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Transcriptional profiling of the mutualistic bacterium Vibrio
fischeri and an hfq mutant under modeled microgravity
Alexandrea A. Duscher1, Ana Conesa2, Mary Bishop1, Madeline M. Vroom1, Sergio D. Zubizarreta1 and Jamie S. Foster1

For long-duration space missions, it is critical to maintain health-associated homeostasis between astronauts and their microbiome.
To achieve this goal it is important to more fully understand the host–symbiont relationship under the physiological stress
conditions of spaceflight. To address this issue we examined the impact of a spaceflight analog, low-shear-modeled microgravity
(LSMMG), on the transcriptome of the mutualistic bacterium Vibrio fischeri. Cultures of V. fischeri and a mutant defective in the
global regulator Hfq (Δhfq) were exposed to either LSMMG or gravity conditions for 12 h (exponential growth) and 24 h (stationary
phase growth). Comparative transcriptomic analysis revealed few to no significant differentially expressed genes between gravity
and the LSMMG conditions in the wild type or mutant V. fischeri at exponential or stationary phase. There was, however, a
pronounced change in transcriptomic profiles during the transition between exponential and stationary phase growth in both V.
fischeri cultures including an overall decrease in gene expression associated with translational activity and an increase in stress
response. There were also several upregulated stress genes specific to the LSMMG condition during the transition to stationary
phase growth. The Δhfq mutants exhibited a distinctive transcriptome profile with a significant increase in transcripts associated
with flagellar synthesis and transcriptional regulators under LSMMG conditions compared to gravity controls. These results indicate
the loss of Hfq significantly influences gene expression under LSMMG conditions in a bacterial symbiont. Together, these results
improve our understanding of the mechanisms by which microgravity alters the physiology of beneficial host-associated microbes.
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INTRODUCTION
All animals form beneficial relationships with microbes.1 The
normal microbiota of animals is extremely important for main-
taining almost every aspect of animal fitness including host
development, behavior, and immune system homeostasis.2,3

Understanding how these beneficial microbes respond to their
continually changing environments represents an important area
in animal microbiome research. One particular environment that
presents numerous physiological challenges to animals and their
microbiomes is spaceflight.4–8 During spaceflight, the reduction in
gravity, or microgravity, can have widespread health impacts to
the host including bone loss, alterations to the genome,
neurovestibular, and immune systems.9–13 In particular, animal
immune systems are highly dysregulated and host–microbe
interactions have now been shown to play a significant role in
maintaining healthy immune function during spaceflight.14

In addition to physiological changes in human and animal
hosts, microbes are also impacted by microgravity. Some microbes
exhibit altered growth rates and cell densities grown under both
natural and analog microgravity conditions.15–20 Although this is
not a universal response as several taxa, including pathogenic
Streptococcus mutants and Salmonella enterica Serovar Typhimur-
ium, exhibit no changes to growth rates under modeled
microgravity conditions.21,22 For many taxa, however, there is an
increased growth rate under both natural and simulated micro-
gravity conditions,23,24 which can be highly dependent on the
growth media used.19 Although the precise mechanisms

underlying the increased growth rate in certain taxa have not
been fully elucidated, research has indicated that in some bacteria
the lag phase of growth is shortened and the exponential growth
phase is lengthened.15

Microbes also respond to changes in the mechanical and
physical forces (e.g., low-shear) associated with microgravity by
modifying their gene expression,19,22,23,25–43 secondary metabo-
lism,44,45 biofilm formation,26,28,34,40,43,46,47 and pathogenesis.48,49

Many pathogenic microbes under microgravity conditions exhibit
altered virulence,21,39,47,50,51 resistance to environmental stress
and antibiotics,27,29,34,35,37,40,42,48,52 as well as increased survival in
host macrophages.21,39,42,49 Previous studies have shown that
these changes in virulence are environment-dependent and in
some cases can be attenuated through media supplementation,
such as inorganic phosphate.51 These same studies have also
determined there are extensive changes in microbial gene
expression both at the transcriptional and translational levels.
One key finding is that microgravity alters the expression of the

global regulator Hfq, an RNA-binding protein that stabilizes an
interaction between small RNAs (sRNAs) and their target message
RNAs (mRNAs) to influence gene expression53 and has been found
in about half of all known bacterial genomes.54 This protein has
been implicated as an important mechanism involved in bacterial
stress response, and therefore, may be especially important in
microgravity conditions.23,47,55 Several studies have shown that
the hfq gene is down-regulated in bacteria under natural and
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modeled microgravity conditions, including beneficial
microbes.23,47

