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Introduction: Chronic kidney disease (CKD), a progressive loss of renal function, can lead to serious

complications if underdiagnosed. Many studies suggest that the oral microbiota plays important role in

the health of the host; however, little is known about the association between the oral microbiota and CKD

pathogenesis.

Methods: In this study, we surveyed the oral microbiota in saliva, the left and right molars, and the anterior

mandibular lingual area from 77 participants (18 with and 59 without CKD), and tested their association

with CKD to identify microbial features that may be predictive of CKD status.

Results: The overall oral microbiota composition significantly differed by oral locations and was associ-

ated with CKD status in saliva and anterior mandibular lingual samples. In CKD patients, we observed a

significant enrichment of Neisseria and depletion of Veillonella in both sample types and a lower prev-

alence of Streptococcus in saliva after adjustment for other comorbidities. Furthermore, we detected a

negative association of Neisseria and Streptococcus genera with the kidney function as measured by

estimated glomerular filtration rate. Neisseria abundance also correlated with plasma interleukin-18

levels.

Conclusion: We demonstrate the association of the oral microbiome with CKD and inflammatory kidney

biomarkers, highlighting a potential role of the commensal bacteria in CKD pathogenesis. A better

understanding of the interplay between the oral microbiota and CKD may help in the development of new

strategies to identify at-risk individuals or to serve as a novel target for therapeutic intervention.
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C
hronic kidney disease (CKD) is defined as
decreased kidney function that persists for more

than 3 months.1,2 CKD is a global public health prob-
lem, affecting 10% of the population worldwide. In the
United States alone, the overall prevalence of CKD is
approximately 14%, affecting 31 million adults3;
among these, 9 of 10 cases remain undiagnosed.
Without diagnosis and treatment, CKD can lead to
serious complications.2 Numerous CKD risk factors
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have been reported, with hypertension and diabetes
topping the list.4 Other risk factors5 include family
history of CKD, male gender, older age,4 smoking,6,7

African ancestry,4 low socioeconomic status,8–10

history of cardiovascular disease,11 obesity, nephro-
toxicity, and acute kidney injury.12 Moreover, recent
studies have suggested a link between CKD and peri-
odontal disease.13 Although periodontal disease is an
infection localized to the oral cavity, increasing evi-
dence suggests that periodontal disease results from a
chronic systematic inflammatory dysregulation medi-
ated by the oral microbiome.13,14 The oral microbes and
the resultant inflammatory mediators may infiltrate the
systemic bloodstream, interact with host cells of target
organs, and induce a systematic inflammatory reaction
that may exacerbate kidney dysfunction.14 A recent
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human study showed that the elevated serum antibody
to a periodontal pathogen, Porphyromonas gingivalis,
was significantly associated with decreased kidney
function.15 Yet, the underlying mechanism linking
periodontal disease to CKD remains largely unknown.

Recent advances in next-generation sequencing
technology have helped to link the host microbiota
composition and kidney function. It has been shown
that microbial dysregulation in the gut exacerbated
uremia, leading to further progression of CKD and
inflammation (reviewed by Khoury et al.16). However,
even though many studies have demonstrated that the
human oral microbiota represents 1 of the most
diverse microbial communities in the body and plays
an important role in the health and disease of the
host,17,18 and despite the established link between
CKD and periodontal health, little is known about the
role of the oral microbiota in CKD pathogenesis.
Therefore, in the present study, we explored the
association of the bacterial composition in several oral
locations, including saliva and dental plaques, with
biomarkers of kidney function and CKD status using
an electronic medical record (EMR)�linked biobank.
Understanding the connection between the oral
microbiome and kidney function could help develop
noninvasive strategies to identify individuals at risk
for developing CKD or, for those with established
disease, experiencing CKD progression, and may serve
as a novel therapeutic target.
MATERIALS AND METHODS

Study Subjects

This study was approved by the Institutional Review
Board (IRB) of the Icahn School of Medicine at Mount
Sinai. Mount Sinai serves the diverse local commu-
nities of upper Manhattan, including Central Harlem
(86% African American), East Harlem (88% Hispanic/
Latino), and Upper East Side (88% European white)
with broad health disparities.19 Study participants
were initially recruited to the BioMe Biobank Program
of the Charles Bronfman Institute for Personalized
Medicine at Mount Sinai, New York, and provided a
blood sample at entry. We cross-referenced the list of
BioMe participants with that of patients registered in
the Mount Sinai Dentistry database (Dentrix) to iden-
tify active patients with upcoming dental appoint-
ments to recruit for our study.

