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Toll-like receptors serve a central role in innate immunity, but they can also modulate

cell function in various non-immune cell types including endothelial cells. Endothelial

cells are necessary for the organized function of the vascular system, and part of their

fundamental role is also the regulation of immune function and inflammation. In this

review, we summarize the current knowledge of how Toll-like receptors contribute to

the immune and non-immune functions of the endothelial cells.
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TOLL-LIKE RECEPTORS

The human body is constantly exposed to exogenous immunological triggers and reacts to
these triggers after recognizing their associated molecules. Janeway proposed over 20 years ago
that invading microorganisms, such as viruses and bacteria, have specific molecular patterns,
so-called pathogen-associated molecular patterns (PAMPs), that trigger recognition by the
immune system and named these pattern recognition receptors (PRRs) (1). The PAMPs are
sensed by germline-encoded evolutionary conserved host sensors called pathogen recognition
receptors or PRRs and form a key element of the innate immune system (2, 3). PRRs are not
only present in typical immune cells, such as monocytes, macrophages, and T lymphocytes,
but also are expressed in non-immune cells, including endothelial cells (4). Four classes of
PRRs are known today: (1) the Toll-like receptors (TLRs) which we will focus on in this
review; (2) C-type lectin receptors (CLRs): this large family of cell surface transmembrane
receptors bind carbohydrates via specific recognition domains and are important for the immune
response to fungal pathogens (5); (3) retinoic acid-inducible gene-I (RIG-I)-like receptors
(RLR) which are cytoplasmic sensors of viral RNA or self-processed RNA (6, 7); and (4)
nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) which are cytoplasmic
receptors that recognize PAMPs. In contrast to TLRs, NLRs mainly signal via the formation
of a multimeric protein complex called the inflammasome (8). Of these four receptor families,
TLRs are the most extensively studied class. Although TLRs are an integral part of the innate
immune system, their expression is not limited to immune cells but their presence can also
be detected in non-immune cells such as endothelial cells, which are further discussed in
this review article. The name “Toll-like receptor” originates from the structural homology of
TLRs with the Toll transmembrane protein which is important for embryonic development in
Drosophila melanogaster (9). Toll has an important role for antibacterial defense in Drosophila
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(10), because mutations in the Toll gene decrease the
antimicrobial and antifungal response, leading to increased
susceptibility to infection and death (11). The cytoplasmic
domain of the Toll protein shares homology with human
interleukin-1 (IL-1) receptors (IL-1Rs), leading to similar
biochemical signal transduction by IL-1Rs and Toll protein (12).
Human transmembrane receptors with structural homology
to the Drosophila Toll protein were categorized as Toll-like
receptors (TLRs) (13). At present, 10 TLRs have been identified
in humans (TLR1–10) and 12 (TLR1–9, 11, and 13) in mice
(14). TLRs 1–9 are highly conserved in mammals, TLR10 is
non-functional in mice, and the human TLR11 gene contains
a stop codon that results in lack of production of functional
TLR11 (15, 16). The TLRs are localized to either the cell surface
membrane or the membranes of intracellular compartments.
TLRs 1, 2, 4, 5, 6, and 11 are found at the cell surface and
detect extracellular PAMPs, whereas TLR 3, 7, 8, and 9 bind
intracellular PAMPs localized to intracellular vesicles such
as endosomes and lysosomes, or vesicles derived from the
endoplasmic reticulum (17).

In addition to recognizing extracellular and intracellular
PAMPs, the immune system plays an important role in
the response to non-pathogenic conditions, such as trauma,
ischemia, and autoimmune disorders. Polly Matzinger proposed
a danger signal model paralleling the concept of PAMPs and
suggested that any molecule that is normally not secreted from
the cell could activate an immune response if released from
the cell in response to injury (18). This damage model further
evolved to the concept of damage-associated molecular patterns
(DAMPs) (19). Similar to the recognition of PAMPs by PRRs,
certain PRRs, including TLR2 and TLR4, bind DAMPs (20). A list
of the most common PAMPs (pathogen-associated molecules)
and DAMPs (self-molecules) that activate the different TLRs is
shown in Table 1.