Although significant progress has been made in understanding
microbial responses to microgravity, most of these studies have
focused on pathogenic strains of microbes.27,34,40,47,49 The effects
of microgravity and low shear fluid dynamics on mutualistic
bacteria are relatively unknown. Two recent studies on gut-
associated Lactobacillus acidophilus revealed relatively few tran-
scriptional and physiological differences when cultures were
grown under low-shear-modeled microgravity (LSMMG) condi-
tions.25,56 For example, no transcriptomic or growth changes were
observed when the cultivars were grown under anaerobic
conditions,56 however, some increased acid stress resistance and
antimicrobial activity was observed when grown under aerobic
conditions,25 suggesting more investigations in how mutualistic
bacteria respond to the stress of microgravity are needed.
In this study, we investigate the impact of LSMMG on the

beneficial symbiont, Vibrio fischeri, which forms a simplified binary
relationship with the bobtail squid Euprymna scolopes. V. fischeri
colonizes the epithelial-lined crypt spaces of a specialized light
organ in the squid and induces a series of rapid immunological
and developmental changes in the host tissues.57–60 This type of
colonization of host epithelial tissues represents the most
common form of symbioses in animals.61 Previous research on
the effects of modeled microgravity on the squid-vibrio system
has identified several microgravity-induced phenotypes in the
host tissue,14,23,62,63 however, the effects of LSMMG on the V.
fischeri transcriptome has not been explored.
To address this issue, we examined the transcriptional response

of V. fischeri cultures to LSMMG at both exponential (12 h) and
stationary (24 h) growth phases. Additionally, the transcriptome of
a V. fischeri mutant defective in hfq was also compared to
determine the role of this transcriptional regulator in V. fischeri
physiology under LSMMG conditions. Previous work has shown
that the hfq gene is down regulated in V. fischeri during LSMMG
and squid infected with Δhfq mutants exhibited several altered
developmental phenotypes.23 Together, this work helps elucidate
the impact of microgravity and the importance of Hfq in a
beneficial microbe. By understanding the effects that spaceflight
has on beneficial microbes critical insight can be inferred into
maintaining healthy astronaut microbiomes and decrease the
potential health risks associated with the exploration of space.

RESULTS
Overview of transcriptome analysis of V. fischeri cultivars under
gravity and LSMMG conditions
RNA-seq was used to evaluate the transcriptional changes of wild
type V. fischeri ES114 (WT) and a Δhfq deletion mutant (KV7142) at
two key time points during bacterial growth. Strains were grown
aerobically in a rotary culture system using high aspect ratio
vessels (HARVs) in both gravity and LSMMG positions and their
transcriptomes were examined during exponential (12 h) and
stationary (24 h) growth phases. Growth curves for all strains,
including Δhfq complementation mutants (KV148, KV149) are
shown in Supplemental Fig. S1 and correlate with previously
published studies.23,62 There was a statistically higher number of
colony forming units per ml at 12 h in LSMMG conditions, but the
growth curves suggest both the LSMMG-treated and gravity-
treated cultures were in log phase growth. Three libraries were
generated for each treatment (note: only two libraries were
created for the Δhfq gravity controls). An average of 11.19 million
high-quality reads that consistently mapped (>95%) to V. fischeri
ES114 genome were obtained for each treatment (Table 1). This
level of sequencing depth in RNA-seq analyses has been shown to
be effective in detecting the majority of significant changes to
gene expression profiles in bacteria.27,64

For control purposes, we first examined the transition between
exponential and stationary phase in both WT and Δhfq to ensure
key metabolic transitions were being captured with the RNA-seq
analyses in the HARV environment (Figs. 1 and 2). During growth
under both LSMMG and gravity conditions the V. fischeri strains
exhibited several typical responses of bacterial populations during
stationary phase, including an overall down-regulation of genes
associated with the translational apparatus, such as ribosomal
proteins (e.g. rpsB, rpsG, rpsL, rpsM, rplM), tRNA synthases (e.g., tyrS,
leuS, lysS), and translation factors (e.g., tufAB, infC, miaA) (Fig. 2;
Supplemental Tables S1 and S2). In each treatment during
stationary phase there was also an increase in the expression of
several genes typically associated with stress responses, such as
oxidative (e.g. VF_A0005, VF_A0335) and heat shock chaperones
(e.g. dnaK1, dnaK2, htpG, hslO, hslV, ibpA, VF_1466) (Supplemental
Tables S1–S3). These results are consistent with numerous studies
indicating that in stationary phase bacteria become resistant to a
wide range of environmental stresses65,66 and down-regulate their
translational apparatus during nutrient limiting conditions.67

