doi.org/10.1007/978-3-319-62701-4_14.
Kang Y, McHugh MD, Chittams J, Bowles KH. Utilizing home healthcare
electronic health Records for Telehomecare Patients with Heart Failure: a
decision tree approach to detect associations with Rehospitalizations.
Comput Inform Nurs. 2016;34(4):175-82. https.//doi.org/10.1097/CIN.
0000000000000223.

Brom H, Brooks Carthon JM, lkeaba U, Chittams J. Leveraging electronic
health records and machine learning to tailor nursing Care for Patients at
high risk for readmissions. J Nurs Care Qual. 2020;35(1):27-33. https.//doi.
0rg/10.1097/NCQ.0000000000000412.

Edgcomb J, Shaddox T, Hellemann G, Brooks JO 3rd. High-risk phenotypes of
early psychiatric readmission in bipolar disorder with comorbid medical illness.
Psychosomatics. 2019;60(6):563-73. https//doi.org/10.1016/j.psym.2019.05.002.
Kulkarni P, Smith LD, Woeltje KF. Assessing risk of hospital readmissions for
improving medical practice. Health Care Manag Sci. 2016;19(3):291-9.
https://doi.org/10.1007/510729-015-9323-5.


https://doi.org/10.1038/nature14539
https://doi.org/10.1093/bib/bbx044
https://doi.org/10.1016/j.neubiorev.2017.07.004
https://doi.org/10.1371/journal.pone.0179804
https://doi.org/10.1371/journal.pone.0179804
https://doi.org/10.1016/j.csbj.2014.11.005
https://doi.org/10.1016/j.wneu.2017.09.149
https://doi.org/10.1111/cns.13048
https://doi.org/10.1016/j.jad.2018.08.073
https://doi.org/10.1136/bmj.m958
https://doi.org/10.1016/j.cmpb.2018.06.006
https://doi.org/10.1016/j.jclinepi.2019.02.004
https://doi.org/10.1001/jama.2011.1515
https://doi.org/10.1136/bmjopen-2016-011060
https://doi.org/10.1136/bmjopen-2016-011060
https://doi.org/10.1371/journal.pmed1000097
https://doi.org/10.1371/journal.pmed1000097
https://doi.org/10.1136/bmj.i6460
https://doi.org/10.1371/journal.pmed.1001744
https://doi.org/10.1371/journal.pmed.1001744
https://doi.org/10.1016/S1470-2045(19)30149-4
https://doi.org/10.1111/joim.12822
https://doi.org/10.1007/s11906-018-0875-x
https://doi.org/10.1007/s11906-018-0875-x
https://www.covidence.org
https://doi.org/10.7326/0003-4819-158-4-201302190-00009
https://doi.org/10.1007/s10620-019-05645-z
https://doi.org/10.1007/s10620-019-05645-z
https://doi.org/10.1136/bmjopen-2017-016694
https://doi.org/10.1136/bmjopen-2017-016694
https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.1111/jgs.14448
https://doi.org/10.1111/jgs.16153
https://doi.org/10.1016/j.jcin.2019.02.035
https://doi.org/10.3171/2019.3.SPINE181367
https://doi.org/10.3171/2019.3.SPINE181367
https://doi.org/10.1161/CIRCOUTCOMES.116.003039
https://doi.org/10.1161/CIRCOUTCOMES.116.003039
https://doi.org/10.1513/AnnalsATS.201710-787OC
https://doi.org/10.2522/ptj.20150034
https://doi.org/10.2522/ptj.20150034
https://doi.org/10.1186/s12874-016-0128-0
https://doi.org/10.1186/s12874-016-0128-0
https://doi.org/10.1007/978-3-319-62701-4_14
https://doi.org/10.1097/CIN.0000000000000223
https://doi.org/10.1097/CIN.0000000000000223
https://doi.org/10.1097/NCQ.0000000000000412
https://doi.org/10.1097/NCQ.0000000000000412
https://doi.org/10.1016/j.psym.2019.05.002
https://doi.org/10.1007/s10729-015-9323-5

Huang et al. BMC Medical Research Methodology

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

(2021) 21:96

Eckert C, Nieves-Robbins N, Spieker E, Louwers T, Hazel D, Marquardt J, et al.
Development and prospective validation of a machine learning-based risk
of readmission model in a large military hospital. Appl Clin Inform. 2019;
10(2):316-25. https://doi.org/10.1055/5-0039-1688553.

Wang H, Cui Z, Chen Y, Avidan M, Abdallah AB, Kronzer A. Predicting
hospital readmission via cost-sensitive deep learning. I[EEE/ACM Trans
Comput Biol Bioinform. 2018;15(6):1968-78. https.//doi.org/10.1109/TCBB.2
018.2827029.