TOLL-LIKE RECEPTOR SIGNALING

TLRs are evolutionary conserved type 1 transmembrane
glycoprotein receptors with an ectodomain and a cytosolic
domain. The ectodomain contains varying numbers of leucine-
rich repeats (LRRs) that are required for ligand binding.
Vertebrate TLRs contain 16–28 LRRs and human TLRs
19–25 LRRs. These LRRs form a continuous structure and
adopt a horseshoe shape, which facilitates ligand binding
(49). After ligand binding, the receptor forms an m-shaped
dimer that sandwiches the ligand, bringing the cytoplasmic
and transmembrane domains together to initiate signaling
(50). Ligand binding causes either homodimerization or
heterodimerization of TLRs and the formation of heterodimers
promotes ligand diversity, whereas homodimerization
increases ligand specificity (51). For example, TLR2 and
TLR4 homodimerize but only the TLR4 homodimer can initiate
TNFα signaling, whereas TLR1, TLR2, and TLR6 need to
heterodimerize to initiate TNFα signaling (52). Differences in
LRRs in the extracellular domains along with combinations of
different TLRs not only promote ligand diversity to recognize

TABLE 1 | Ligands for various toll like receptors.

TLR Ligand

PAMP DAMP

TLR1 Bacterial lipoproteins (21, 22)

TLR2 Soluble peptidoglycan (SPGN)

(23)

Biglycan (24)

Lipoteichoic acid (LTA) (23, 25) High Mobility Group Box 1

HMGB1(26)

Pam3CSK4 (27) Monosodium urate crystals

(28, 29)

Calcium Pyrophosphate

Dihydrate

(28)

Human cardiac myosin and

C0C1f fragment of cardiac

myosin binding protein-C (30, 31)

TLR3 Viral dsRNA and

Polyinosinic:polycytidylic acid

(poly(IC))

(32)

dsRNA from necrotic cells (33)

siRNA (34) mRNA (35),

TLR4 Lipopolysaccharide LPS (36) Biglycan (24)

High-mobility group box 1

(HMGB1) (26)

Fibrinogen (37)

Heparan sulfate (38, 39)

C0C1f fragment of cardiac

myosin binding protein-C

(30)

TLR5 Flagellin (40)

TLR6 Diacylated lipoproteins (41)

TLR7 Guanosine and uridine-containing

ssRNA

(42)

Human cardiac myosin (31)

TLR8 Single-stranded RNA (ssRNA),

bacterial RNA (43–45)

TLR9 Unmethylated CpG

oligodinucleotides (ODNs) from

bacterial DNA (46)

Mitochondrial CpG-ODN (47)

TLR10 Human immunization virus-1

(HIV-1) proteins (48)

Ligands for various Toll-like receptors differentiated into PAMPs and DAMPs. PAMP,

pathogen-associated molecular patterns; DAMP, damage-associated molecular patterns;

dsRNA, double-stranded RNA; ssRNA, single-stranded RNA; ODN, oligodinucleotides;

mRNA, messenger RNA.

a large number of PAMPs but also determine differences in the
downstream signaling (53, 54).

Ligand binding then initiates a cascade of downstream
signaling via the cytosolic Toll/interleukin-1 receptor (TIR)
domain, which is a conserved domain shared by TLRs and
the interleukin 1 receptor (IL-1R) superfamily (55). The
TIR domains of TLRs dimerize upon ligand binding. This
self-association leads to the recruitment of intracellular
TIR-containing adaptor proteins via TIR–TIR interactions,
forming a trimer. The recruitment of additional intermediates
then elongates this trimer. The sequential and cooperative
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binding of the TIR domains amplifies the signal and results
in a highly sensitive response (56). The main TIR-containing
adaptor proteins are myeloid differentiation factor 88 (MyD88),
Toll-interleukin 1 receptor (TIR) domain-containing adaptor
protein (MAL or TIRAP), and TIR domain-containing
adapter molecules (TICAM), such as TIR-domain-containing
adapter-inducing interferon-β (TRIF or TICAM-1) and
translocating chain-associated membrane protein (TRAM or
TICAM-2). These adaptor proteins bind to TLRs and initiate
major downstream signaling pathways, including nuclear
factor κ-light-chain enhancer of activated B cells (NF-κB),
activator protein 1 (AP-1), and interferon-regulatory factor
(IRF) (56, 57).