The inclusion criteria for our study were to be a
BioMe participant, >18 years, no antibiotic use
for $3 months before sampling, no missing molars as
determined during a dental appointment, as well as
agreement and ability to consent to participate in this
study. A short questionnaire was administered to
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collect demographic and health status information on
each subject. The CKD status of study participants
was determined from a previously described elec-
tronic phenotyping algorithm that has been shown to
outperform CKD definition through the International
Classification of Diseases, 10th Revision (ICD-10) codes
alone and demonstrated > 90% validity.20 All CKD
cases were also validated by a content expert through
chart reviews. In the BioMe, Chronic Kidney Disease
Epidemiology Collaboration (CKD-EPI) equation was
used to determine estimated glomerular filtration rate
(eGFR) from serum creatinine and age, sex, and race.3

The median time lag between the the closest EMR
eGFR measurement to the oral sampling and the oral
sample collection date was 0.33 year (interquartile
range ¼ 0.6 year) and did not differ by CKD status.

Cytokine Biomarkers

Plasma samples taken at the time of enrollment to the
BioMe Biobank Program were stored at �80oC and
were used to derive the biomarker measures. Concen-
trations of tumor necrosis factor receptor�1 (TNFR1)
and tumor necrosis factor receptor�2 (TNFR2) were
measured via the 2-plex 96-well prototype cytokine
array from Mesoscale Diagnostics (Meso Scale Discov-
ery, Gaithersburg, MD). The average intra-assay coef-
ficient of variation was <5% for the calibrators as well
as for the quality control sample. The interassay co-
efficient of variation for TNFR1 was 13% and for
TNRF2 was 11%. The average lower limit of detection
obtained from multiple runs was 2.84 pg/ml for TNFR1
and 0.40 pg/ml for TNFR2. Concentrations of kidney
injury marker�1 (KIM1), interleukin-18 (IL18),
monocyte chemoattractant protein�1 (MCP1), and
chitinase 3-like-1 gene product (YKL40) were also
measured via a custom 4-plex assay from Mesoscale
Diagnostics. The intra-assay coefficient of variation for
the calibrators was <10% and the inter-assay
coefficients of variation ranged from 6% to 12% for
the 4 biomarkers. The average lower limit of detection
obtained from multiple runs was 0.43, 0.14, 0.08, and
0.49 pg/ml for the 4 biomarkers, respectively.

Oral Samples

A total of 277 samples from saliva, the left and right
molars, and the anterior mandibular lingual area along
with clinical information were collected using a
standard protocol by a trained dentist from 77
consecutive participants (18 with CKD and 59
without) at the time of recruitment to our study. For
saliva, samples were collected and stabilized using
OMNIgene Discover kit (DNA Genotek, Ottawa, ON,
Canada). For dental plaque, the scrapings of dental
plaque were collected at the gum�tooth interface of
Kidney International Reports (2018) 3, 193–204
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selected teeth and pooled in a 1.5-ml sterile Eppendorf
tube containing 200 ml of sterile water. All collected
samples were then stored at �80�C immediately after
sampling. Because the oral samples were collected
from the participants who were already enrolled in
the BioMe Biobank Program with the blood samples
collected at the entry, there was on average a
48-month gap between the blood sample and oral
sample collection.

Bacterial 16S Ribosomal RNA Polymerase Chain

Reaction and Sequencing

Oral plaque and saliva DNA was extracted using the
PowerSoil DNA isolation kit following the protocol
from the manufacturer (Mobio, Carlsbad, CA). The
phylogenetically informative V3 to V4 region of the 16S
rRNA gene was amplified using universal primer 347F/
803R.17,21 We designed a dual-barcoding approach to
label the 16S ribosomal RNA (rRNA) gene amplicons
from each sample.22 The primers were synthesized by
IDT (Integrated DNA Technology, Coralville, IA) with
sequences published previously.22 The integrity of the
amplicons was verified by agarose gel electrophoresis.
The resulting w460 bp amplicons were pooled and
then sequenced on the Illumina MiSeq 2x300
paired-end sequencing platform.

Bacterial 16S rRNA Data Analysis

The pair�end sequences were merged using
PANDAseq.23 High-quality reads (length <400 or the
quality score <Q30 at >1% of bases) were further split
by barcode and trimmed of primer regions using
QIIME1.9.0.24 Duplicate measurements of 10 samples
were sequenced using different barcodes and batches
to test the sequencing reproducibility. We used the
command pick_open_reference_otus.py in QIIME with
the default cutoff of 97% to cluster sequencing reads to
operational taxonomic units (OTUs) using Uclust.25 The
program further built a biom-formatted OTU table with
assigned taxonomic information for each OTU. Using
Chimera Slayer,26 chimera sequences arising from the
polymerase chain reaction amplification were detected
and excluded from the aligned representative
sequences and the OTU table.