Together, the results indicate that the RNA-seq libraries were
capturing the major transcriptional changes in V. fischeri during
the different treatments.

LSMMG-specific changes in V. fischeri transcriptome
Pairwise comparisons between the WT libraries revealed no
significant differentially expressed genes (DEGs; adjusted p-value
< 0.05) between the LSMMG and gravity treatments for WT at each
of the time points tested, suggesting that the modeled micro-
gravity environment had an overall minimal impact on the
transcriptome of WT V. fischeri (Fig. 1). However, a comparison
between the time points revealed five LSMMG-specific upregu-
lated DEGs in both the WT and Δhfq cultivars at 12 h when
compared to 24 h (Fig. 1b; Supplemental Table S3). Two of these
DEGs were associated with stress responses, including open-
reading frame (ORF) VF_2561, whose gene product was annotated
as a cold shock protein, and yceD, which encodes for a
hypothetical protein that has been implicated in oxidative stress
resistance in Bacillus subtilis.68

At 24 h there was an up-regulation of seven LSMMG-specific
genes in both V. fischeri WT and Δhfq strains when compared to
12 h libraries (Fig. 1b; Supplemental Table S3), several of which are
known to be critical for stress resistance and microbial pathogen-
esis. For example, there was an up-regulation of yghU, which
encodes for glutathione S-transferase and is essential for the

Table 1. Overview of recovered transcriptome sequencing results
from V. fischeri wild type (WT) and Δhfq mutant exposed to low-shear-
modeled microgravity (LSMMG) and gravity conditions

Time
point
(h)

Treatment Strain Total readsa

per treatment
(million)a

Average
reads per
library
(million)

Mapped
reads (%
mapped)

12 Gravity WT 11.18 3.73 96.31

12 Gravity Δhfq 7.20 3.60 96.20

12 LSMMG WT 11.73 3.91 96.17

12 LSMMG Δhfq 11.25 3.75 96.08

24 Gravity WT 13.03 4.34 95.86

24 Gravity Δhfq 8.40 4.20 96.49

24 LSMMG WT 12.66 4.22 96.57

24 LSMMG Δhfq 14.04 4.68 97.10

aHigh-quality reads were filtered using Trimmomatic default parameters
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detoxification of reactive oxygen species (ROS) in a wide range of
taxa69 including several symbiotic taxa.70,71 There was also an
increase in expression of blc, which encodes for the outer
membrane lipoprotein lipocalin that is upregulated under high
osmotic stress conditions in Escherichia coli and thought to play a
role in antimicrobial resistance in several other bacteria.72

Additionally, there was an increase in expression of zwf, which

encodes for glucose 6-phosphate dehydrogenase (G6PD), and has
been shown to be required for virulence in Salmonella Typhimur-
ium and protects against reactive oxygen and nitrogen species in
both S. Typhimurium and E. coli.73,74 There was also up-regulation
of katA, which encodes for the only periplasmic catalase present in
the V. fischeri genome and is induced under oxidative stress
conditions, as well as required for symbiosis competence in V.
fischeri.75

Differential gene expression changes in Δhfq mutant under both
gravity and LSMMG conditions during exponential phase
In gravity conditions, there were few significant DEGs upregulated
in the Δhfq mutant compared to LSMMG at 12 h (Figs. 1 and 3a;
Supplemental Table S1). One DEGs upregulated in gravity
conditions was gnd, which encodes for 6-phosphogluconate
dehydrogenase (6PGD), a key enzyme in the pentose phosphate
pathway. The 6PGD enzyme produces NADPH, which provides the
reducing power to several antioxidant proteins.76 Additionally, in
the Δhfqmutant, there was an increase in the expression of katA in
gravity compared to LSMMG. The RNA-seq trends for katA were
independently confirmed with qRT-PCR, although different
transcript abundances were observed between the two meth-
odologies for katA likely due to the differences in resolution
between the approaches (Fig. 3b). At 12 h there were also three
ORFs with unknown function upregulated in the Δhfq gravity
conditions (VF_2662, VF_A0979, and VF_A1190) (Supplemental
Table S1).
Under LSMMG conditions, however, the Δhfq mutant exhibited