All TLRs except TLR3 follow theMyD88-dependent pathway-
activating mitogen-activated protein kinase kinase kinase 7
(MAPKKK7 or TAK1) which is downstream of TRAF6. TAK1

then leads to activation of both enzyme IκB kinase (IKK)-
activating NF-κB and MAPK family c-Jun N-terminal kinases
(JNK), extracellular signal-regulated kinases (ERK), and p38
leading to AP-1 activation and proinflammatory cytokine
production (58). However, endosomal TLR3 and TLR4 signal via
a MyD88-independent pathway involving TRIF. TLR3 associates
with TRIF directly (59), whereas TLR4 associates with TRIF
through TRAM (60). TRIF then activates TRAF3 activating the
IRF3/7 signaling pathway leading to type 1 IFN production
(61) and TRAF6 activating the NF-κB and AP-1 signaling
response (62, 63).

Activation of these pathways results in the release of
cytokines such as interleukin-4 (IL-4), IL-13, tumor necrosis
factor-α (TNF-α), IL-1β, chemokines such as IL-8, monocyte
chemoattractant protein 1 (MCP-1), macrophage inflammatory
protein-1β (MIP-1β), and type I interferons (IFNs), such IFN-α

FIGURE 1 | Toll-like receptor (TLR) signaling. Upon ligand binding at the cell surface, TLR1/2, TLR2/6, and TLR4 interact with myeloid differentiation factor 88 (MyD88)

via the adaptor molecule Toll-interleukin 1 receptor (TIR) domain-containing adaptor protein (MAL or TIRAP) whereas TLR5 and endosomal TLRs TLR7/8 and TLR9

interact directly through MyD88. This causes activation of nuclear factor κ-light-chain enhancer of activated B cells (NF-κB) and activator protein-1 (AP-1), signaling via

interleukin-1 receptor-associated kinase 4 (IRAK1 and 2) and tumor necrosis factor receptor (TNFR)-associated factor 6 TRAF6. Endosomal TLR3 and TLR4 induce

NF-κb and AP-1 via TRIF associating with TRAF6 along with interferon regulatory factor IRF3/7 signaling via TRIF and TRAF3. Once NF-κB, AP-1, and IRFs are

activated they translocate to the nucleus and activate transcription of target genes, including pro-inflammatory cytokines (NF-κB and Ap-1) and type I interferons

(IRFs). TLR3 also induces auto-phosphorylation of the proto-oncogene Src, causing sequestration of Src in lipid rafts. Figures were drawn via biorender.com.
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and IFN-β (64). The release of the cytokines varies and depends
on receptor, cell type, and species (65, 66).

Not all TLRs signal via the same adaptor proteins; double-
stranded RNA (ds-RNA) activation of TLR3 also initiates non-
canonical signaling via recruitment and autophosphorylation of
the proto-oncogene tyrosine-protein kinase Src. This leads to
inhibition of cell migration, proliferation, and cell adhesion via
functional sequestration of Src to lipid rafts (67). A summary
of the signaling mechanisms downstream of TLRs is shown in
Figure 1.

EXPRESSION AND ROLE OF TLRs IN
ENDOTHELIAL CELLS

Endothelial cells (ECs) form the inner layer of the blood vessel,
the tunica intima, and have contact to circulating cells in the
lumen and vascular smooth muscle cells in the adjacent tunica
media of the blood vessel. Therefore, ECs are uniquely positioned
to maintain hemostasis and regulate the vascular tone via release
of vasoactivemediators (68). However, ECs also respond to injury
via secretion of cytokines, chemokines, and growth factors, as
well as via expression of adhesion molecules (69). They hereby
regulate the recruitment and activation of immune cells at the site
of injury (70). ECs further recognize PAMPs andDAMPs through
PRRs, particularly the TLRs (71). ECs from different species and
tissues vary in the expression of TLRs. For example, human
umbilical cord ECs (HUVECs) express high levels of TLR1-4,
but low levels of TLR5-10, whereas human aortic ECs have high
levels of all TLRs except for TLR3 and TLR9 compared to human
peripheral blood mononuclear cells (PBMCs) as controls (72).

Similarly, the expression of TLRs varies between the different
sections of the vascular tree, as major blood vessels have low
endothelial expression of TLR2 and TLR4 (73). TLR expression
is different among macrovascular and microvascular ECs. For
example, baseline TLR4 levels are higher in dermal microvascular
ECs than in aortic macrovascular ECs and elevated TLR4 levels
correlated with increased chemokine and cytokine expression
(74). In addition to mature ECs, TLRs are also found in precursor
ECs, such as endothelial colony forming cells (ECFCs). ECFCs
are a promising source for postnatal vascularization strategies
and tissue repair (75) and are isolated from different sources
(cord blood, peripheral blood, and lung) by outgrowth of
EC colonies via limiting dilution from blood or tissues (76–
79). ECFCs from cord blood and peripheral blood expressed
mRNA for all TLRs, and umbilical cord ECFCs showed higher
TLR4 expression than peripheral blood ECFCs, HUVECs, and
PBMCs (80).