Hogan J, Arenson MD, Adhikary SM, et al. Assessing Predictors of Early and
Late Hospital Readmission After Kidney Transplantation. Transplant Direct.
2019;5(8):e479. https://doi.org/10.1097/TXD.0000000000000918 Published
2019 Jul 29.

Mahajan S, Burman P, Hogarth M. Analyzing 30-day readmission rate for
heart failure using different predictive models. Stud Health Technol Inform.
2016;225:143-7.

Xue Y, Liang H, Norbury J, Gillis R, Killingworth B. Predicting the risk of acute
care readmissions among rehabilitation inpatients: a machine learning
approach. J Biomed Inform. 2018,86:143-8. https://doi.org/10.1016/},jbi.2018.
09.009.

Povalej Brzan P, Obradovic Z, Stiglic G. Contribution of temporal data to
predictive performance in 30-day readmission of morbidly obese patients.
Peer). 2017;5:23230. https://doi.org/10.7717/peerj.3230 Published 2017 Apr
25.

McKinley D, Moye-Dickerson P, Davis S, Akil A. Impact of a pharmacist-led
intervention on 30-day readmission and assessment of factors predictive of
readmission in African American men with heart failure. Am J Mens Health.
2019;13(1):1557988318814295. https://doi.org/10.1177/1557988318814295.
Garcia-Arce A, Rico F, Zayas-Castro JL. Comparison of machine learning
algorithms for the prediction of preventable hospital readmissions. J
Healthc Qual. 2018;40(3):129-38. https://doi.org/10.1097/JHQ.
0000000000000080.

Frizzell JD, Liang L, Schulte PJ, Yancy CW, Heidenreich PA, Hernandez AF,
et al. Prediction of 30-day all-cause readmissions in patients hospitalized for
heart failure: comparison of machine learning and other statistical
approaches. JAMA Cardiol. 2017;2(2):204-9. https://doi.org/10.1001/jamaca
rdio.2016.3956.

Jamei M, Nisnevich A, Wetchler E, Sudat S, Liu E. Predicting all-cause risk of
30-day hospital readmission using artificial neural networks [published
correction appears in PLoS One. 2018 May 17;13(5):e0197793]. PLoS One.
2017;12(7):20181173. https://doi.org/10.1371/journal.pone.0181173 Published
2017 Jul 14.

Welchowski T, Schmid M. A framework for parameter estimation and model
selection in kernel deep stacking networks. Artif Intell Med. 2016;70:31-40.
https://doi.org/10.1016/j.artmed.2016.04.002.

Lin YW, Zhou Y, Faghri F, Shaw MJ, Campbell RH. Analysis and prediction of
unplanned intensive care unit readmission using recurrent neural networks
with long short-term memory. PLoS One. 2019;14(7):e0218942. https//doi.
org/10.1371/journal.pone.0218942 Published 2019 Jul 8.

Min X, Yu B, Wang F. Predictive Modeling of the Hospital Readmission Risk
from Patients' Claims Data Using Machine Learning: A Case Study on COPD.
Sci Rep. 2019,9(1):2362. https;//doi.org/10.1038/541598-019-39071-y
Published 2019 Feb 20.

Mahajan SM, Mahajan AS, King R, Negahban S. Predicting risk of 30-day
readmissions using two emerging machine learning methods. Stud Health
Technol Inform. 2018;250:250-5.

Kalagara S, Eltorai AEM, Durand WM, DePasse JM, Daniels AH. Machine
learning modeling for predicting hospital readmission following lumbar
laminectomy. J Neurosurg Spine. 2018;30(3):344-52. https://doi.org/10.31
71/2018.8.SPINE1869.

Merrill RK, Ferrandino RM, Hoffman R, Shaffer GW, Ndu A. Machine learning
accurately predicts short-term outcomes following open reduction and
internal fixation of ankle fractures. J Foot Ankle Surg. 2019;58(3):410-6.
https://doi.org/10.1053/jjfas.2018.09.004.

Chandra A, Rahman PA, Sneve A, et al. Risk of 30-Day Hospital Readmission
Among Patients Discharged to Skilled Nursing Facilities: Development and
Validation of a Risk-Prediction Model. J Am Med Dir Assoc. 2019;20(4):444—
450.e2. https;//doi.org/10.1016/jjamda.2019.01.137.

Pakbin A, Rafi P, Hurley N, Schulz W, Harlan Krumholz M, Bobak MJ.
Prediction of ICU readmissions using data at patient discharge. Conf Proc
IEEE Eng Med Biol Soc. 2018;2018:4932-5. https://doi.org/10.1109/EMBC.201
8.8513181.

77.

78.

79.

80.

82.

83.

84.

85.

86.

87.

88.

89.