a pronounced change to its transcriptome compared to gravity
controls at 12 h (Figs. 1a and 3a; Supplemental Tables S1 and S2).
During exponential phase in the Δhfq mutant there was an
accumulation of transcripts that encode for several components of
the tricarboxylic acid (TCA) cycle including succinate dehydro-
genase (sdhAB), aconitate hydratase (acnB), succinyl-CoA synthe-
tase (sucCD), fumarate hydratase (fumB), and fumarate reductase
(frdA) (Fig. 3a; Supplemental Table S1), all of which have been
shown to be repressed by the sRNA RyhB in other taxa.77,78 Hfq is
required for the stability and pairing of the sRNA RhyB to mRNA.78

RhyB has been identified in the V. fischeri genome (VF_2578),
however, it was not significantly differentially expressed in this
study. Additionally, there was an enrichment of transcripts
associated with fatty acid synthesis (e.g. fabDFH), which in
Salmonella Typhimurium is dependent on the sRNA SmpP,79 as
well as oligopeptide transport (e.g., oppADF), which is regulated by
the Hfq-dependent small RNA GcvB in a number of taxa including
several vibrios.80 Homologs to SmpP and GcvB have not yet been
reported in V. fischeri.
In LSMMG conditions there was also an increase in transcripts

associated with flagella synthesis in exponential phase including
genes that encode for both structural (e.g. flaACE), basal body rod
(e.g. flgD), and hook-associated (e.g. flgEK) proteins81 (Fig. 3a;
Supplementary Tables S1 and S2). The differential expression of
flaA and flgK were confirmed with qRT-PCR in the Δhfq (Fig. 3b).
Hfq has been associated with flagellar synthesis in a wide range of
taxa, including both pathogenic (e.g., Salmonella) and mutualistic
bacteria (e.g., Sinorhizobium meliloti), however, in most cases
mutants defective in hfq exhibit a repression of flagellar synthesis
genes and in some cases are non-motile.82,83

Differential gene expression changes in Δhfq mutant under both
gravity and LSMMG conditions during stationary phase
The Δhfq mutants exhibited extensive transcriptional changes
during stationary phase under both gravity and LSMMG condi-
tions (Figs. 1, 2, and 4; Supplemental Tables S1 and S2). One
pronounced characteristic of the Δhfq transcriptomes was the up-
regulation of numerous transcriptional regulators during station-
ary phase (Fig. 4; Supplemental Tables S1 and S2). In both gravity
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Fig. 1 Overview of the differentially expressed genes associated to
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and LSMMG conditions there was increased expression of agaR,
which encodes for a putative transcriptional repressor of N-acetyl
galactosamine (GalNAc) transport and metabolism in a wide range
of bacterial taxa;84 iscR, a transcriptional repressor of genes
associated Fe–S cluster assembly proteins;85 and yqhC, whose
gene product regulates aldehyde reductase.86

In gravity conditions, there was differential expression of
VF_1401, which encodes for a Fis family transcriptional regulator,

and cysB, which belongs to the LysR family of regulators and is a
global transcriptional activator of cysteine biosynthesis and sulfur
metabolism.87 CysB is also the only known negative regulator of
HslJ, a heatshock/heat-inducible outermembrane lipoprotein.88

The hslJ gene is upregulated in the Δhfq mutant under both
gravity and LSMMG in stationary phase (Fig. 4a; Supplemental
Tables S1 and S2). Additionally, in gravity conditions, the Δhfq
mutant had increased expression of genes associated with the
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Type II section pathway (e.g. gspD, mshQ2) and several transport
proteins (e.g. ybhG, argT, hisP) (Supplemental Tables S1 and S2).
Under LSMMG conditions, the genes of several different