TLRs are also important for the differentiation and
reprogramming of cells. Forced expression of a set of
transcription factors is a common method to induce pluripotent
stem cells. These transcription factors are octamer-binding
transcription factor 4 (Oct4), sex determining region Y-box
2 (Sox2), Kruppel-like factor 4 (Klf4), and c-master regulator
of cell cycle entry and proliferative metabolism (c-Myc).
Lentiviral expression of these transcription factors increased
the efficiency of generating induced pluripotent stem cells via

TLR3/TRIF compared to non-viral expression methods (81). In
addition, activation of TLR3 by its ligand double-stranded RNA
(dsRNA) combined with endothelial growth factors promoted
differentiation of human fibroblasts to ECs (82).

ROLE OF TLRs IN BLOOD VESSEL
FORMATION AND EXTENSION

The network of blood vessels expands via two main mechanisms:
vasculogenesis is de novo formation of blood vessels, and
angiogenesis is sprouting or splitting of existing blood vessels
(83). Sprouting angiogenesis occurs in five steps: (A) After
action of angiogenic growth factor (e.g., vascular endothelial
growth factor, VEGF) on a quiescent blood vessel, there is (B)
degradation of the capillary basement membrane followed by (C)
EC proliferation and (D) selection of tip and stalk cells. (E) ECs
then migrate from the existing blood vessel to form new vascular
tubes (tubulogenesis) and finally (F) connect to another blood
vessel by fusion (Figure 2) (84).

TLR signaling regulates the complex process of sprouting
angiogenesis at different stages of the process: The initial step
of angiogenesis requires the degradation of the ECM via matrix
metalloproteinases (MMPs) 2 and 9 to facilitate EC migration
and tube formation (85) along with degrading endothelial tight
junctions (86). Tight junctions (TJ) seal the intercellular gap
to maintain endothelial barrier function, and several proteins
including occludins, claudins, and zonula occludens form these
tight junctions (87). The endothelial tight junction protein
claudin-5 increases EC proliferation (88) but decreases EC
migration and permeability, hence reducing vascular sprouting
(89) similar to ECs lacking zonula occludens 1 (ZO-1), which
show less migration and vascular sprouting (90). MMP9 reduced
ZO-1, occludin, and claudin-5 levels via proteolysis, resulting
in enhanced endothelial permeability, migration, and tube
formation, and this effect was reversed with MMP9 gene
silencing (86, 91). Cytokines increase MMP9 expression in
an NF-κB-dependent manner via a NF-κB-binding site on
the MMP9 promoter (92). TLRs promote MMP9 expression
via NF-κB and extracellular signal-regulated kinase (ERK1/2)
signaling pathways. TLR2 signaling influences endothelialMMP9
expression via ERK1/2 and c-Jun N-terminal kinase (JNK)
signaling pathways along with MMP9-mediated reduction in
tight junction proteins (93). Chlamydia pneumoniae infection
promoted expression of VEGF and MMP9 in HUVECs via TLR2
and TLR4 (94). TLR4 results in EC hyperpermeability via NF-
κB and AP-1-induced stromal interaction molecule 1 (STIM1)
expression in human lung microvascular ECs (HLMVECs)
(95). TLR2/6 activation augments EC permeability via reduced
claudin-5 expression and disappearance of tight junctions, which
was partly mediated by ERK1/2 (96).