90.

92.

93.

94.

95.

96.

97.

Page 13 of 14

Golas SB, Shibahara T, Agboola S, et al. A machine learning model to
predict the risk of 30-day readmissions in patients with heart failure: a
retrospective analysis of electronic medical records data. BMC Med Inform
Decis Mak. 2018;18(1):44. https://doi.org/10.1186/512911-018-0620-z
Published 2018 Jun 22.

Ehwerhemuepha L, Pugh K, Grant A, Taraman S, Chang A, Rakovski C, et al.
A statistical-learning model for unplanned 7-day readmission in pediatrics.
Hosp Pediatr. 2020;10(1):43-51. https://doi.org/10.1542/hpeds.2019-0122.
Reddy BK, Delen D. Predicting hospital readmission for lupus patients: an
RNN-LSTM-based deep-learning methodology. Comput Biol Med. 2018;101:
199-209. https://doi.org/10.1016/j.compbiomed.2018.08.029.

Allam A, Nagy M, Thoma G, Krauthammer M. Neural networks versus
Logistic regression for 30 days all-cause readmission prediction. Sci Rep.
2019,9(1):9277. https.//doi.org/10.1038/541598-019-45685-z Published 2019
Jun 26.

Mahajan SM, Burman P, Newton A, Heidenreich PA. A validated risk model
for 30-day readmission for heart failure. Stud Health Technol Inform. 2017;
245:506-10.

Salem H, Ruiz A, Hernandez S, et al. Borderline personality features in
inpatients with bipolar disorder: impact on course and machine learning
model use to predict rapid readmission. J Psychiatr Pract. 2019;25(4):279-89.
https://doi.org/10.1097/PRA.0000000000000392.

Rumshisky A, Ghassemi M, Naumann T, et al. Predicting early psychiatric
readmission with natural language processing of narrative discharge
summaries. Transl Psychiatry. 2016,6(10):2921. https//doi.org/10.1038/tp.201
5.182 Published 2016 Oct 18.

Turgeman L, May JH. A mixed-ensemble model for hospital readmission.
Artif Intell Med. 2016;72:72-82. https://doi.org/10.1016/j.artmed.2016.08.005.
Hopkins BS, Yamaguchi JT, Garcia R, Kesavabhotla K, Weiss H, Hsu WK, et al.
Using machine learning to predict 30-day readmissions after posterior
lumbar fusion: an NSQIP study involving 23,264 patients [published online
ahead of print, 2019 Nov 291. J Neurosurg Spine. 2019;(3):1-8. https://doi.
0rg/10.3171/2019.9.SPINE19860.

Xiao C, Ma T, Dieng AB, Blei DM, Wang F. Readmission prediction via deep
contextual embedding of clinical concepts. PLoS One. 2018;13(4):e0195024.
https://doi.org/10.1371/journal.pone.0195024 Published 2018 Apr 9.
Rajkomar A, Oren E, Chen K, et al. Scalable and accurate deep learning with
electronic health records. NPJ Digit Med. 2018;1:18. https://doi.org/10.1038/
541746-018-0029-1 Published 2018 May 8.

Nakamura MM, Toomey SL, Zaslavsky AM, Petty CR, Lin C, Savova GK; et al.
Potential impact of initial clinical data on adjustment of pediatric
readmission rates. Acad Pediatr. 2019;19(5):589-98. https://doi.org/10.1016/
j.acap.2018.09.006.

Senders JT, Zaki MM, Karhade AV, Chang B, Gormley WB, Broekman ML,

et al. An introduction and overview of machine learning in neurosurgical
care. Acta Neurochir. 2018;160(1):29-38. https.//doi.org/10.1007/500701-01
7-3385-8.

Durstewitz D, Koppe G, Meyer-Lindenberg A. Deep neural networks in
psychiatry. Mol Psychiatry. 2019,24(11):1583-98. https://doi.org/10.1038/5413
80-019-0365-9.

Gatys LA, Ecker AS, Bethge M. Texture and art with deep neural networks. Curr
Opin Neurobiol. 2017;46:178-86. https.//doi.org/10.1016/j.conb.2017.08.019.
Finch HW, Davis A, Dean RS. Identification of individuals with ADHD using
the Dean-woodcock sensory motor battery and a boosted tree algorithm.
Behav Res Methods. 2015;47(1):204-15. https://doi.org/10.3758/513428-014-
0460-4.

Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. J
Anim Ecol. 2008,77(4):802-13. https//doi.org/10.1111/}.1365-2656.2008.01390..
Dhalla IA, O'Brien T, Morra D, Thorpe KE, Wong BM, Mehta R, et al. Effect of
a postdischarge virtual ward on readmission or death for high-risk patients:
a randomized clinical trial. JAMA. 2014;312(13):1305-12. https;//doi.org/10.1
001/jama.2014.11492.