transcriptional regulators were upregulated during stationary
phase. For example, VF_2037, which shares similarity to Cro/Ci
family transcriptional regulators, was upregulated but has
unknown function in V. fischeri. Additionally, nrdR was also
upregulated and its gene product represses the ribonucleotide
reductase production (i.e., nrdHIEF), bacterial chemotaxis, and
more recently has been shown to inhibit cell adhesion to epithelial
cells in E. coli.89,90 In addition to transcriptional regulators, there
was also a differential expression of genes associated with
modifications to the outer membrane in Δhfq under LSMMG
(Fig. 4a; Supplemental Tables S1 and S2). For example, there was
increased expression of the gene slp, which encodes for an outer
membrane lipoprotein associated with stress responses during
stationary phase and is typically repressed by the Hfq-dependent
sRNA GcvB.91 There was also an increased expression of skp, a
periplasmic chaperone protein that is associated with the RpoE
regulon and is involved in the folding of intermediates of outer
membrane proteins.92 Interestingly, rpoE transcription was down-
regulated at 24 h compared to 12 h in the Δhfq mutants
irrespective of the gravity or LSMMG treatment (Supplemental
Table S1).

DISCUSSION
To prepare for long-duration space travel it is essential to have a
comprehensive understanding of the impact that spaceflight has
on the physiology of host-associated microbiomes to promote
and maintain astronaut health. There has been an extensive focus
on the effects of spaceflight and simulated microgravity environ-
ments on bacterial pathogens,19,21,22,27,32,34,42,43,47,52 however,
only a few studies have begun to examine the impact on
beneficial microbes that promote the health of the host
organism.14,23,25,56,62 In this study, we expand on this recent work
and examine the effects of an LSMMG environment on the
transcriptome of the beneficial symbiont V. fischeri, which forms a
mutualistic association with the bobtail squid E. scolopes, and is
critical for the host’s normal development. The results of this study

suggest that there were few transcriptional changes in the WT V.
fischeri under LSMMG and that most changes in the bacterium
were attributed to the growth phase transition between
exponential and stationary phase. Additionally, RNA-seq analyses
revealed that mutants defective in the global regulator Hfq
exhibited a pronounced change in transcriptional profiles under
LSMMG, providing new insight into the role this regulator plays in
the symbiotic V. fischeri under analog microgravity conditions.
Previous studies have shown that V. fischeri exhibits an altered

growth response in simulated microgravity conditions, with
cultures reaching higher cell densities compared to gravity
controls.23 This altered growth response under LSMMG has been
observed in many, but not all, taxa18,22,32,42 and is thought to
reflect the selected growth medium. The nutritional micro-
environment of the cells in LSMMG has been shown to
significantly impact microbial physiology.18,19 For example, under
low phosphate conditions some microbes, such as Salmonella
Typhimurium, exhibit increased virulence.51 Despite the change in
growth phenotype in V. fischeri under LSMMG conditions, no
significant DEGs were observed when the transcriptomes of 12 h
LSMMG-treated WT cells were compared to 12 h gravity controls,
even under the low phosphate conditions of SWT media (Fig. 1).
Similar results were observed when 24 h LSMMG-treated libraries
were compared to 24 h gravity-treated libraries, suggesting that
modeled microgravity itself does not significantly alter transcrip-
tion within V. fischeri compared to gravity controls. These results
are comparable to several recent studies on the effects of LSMMG
on the probiotic strain L. acidophilus.25,56 Under the anaerobic
conditions, transcriptomes of the L. acidophilus cultivar showed no
DEGs in LSMMG when compared to gravity controls at stationary
phase.56 As both L. acidophilus and V. fischeri typically form
associations with host epithelium and are regularly exposed to
low shear conditions in their natural environments, the modeled
microgravity environment does not likely impose a significant
stress for these taxa. Additionally, recent studies have shown that
under LSMMG conditions V. fischeri exhibits no delay in colonizing
host tissues62 and that during spaceflight V. fischeri reached the
same colonization densities as under gravity controls.14 Together,
these results suggest that microgravity conditions do not
negatively impact V. fischeri.
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Although the overall transcriptional response in V. fischeri was
typical of the normal transition to stationary phase, there were
several stress-associated genes differentially expressed under
LSMMG conditions in both the WT and Δhfq mutant. Of the DEGs
differentially upregulated in LSMMG during the transition to
stationary phase, three of the observed genes (i.e., yceD, yghU, and
katA) are associated with stress responses and have been
observed in E. coli K12 under modeled microgravity conditions.38