In addition to tight junctions, TLRs also influence the
adherens junctions between ECs. Adherens junctions are cell–
cell junctions with cadherins, such as vascular endothelial
(VE-) cadherin, connecting neighboring plasma membranes via
homophilic interactions (97). TLR2 stimulation reduced the
expression of VE-cadherin resulting in increased EC detachment

Frontiers in Medicine | www.frontiersin.org 4 July 2020 | Volume 7 | Article 352

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Bhagwani et al. TLRs and Endothelial Cells

FIGURE 2 | Stages of angiogenesis. Upon stimulus by an angiogenic growth factor (e.g., vascular endothelial growth factor, VEGF) on a quiescent vessel (A), ECs

degrade the basement membrane and the surrounding extracellular matrix (B). ECs then differentiate into tip and stalk cells (C). Tip cells start invading the

extracellular matrix (D). The stalk cells behind the tip cells continue to proliferate and form vascular tubes (E). Once a tip cell fuses with the tip cell of the adjacent

sprouting vessel, this results in the formation of a new connecting lumen (F). Figures were drawn via biorender.com.

and reduced ECmigration while increasingMMP2/9 activity and
EC apoptosis in human saphenous vein ECs (98). Similarly, in
HLMVECs, TLR3 activation reduced the expression of claudin-5,
ZO-1, and VE-cadherin (97).

TLR signaling further influences the expression of growth
factors with a central role in regulating vascular growth. In
human intestinal microvascular cells, bacterial ligands via
TLRs increased angiogenic factors such as VEGF, VEGF
receptor 2 (VEGFR-2), IL-8, and phosphorylation of focal
adhesion kinase (p-FAK) (99). Of note, FAK promotes EC
survival, angiogenesis, and vascular network stability (100).
Among these growth factors, VEGF-A is a central angiogenic
molecule that directs migration of endothelial tip cells during
angiogenesis (101). Biglycan-stimulated TLR2 and TLR4
signaling increases VEGF-A levels, resulting in endothelial
proliferation, migration, and tube formation. TLR2/4 stimulation
activates NF-κB, which interacts with the hypoxia-inducible
factor-1α (HIF-1α) promoter to augment HIF-1α levels. HIF-1α
in turn binds to the VEGF-A, promoter increasing VEGF-A
levels (102).

Activation of TLR5 by the bacterial ligand Flagellin promotes
endothelial tube formation in human microvascular ECs and
HUVECs through activation of the phosphoinositide 3-kinase
(PI3K)/AKT1 signaling pathway (103). In rat, aortic cell culture
TLR5 activation increased microvessel formation along with
vessel survival but had no effect on de novo blood vessel
formation (104).

However, TLRs also promote angiogenesis in a VEGF-
independent manner. Mycoplasma lipopeptide MALP-2 in
HUVECs and human monocytes/macrophages via TLR2/TLR6
promoted activation of granulocyte-macrophage colony-
stimulating factor (GM-CSF). GM-CSF promoted angiogenesis
in these endothelial cells while no enhanced VEGF levels in
study were seen, suggesting that VEGF was not responsible
for this angiogenesis in this regard (105). The end product of
lipid oxidation, ω-(2-carboxyethyl)pyrrole (CEP), is generated
during inflammation, wound healing, and aging. CEP interacted
with TLR1/TLR2 heterodimer, promoting angiogenesis via
MyD88-dependent NF-κB signaling in multiple EC lineages
from human umbilical vein, mouse lung, or aorta independent
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of VEGF as CEP-mediated effects were unaffected by VEGFR
kinase inhibition (106). In lung ECs, TLR4 signaling increases
ERK-mediated activation of the transcription factor Forkhead
box protein C2 (FoxC2), a transcription factor associated with
lymph angiogenesis and endothelial specification by promoting
delta-like 4 (DLL4) expression (107). DLL4 is a NOTCH ligand,
which in angiogenic vasculature is associated with filipodia-rich
endothelial tip cell formation responsible for guiding new
sprouts (108).

Anti-TLR2 antibodies promoted angiogenesis in HUVECs in
a manner similar to stromal cell-derived factor 1 (SDF1 also
known as C–X–C motif chemokine 12 or CXCL12). This effect
was mediated by Gi-protein-coupled receptor C–X–C motif
chemokine receptor 4 (CXCR4) via ERK 1/2 and AKT, which
was completely abolished by blocking G-protein and CXCR4,
indicating a potential cross talk between TLR2 and CXCR4
pathways (109).