Goldman LE, Sarkar U, Kessell E, Guzman D, Schneidermann M, Pierluissi E,
et al. Support from hospital to home for elders: a randomized trial. Ann
Intern Med. 2014;161(7):472-81. https://doi.org/10.7326/M14-0094.

Ho LV, Ledbetter D, Aczon M, Wetzel R. The Dependence of Machine
Learning on Electronic Medical Record Quality. AMIA Annu Symp Proc.
2018;2017:883-91 Published 2018 Apr 16.

Cortes C, Jackel LD, Chiang WP. Limits on learning machine accuracy
imposed by data quality. In: Advances in Neural Information Processing
Systems; 1995. p. 239-46.


https://doi.org/10.1055/s-0039-1688553
https://doi.org/10.1109/TCBB.2018.2827029
https://doi.org/10.1109/TCBB.2018.2827029
https://doi.org/10.1097/TXD.0000000000000918
https://doi.org/10.1016/j.jbi.2018.09.009
https://doi.org/10.1016/j.jbi.2018.09.009
https://doi.org/10.7717/peerj.3230
https://doi.org/10.1177/1557988318814295
https://doi.org/10.1097/JHQ.0000000000000080
https://doi.org/10.1097/JHQ.0000000000000080
https://doi.org/10.1001/jamacardio.2016.3956
https://doi.org/10.1001/jamacardio.2016.3956
https://doi.org/10.1371/journal.pone.0181173
https://doi.org/10.1016/j.artmed.2016.04.002
https://doi.org/10.1371/journal.pone.0218942
https://doi.org/10.1371/journal.pone.0218942
https://doi.org/10.1038/s41598-019-39071-y
https://doi.org/10.3171/2018.8.SPINE1869
https://doi.org/10.3171/2018.8.SPINE1869
https://doi.org/10.1053/j.jfas.2018.09.004
https://doi.org/10.1016/j.jamda.2019.01.137
https://doi.org/10.1109/EMBC.2018.8513181
https://doi.org/10.1109/EMBC.2018.8513181
https://doi.org/10.1186/s12911-018-0620-z
https://doi.org/10.1542/hpeds.2019-0122
https://doi.org/10.1016/j.compbiomed.2018.08.029
https://doi.org/10.1038/s41598-019-45685-z
https://doi.org/10.1097/PRA.0000000000000392
https://doi.org/10.1038/tp.2015.182
https://doi.org/10.1038/tp.2015.182
https://doi.org/10.1016/j.artmed.2016.08.005
https://doi.org/10.3171/2019.9.SPINE19860
https://doi.org/10.3171/2019.9.SPINE19860
https://doi.org/10.1371/journal.pone.0195024
https://doi.org/10.1038/s41746-018-0029-1
https://doi.org/10.1038/s41746-018-0029-1
https://doi.org/10.1016/j.acap.2018.09.006
https://doi.org/10.1016/j.acap.2018.09.006
https://doi.org/10.1007/s00701-017-3385-8
https://doi.org/10.1007/s00701-017-3385-8
https://doi.org/10.1038/s41380-019-0365-9
https://doi.org/10.1038/s41380-019-0365-9
https://doi.org/10.1016/j.conb.2017.08.019
https://doi.org/10.3758/s13428-014-0460-4
https://doi.org/10.3758/s13428-014-0460-4
https://doi.org/10.1111/j.1365-2656.2008.01390.x
https://doi.org/10.1001/jama.2014.11492
https://doi.org/10.1001/jama.2014.11492
https://doi.org/10.7326/M14-0094

Huang et al. BMC Medical Research Methodology (2021) 21:96 Page 14 of 14

98. Gudivada V, Apon A, Ding J. Data quality considerations for big data and
machine learning: going beyond data cleaning and transformations. Int J
Adv Softw. 2017;10(1):1-20.

99. Senanayake S, White N, Graves N, Healy H, Baboolal K, Kularatna S. Machine
learning in predicting graft failure following kidney transplantation: a
systematic review of published predictive models. Int J Med Inform. 2019;
130:103957. https://doi.org/10.1016/j.ijmedinf.2019.103957.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions k BMC



https://doi.org/10.1016/j.ijmedinf.2019.103957

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Data sources and systematic searches
	Eligibility criteria and study selection
	Data extraction
	Quality assessment
	Data synthesis and analysis

	Results
	Characteristics of the selected studies
	Data sources and sample size
	Study population and readmission outcomes
	Use of variables

	Model characteristics
	Use of ML
	Model performance
	Model validations

	Quality assessment

	Discussion
	Conclusions
	Abbreviations
	Supplementary Information
	Acknowledgments
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