In E. coli these genes are associated with both oxidative and
osmotic stress responses and may suggest that under LSMMG a
small microenvironment of increased stress may occur around the
V. fischeri cells. The formation of nutrient-depleted microenviron-
ments has long been postulated under LSMMG conditions, which
may simulate the genomic and physiological responses of cells as
they transition to stationary phase.15,38 During exponential phase,
V. fischeri cells are flagellated, as opposed to stationary phase
when production of flagella is decreased and cells are non-motile
(Edward Ruby, personal communication). The flagella during
exponential phase may be disrupting the low shear environment
thereby minimizing the effects of LSMMG on the cells and
resulting in very few stress-associated genes being differentially
regulated under the LSMMG environments at 12 h.
At 24 h, there was also expression of several other stress-

associated genes (e.g. blc, zwf, katA), however, only katA has been
previously described in V. fischeri. The katA gene encodes for a
periplasmic catalase that is essential for the normal colonization of
the host squid and is typically induced as cells approach stationary
phase.75 The higher expression of katA during LSMMG in
stationary phase suggests the cells are experiencing a more
pronounced oxidative stress environment compared to the gravity
controls. Similar results have been observed in several Salmonella
spp., where bacteria grown under LSMMG conditions exhibited a
higher resistance to hydrogen peroxide and increased catalase
activity.52 Interestingly, although there was up-regulation of blc,
which encodes for an outer membrane lipoprotein in E. coli
expressed during osmotic stress,72 there were no observed
significant DEGs associated with lipopolysaccharide biosynthetic
genes or other cell membrane modifications, which have been
reported to be differentially regulated under LSMMG.18,22,47

Together, the results reinforce the interpretation that the low
shear environment of modeled microgravity does not significantly
alter the transcriptional response V. fischeri cultivars, but that the
few genes that are differentially expressed are primarily associated
with environmental stress responses.
Although the transcriptome of WT cells did not display

extensive changes in response to LSMMG, mutants defective in
the global regulator Hfq exhibited a pronounced transcriptional
response to LSMMG conditions (Fig. 1; Supplemental Table S1).
The RNA-binding protein Hfq has been identified as an important
transcriptional regulator in several pathogenic taxa in response to
both spaceflight and microgravity analog environments.33,34,47

Additionally, the gene encoding Hfq has been shown to be down-
regulated in several taxa, including V. fischeri, under LSMMG
conditions.23,47 One of the major functions of Hfq is to bind to
sRNAs, which then together subsequently target various mRNAs,
thereby regulating or modulating the stability of the mRNAs.93 The
sRNAs can also serve as activators or repressors of mRNA
translation.94 During exponential phase, there was a significant
accumulation of transcripts associated with the TCA cycle in the
Δhfq mutant. Up-regulation of genes associated with the TCA
cycle has been observed under modeled microgravity27,35,95 and
many TCA cycle genes are typically repressed by the Hfq-
dependent sRNA RhyB,77 which recruits RNase E and facilitates
mRNA degradation.78 In the Δhfq mutant, the increase in
recovered TCA cycle transcripts under LSMMG conditions likely
reflects an inhibition of mRNA degradation rather than an up-
regulation of these genes during LSMMG.
The Δhfq mutants also exhibited an increase of transcripts

associated with flagellar assembly under LSMMG conditions
compared to WT cells during exponential phase growth (Fig. 3a;
Supplemental Tables S1 and S2). The expression of flagellar
assembly genes under microgravity conditions appears to be
highly variable based on the taxa and whether the cells were
exposed to actual spaceflight or analog conditions.19,51,95,96 The
regulation of flagellar synthesis is complex and is not fully
delineated in V. fischeri,97 although in many taxa it occurs both at
the transcriptional and translational levels.98 In E. coli there are
numerous Hfq-dependent sRNAs involved in the positive (e.g.
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McaS) and negative (e.g. ArcZ, OmrA, OmrB, SdsR, GadY, and
OxyS) regulation of flagella synthesis, however, none of these Hfq-
dependent sRNAs have been reported in the V. fischeri genome.
The up-regulation of flagellar synthesis transcripts during expo-
nential phase in LSMMG may suggest the cells are attempting to
move out of potential zones of nutritional depletion. Alternatively,
as there is a lack of differentially expressed flagellar synthesis
transcripts during stationary phase when nutritional depletion is
more severe, the results may simply suggest a lack of negative
repression of the flagellar synthesis in the Δhfqmutants during cell
growth. A more detailed analysis of transcriptional and transla-
tional regulation of flagella synthesis in V. fischeri is needed.
In stationary phase growth, the Δhfq mutants exhibited a