In contrast, TLR3 activation inhibited EC migration and tube
formation in HUVECs via phosphorylation of Src independent
of TRIF, TRAF3, MyD88, and IRF3 signaling (67). In primary
choroidal ECs, TLR3 stimulation was anti-angiogenic and
a TLR3 agonist reduced corneal neo-vascularization (34).
Similarly, dsRNA of viral origin and polyinosinic:polycytidylic
acid (poly(I:C)) promoted apoptosis and inhibited angiogenesis
and migration in HUVECs (110). Our group has shown that
TLR3 deficiency impairedmigration of human pulmonary-artery
ECs via caspase-3-dependent apoptosis (111). Similar to TLR3,
TLR9 reduces angiogenesis, because the TLR9 agonist ODN1826
suppresses aortic angiogenesis, inhibits migration of tip cells
in aortic ring assay, and suppresses corneal neovascularization
in vivo (112). Based on these findings, activation of some
TLRs appears to promote angiogenesis by downregulation of
EC tight junction and adherens junction proteins, induction of
angiogenic growth factors, increased proliferation, and salvation
from apoptosis, but other TLR3s, such as TLR3, seem to have
anti-angiogenic effects following stimulation. However, further
in-depth studies are required to fully understand how signaling
through the different TLRs contributes to the various stages of
angiogenesis and to identify the context-dependent effects of TLR
signaling on angiogenesis.

ENDOTHELIAL TLRs AND INFLAMMATION

Blood vessels are the main highway for inflammatory cells to
travel to the site of injury. Inflammation and angiogenesis are
therefore intricately linked processes, and signaling pathways
that promote inflammation frequently also facilitate angiogenesis
by inducing EC proliferation and migration. It is therefore
not surprising that many proinflammatory cytokines stimulate
angiogenesis, including IL-6. In mouse aortic ring assays and
lung endothelial cells and HUVECs, IL-6 stimulation increased
angiogenesis independent of VEGF (113). One important
pathway driving IL-6 expression is the NF-κB pathway, and every
member of the TLR family can signal via NF-κB (114).

TLR expression varies between different EC populations.
TLR4 levels were found to be higher in microvascular ECs

compared to macrovascular ECs, resulting in higher NF-κB
and IL-6 levels in microvascular ECs (74). Similarly, TLR2
activation promotes in human lung microvascular EC expression
of cytokines and adhesion molecules, leading to adhesion
of neutrophil granulocytes (115, 116). Similar to TLR2 and
TLR4, TLR9 activation causes NF-κB-mediated increase in tissue
factor levels favoring a procoagulant phenotype in human
coronary-artery ECs (117). In rat PAECs, TLR9 activation
leads to NF-κB-mediated IL-6 production (118). In human
intestinal microvascular ECs, flagellin-mediated TLR5 activation
promotes expression of leukocyte adhesion molecules such as
intercellular adhesion molecule 1 (ICAM-1), leading to increased
transendothelial migration of leukocytes (119). TLR9 activation
further enhances neutrophil adhesion on HUVECs (120). These
data show that TLR signaling in ECs also promotes cross talk
between ECs and inflammatory cells.

As with the foreign molecules eliciting TLR responses, the
internal molecules of the body also act as DAMPs to promote
immune responses via TLRs (Table 1). One of the DAMPs is
high-mobility group box 1 (HMGB1). HMGB1 is an endogenous
inflammatory mediator released from dying and activated
cells during many pathogenic conditions including pancreatitis,
cancers, atherosclerosis, andmyocardial infarction (121, 122). An
interesting mechanism of inflammatory signaling in ECs is the
TLR-high-mobility group box 1 (HMGB1) axis. HMGB1 is an
alarmin that is released in response to injury from necrotic cells,
triggering an inflammatory response (123). HMGB1 signals via
TLRs 2, 3, 4, 7, and 9 (26, 123, 124) to induce expression of pro-
inflammatory cytokines through MyD88/NF-κB signaling (124),
which in turn increases secretion of HMGB1, creating a positive
feedback loop to amplify the HMGB1-mediated inflammatory
effect (125). Likewise, extracellular histone-mediated activation
of TLR2/TLR4 increases tissue factor expression via NF-κB and
AP-1, promoting thrombus formation in human coronary artery
ECs (126). TLR-mediated inflammatory signaling can also utilize
G proteins. The intercellular domains of TLR2, TLR3, and TLR4
contain a consensus motif for binding of pertussis toxin-sensitive
heterotrimeric G proteins Gαi/o. Gαi/o activates MAPK and Akt
and interferons downstream of TLR2, TLR3, and TLR4 in ECs
while having no effect on NF-κB signaling (127).

TLR 4 is the prototypical (128) and most studied TLR in
literature. The functions of TLR4 as previously discussed not only
are limited to its immunological role but also extend to various
aspects of the vascular biology. One of the major cardiovascular
disorders and the topmost cause of death in the developing world
is the coronary artery disease (CAD) or the ischemic heart disease
(IHD), accounting for >9 million deaths globally in 2016 (129).
In the heart, all the TLRs are expressed with the expression of
TLR4 being the highest (130) and hence is a very important for
the molecular pathogenesis of IHD. TLR4 along with TLR1 and
TLR2 is highly expressed in human atherosclerotic plaques (131),
with the highest expression in the shoulder regions of the plaques
in the coronary arteries where the incidence of plaque rupture is
highest (132). TLR4 significantly raised the levels of tissue factor
(TF), a critical initiator of blood clotting from endothelial cells
actively contributing to arterial thrombus formation (133). LPS-
mediated TLR4 activation of human coronary artery endothelial
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cells resulted in increased IL-1β and TNF-α which are elevated
in congestive heart failure (CHF) and CAD, hence contributing
directly to their pathogenesis. Furthermore, TLR4 activation
resulted in reduced cardiac function in mice whereas TLR4
deficiency promoted survival and reduction in septic shock and
myocardial ischemia-induced cardiac dysfunction (134).

In addition to TLR4, endosomal TLR7 and TLR9 also play
an important role in atherosclerotic lesions. Under normal
conditions, major arteries of the body have a negligible expression
of TLR7 and TLR9 (73). However, TLR7 levels were increased
in endothelial cells, smooth muscle cells, and macrophages
of mouse atherosclerotic lesions of the aortic arch (135).
In apoE∗3-Leiden mouse restenosis model, TLR7/9 activation
significantly led to femoral artery cuff intimal hyperplasia and
accelerated atherosclerosis and blockade of TLR7/9 significantly
reduced neointima formation, atherosclerosis, and macrophage
cytokine production (136). TLR7 activation may differentially
respond according to disease condition. In patients with carotid
endarterectomy, TLR7 was higher in atherosclerotic plaques,
yet elevated TLR7 expression in the plaques was associated
with better outcomes by production of anti-inflammatory
cytokines (137).

RNA is another important DAMP that activates TLR3 (35,
138). We and others have shown that TLR3 expression and
signaling are important in vascular biology and pulmonary
hypertension (PH) (111, 139).

TLRs IN PULMONARY HYPERTENSION

Pulmonary hypertension (PH) is a chronic, progressive disorder
of the lung vasculature characterized by abnormal pulmonary-
artery vasoconstriction and remodeling, leading to right
heart failure and death (140). Idiopathic pulmonary arterial
hypertension (iPAH) shows dysregulated EC differentiation and
growth (141), and EC dysfunction is now recognized as a
central process in the initiation and progression of PH (142).
There are multiple aspects of EC dysfunction, which include
the emergence of apoptosis-resistant, hyperproliferative ECs,
dysregulated release of mediators from ECs, and endothelial-
to-mesenchymal transition. One concept suggests that during
development of PAH, EC apoptosis results in the selection
of these apoptosis-resistant, hyperproliferative ECs. In our
recent publication, we showed TLR3 deficiency in pulmonary-
artery ECs from PAH patients and in lungs from a rat model
of severe PH with occlusive arteriopathy (111). Treatment
with the TLR3 agonist and poly(I:C) reduced severe PH and
occlusive arteriopathy in rats and increased endothelial TLR3
expression in an interleukin-10 (IL-10)-dependent manner (111).
Our results mirror the protective role of TLR3 signaling after
balloon injury in large systemic arteries (139). However, other
conflicting results seemingly contradict a protective role of
TLR3 in the vasculature, but these findings may be due to
a more severe degree of endothelial injury in the model
system (143). Because knockout of type I IFN receptor and
type I IFN treatment have frequently been associated with
mostly reversible PH in highly preselected patient groups

with significant comorbidities (144, 145), further evaluation
of TLR3-targeted therapy is required in PAH. However, type
IFN therapy seems to reduce severe angioocclusive PH in
rats (146).