pronounced increase in the expression of transcriptional regula-
tors under both gravity-specific (e.g. Fis-family regulator, VF_1401;
cysB), and LSMMG-specific (Cro/Ci family regulator VF_2037; nrdR)
conditions. To our knowledge, none of these regulators have been
reported to be differentially expressed during spaceflight or
modeled microgravity conditions. For example, nrdR was first
shown to positively regulate synthesis of ribonucleotide reduc-
tases in response to DNA damage and oxidative stress in
Streptococcus pyrogens99 and more recently has been shown in
E. coli to be involved in responding to iron starvation100 and the
host immune system.101 As the stress responses of several taxa are
altered under spaceflight and analog conditions,95 the role of
these transcriptional regulators under microgravity-like stress
conditions needs to be investigated further.
The Δhfqmutant also exhibited significant DEGs associated with

outer membrane proteins that are differentially expressed during
stress conditions in a wide range of taxa. For example, slp is a
carbon-starvation-induced gene that has been shown to be
upregulated in V. cholerae Δhfqmutants102 and is released in outer
membrane vesicles.103 In E. coli the Slp lipoprotein is essential for
acid and metabolic stress and is negatively regulated by the Hfq-
dependent GvcB104. Although GvcB has not been reported in V.
fischeri it has been reported in several environmental vibrios.80

These differential transcriptional responses in genes encoding for
outer membrane proteins in the Δhfq mutants may indicate that
the outer membrane of the mutants may have a different
composition compared to the WT cells under both gravity and
LSMMG conditions. Recent studies have shown that V. fischeri-
derived outer membrane vesicles can induce full developmental
remodeling of the host light organ tissues,105 however, mutants
defective in Hfq induce an altered phenotype including a decrease
in the number of dying apoptotic cells in the host tissues under
both LSMMG and gravity conditions.23 The mechanism for these
decreased levels of apoptotic cells in Δhfq mutants is not clear but
may be the product of a remodeled outer membrane.
Although the full range of environmental factors that impact a

host’s microbiome in the space environment has yet to be fully
understood, this study provides insight into the role that
microgravity may have on those beneficial microbes that typically
associate with animal tissues. The results suggest that under
normal growth conditions modeled microgravity does not
negatively impact the transcriptional activities of V. fischeri
indicating that the beneficial, mutualistic lifestyle of the bacterium
is maintained under analog microgravity conditions. The results
also deepen our understanding of the mechanisms by which
organisms are adapting to changes in their nutritional environ-
ment and how the global regulator Hfq impacts the regulatory
processes of V. fischeri in both LSMMG and gravity conditions.
These results indicate that Hfq serves as an important mechanism
by which V. fischeri regulates responses to external stimuli. As
many of the mechanisms by which pathogenic and beneficial
microbes sense and respond to their ever-changing environment
are shared, it will be critical to continue to explore the processes
by which microbes form complex communities and interact with

their hosts during spaceflight to help mitigate any potential health
threats during long-term missions.

METHODS
Bacterial strains and growth conditions
The wild type strain V. fischeri ES114 (WT), which was isolated from an adult
host squid E. scolopes106 was used as the parent strain for the deletion Δhfq
mutant and complementation (KV7142, Δhfq; KV148, Δhfq attTn7::ermR;
KV149, Δhfq attTn7::hfq; courtesy of K. Visick, Loyola University Chicago).
The strains were grown aerobically overnight in seawater tryptone (SWT)
agar at 28 °C, in which trace elements are at low concentration (e.g.
phosphate (0.1 ppm)).23 High aspect ratio rotating vessels (HARVs;
Synthecon, Houston, TX, USA) were used to model the microgravity
environment as previously described.49,62 Briefly, each HARV was filled with
50ml of SWT broth inoculated with V. fischeri culture at a concentration of
1 × 105 cells per ml of SWT. The HARVs were either rotated around a
horizontal axis to simulate microgravity (LSMMG) or a vertical axis to serve
as a normal gravity (1 × g) control. The cultures were incubated in the
HARVs at 12 and 24 h in the vertical LSMMG and horizontal gravity control
positions at 23 °C to replicate temperatures cells would experience in the
natural environment. The HARVs were rotated at a constant velocity of
13 rpm, which prevented V. fischeri cells from forming sedimentary
aggregates and to match rotation speed used in comparable squid-
vibrio experiments.62 Experiments were conducted in triplicate for each
condition, strain, and time. Growth curves of all strains used in this
experiment are visualized in Supplemental Fig. S1 and corresponded to
previously published results.23,62 At the end of each HARV experiment V.
fischeri were flash frozen in liquid nitrogen to halt gene expression and
stored at −80 °C until RNA extraction.