Recently, the HMGB1–TLR4 axis has emerged as a potential
driver of pulmonary vascular remodeling in PAH. HMGB1 was
elevated in concentric and plexiform lesions from patients with
iPAH and in the lungs of mice exposed to chronic hypoxia
(147). In addition, monocrotaline (MCT), an EC toxin causing
severe PH, enhances the release of HMGB1 from injured ECs
(148). Pro-inflammatory cytokines promote HMGB1 secretion,
and therefore HMGB1 secretion and TLR4 may be part of
a positive feedback loop enhancing inflammation and lung
vascular remodeling in PAH. In addition, activation of the
HMGB1/TLR4 axis in rats exposed to chronic hypoxia caused
a significant decline in bone morphogenic protein receptor
2 (BMPR2), connecting HMGB1 with a well-known pathway
hypomorphism in PAH pathobiology (149, 150). An inhibitor
of HMGB1–TLR4 interaction has been characterized as a novel
potential therapeutic, translating the findings with the TLR4–
HMGB1 pathway to a potential clinical treatment in PAH,
although clinical evaluation is necessary as a next step after
the initial preclinical study (151, 152). Therapeutic strategies
targeting TLRs in PH could be a potential avenue where both
agonists and antagonists can improve pathogenesis of PH,
depending on the TLR in question. In contrast to reduced PH
following treatment of PH rats with the TLR3 agonist poly(I:C)
(111), P5779, a blocker of theHMGB1–TLR4 interaction, reduces
PH in rats (151, 152). Although other different TLR agonists and
antagonists are available, there is a need for further study of TLR
signaling in PH to identify additional targets depending on the
role of the particular TLR in PH pathobiology.

In addition, TLR signaling can also contribute to another
pathogenic mechanism in PAH, endothelial-to-mesenchymal
transition (EndMT). EndMT is a process by which ECs acquire
a mesenchymal cell phenotype. There is growing evidence
that EndMT contributes to development and progression of
pulmonary vascular remodeling and severe PAH (153–156).
TLR4 activation promoted EndMT and expression of the
progenitor cell marker c-kit (CD117) in mouse pulmonary ECs,
indicating a potential connection between TLR4 and EndMT
(157). Our group has recently shown that clonally expanded
CD117+ ECs promote the formation of occlusive arteriopathy in
rats exposed to chronic hypoxia and that CD117+ ECs undergo
EndMT in vitro and in vivo (158). Hence, growing literature
indicates that CD117+ ECs represent a stem-like EC population
in the developing and adult lung (159, 160) and that CD117+ ECs
contribute to lung vascular remodeling in PAH (158).

In PAH, not only ECs but also smooth muscle cells (SMCs)
play a central role in the pathogenesis of the disease (161).
Normal pulmonary-artery SMCs most abundantly expressed
TLR3, TLR4, and TLR6. TLR3 and TLR4 co-activation resulted
in IL-8 release whereas TLR3 activation alone promoted IP10
and endothelin 1 release (162). HMGB1-mediated activation of
TLR4 in pulmonary-artery SMCs augmented SMC proliferation
and migration along with a decline in bone morphogenic protein
receptor 2 (BMPR2) signaling. Based on the dysfunctional
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BMPR2 pathway in PAH, it is likely that the HMGB1/TLR4
pathway has a pathogenic role in PAH (149). BMPR2-deficient
mice had elevated levels of TLR4 in pulmonary-artery SMCs
and lungs. LPS stimulation then leads to a significant increase
in IL-6 and IL-8 production (163). These data indicate that
TLR4-mediated downregulation of BMPR2 plays an auto-
enhancer role driving TLR4 expression in the form of a vicious
circle, which contributes to the pathogenesis of PAH. However,
hypoxia reduces TLR4 expression and TLR4 knockout mice
spontaneously develop PH, suggesting a protective role of TLR4
in PAH (164). This work coincided with a similar observation in
ECs, which showed that hypoxia exposure reduced the expression
of TLR4 and downstream nuclear translocation of AP-1 in
cultured HUVECs and HPAECs (165). In stark contrast, some
studies suggest that TLR4-deficient mice were protected from
chronic hypoxia-induced PH (166, 167).

In summary, the existing literature indicates that TLRs
have functions that exceed by far the induction of an innate
immune response in ECs. Instead, TLR signaling is tightly
connected with crucial elements of EC function, such as
proliferation, apoptosis, angiogenic sprouting, and migration.
Potential therapies targeting TLR–ligand interactions or using
TLR agonists have emerged in multiple vascular diseases, in

particular in PH, but careful preclinical and clinical evaluation

is required when modulating TLR signaling because of the highly
conserved and multifaceted effects of TLR signaling in ECs.
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