RNA extraction, cDNA synthesis, and sequencing
Each replicate V. fischeri WT and Δhfq culture was thawed on ice and
pelleted for RNA extraction. Total RNA was extracted in triplicate for each
treatment using PowerSoil® Total RNA Isolation Kit (Qiagen, Germantown,
MD) according to manufacturer’s protocol and was treated with TURBO
DNase (Thermo Fisher Scientific, Waltham, MA) to remove potential
contaminating DNA. The RiboMinus rRNA removal kit (Thermo Fisher
Scientific, Waltham, MA) was used to deplete large rRNAs and samples
were processed with the Zymo RNA Clean & Concentrator kit (Zymo
Research, Irvine, CA). The remaining mRNA was pooled between replicates,
the concentration was determined by Qubit 2.0 (Thermo Fisher Scientific,
Waltham, MA) and quality was evaluated with a 2100 Bioanalyzer
generating RIN factor > 9 (Agilent Technologies, Santa Clara, CA). High-
quality RNA was converted to cDNA using a modified SuperScript Double
Stranded cDNA synthesis kit (Thermo Fisher Scientific, Waltham, MA). A
total of three replicate cDNA libraries were generated for each treatment
(note: only two libraries were generated for Δhfq gravity controls) and
sequenced using the Illumina NextSeq500 platform (2 × 150 bp paired-end
reads; Illumina, San Diego, CA).

Bioinformatic analysis
Sequences were quality trimmed and filtered with Trimmomatic v0.32
using default parameters.107 The quality of the output files was then
analyzed using FastQC v0.10.1.108 Reads were then aligned to the V. fischeri
ES114 reference genome (GenBank ID: ASM11800v1) using Bowtie 2
v2.2.8.109 Gene counts were obtained using HTSeq-count v 0.6.1.110 Genes
with no expression across all conditions were removed. Differential
expression analysis was conducted in R using the package DESeq2.111

Genes were considered significantly differentially expressed at adjusted p-
value (padj) < 0.05. UpSetR was used to visualize the intersection of
DEGs.112 The most recent KEGG database was accessed through the R
package KEGGREST v1.16.1 to determine KEGG functional pathways and
higher KEGG level classification.113 The top 103 DEGs among time
treatment comparisons with one defined KEGG pathway were visualized
in a heatmap. Expression values for heatmap were normalized with
trimmed mean of M-values (TMM) using the NOISeq package114 and scaled
by the sum of each row (z-score) using heatmap.2 in the ggplots package
in R.115 Genes associated with multiple pathways at KEGG level 2, or had
no specific KEGG pathway association, were not displayed in the heatmap.
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Real-time quantitative PCR (qRT-PCR)
Several significantly DEGs were chosen for targeted qRT-PCR confirmation.
Primers are listed in Supplemental Table S4. The qRT-PCR reactions were
prepared using the iTaq Universal SYBR Green One-Step Kit (Biorad,
Hercules, CA) with 10 ng of RNA per reaction. Amplification and
quantification were completed using a Biorad SCX9600 Real Time System
(Biorad, Hercules, CA). The amplification conditions were as follows: an
initial incubation at 50 °C for 10min then 1min at 95 °C followed by 39
cycles of 95 °C for 10 s and 60 °C for 15 s. Each comparison was run in
triplicate and three technical replicates were run for each biological
replicate. The relative expression of each gene was analyzed using the
comparative Cq method (ΔΔCq) on the Biorad system. The gene rpoD was
chosen as the housekeeping reference gene for normalization of transcript
abundances as previously described.116

DATA AVAILABILITY
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Bioproject PRJNA357702.
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