The microbial diversity within each sample, or a
diversity, was calculated using the Shannon index and
Inverse Simpson index as metrics and represented the
measure of diversity at the genus level.27,28 The overall
microbiome dissimilarities among all samples, or b di-
versity, were assessed using the Bray�Curtis distance
matrices and visualized by a nonmetric multidimen-
sional scaling plot.29 The pairwise permutational
multivariate analysis of variance (PERMANOVA) pro-
cedure,24,30 using the Adonis function of the R package
Kidney International Reports (2018) 3, 193–204
vegan 2.0-531 with the maximum number of
permutations ¼ 999, was performed to test the
significance of the overall microbiome differences
between the oral microbiota grouped by sampling
locations and subject clinical status.

Using the linear discriminant analysis effect size
method,32 we further selected the microbiome
features significantly associated with CKD at various
taxonomic ranks with the absolute value of the linear
discriminant analysis score >3.0. Several abundant
differential genera were further analyzed to compare
the mean and variance of the relative abundance. We
applied receiver operating characteristic analysis
using the pROC package33 in R to assess the perfor-
mance of CKD classification based on selected
microbiome features. The Phylogenetic Investigation
of Communities by Reconstruction of Unobserved
States (PICRUSt)34 was used to predict the meta-
genome functional content based on the close
reference-based OTU table generated using the
QIIME pipeline with our 16S rRNA sequencing data.

Statistical Analysis

All categorical variables were expressed as count and
percentage. All numeric variables were expressed as
mean and SD. Statistical significance was assessed by t
test or nonparametric Wilcoxon test for numeric vari-
ables and c2 test for categorical variables. A P value <
0.05 was considered significant after the false discovery
rate (FDR) adjustment for multiple comparisons, unless
specified otherwise. The Spearman correlation analysis
was used to identify correlations of eGFR and plasma
biomarkers with bacterial diversity and OTU relative
abundance. A P value was calculated for each pairwise
comparison using an R command corr.test with both a q
value (R package qvalue)35 <0.05 and the Spearman
jrhoj>0.3 required to declare statistical significance.
Spearman partial correlation analysis was performed
using R package ppcor36 to correct for eGFR.

Datasets

16S rRNA sequencing information has been deposited
into National Center for Biotechnology Information
(NCBI) Sequence Read Archive (SRA) with submission
ID SUB2430778 and BioProject ID PRJNA376427.

RESULTS

Study Population

We recruited 77 consecutive subjects who partici-
pated in the Mount Sinai, New York BioMe Biobank
Program and had upcoming appointment at a dental
clinic. The subjects’ mean age was 49 � 13 years; 64%
were women. Of the subjects, 43% were African
American, 47% Hispanic/Latino, 4% white, and 7%
195



Table 1. Demographic and clinical characteristics of the study
cohort
Variable Total Non-CKD CKD P value

Sample size 77 59 18

Age, yr 49 (12.8) 47.5 (12.7) 53.8 (12.2) 0.07

Gender, female 49 (63.6%) 40 (67.8%) 9 (50%) 0.17

Ethnicity, n (%) 0.52

African American 33 (42.9%) 24 (40.7%) 9 (50%)

White 3 (3.9%) 3 (5.1%) 0 (0%)

Hispanic 36 (46.8%) 29 (49.2%) 7 (38.9%)

Other 5 (6.5%) 3 (5.1%) 2 (11.1%)

Smoking status, yes 26 (33.4%) 22 (37.3%) 4 (22.2%) 0.24

Body mass index,
kg/m2

31.7 (1.0) 31.0 (8.6) 34.1 (9.1) 0.20

Medical conditions,
n (%)

Type 2 diabetes 22 (28.6%) 15 (28.8%) 7 (46.7%) 0.19

Hypertension 49 (63.6%) 32 (54.2%) 17 (94.4%) 0.0019

Coronary heart
disease

23 (29.9%) 11 (18.6%) 12 (66.7%) <0.0001

Medications, n (%)

Antihypertensive
medication

50 (64.9%) 33 (56.9%) 17 (94.4%) 0.0027

Lipid-lowering
medications

30 (39.0%) 20 (33.9%) 10 (55.6%) 0.099

Diabetes
medication

14 (18.2%) 10 (17.0%) 4 (22.2%) 0.61

Insulin 22 (28.6%) 11 (18.6%) 11 (61.1%) 0.0004

Blood pressure,
mm Hg

Systolic blood
pressure

126.8 (17.1) 126.4 (16.1) 128 (20.4) 0.74

Diastolic blood
pressure

73.4 (10.6) 72.5 (10.7) 76.1 (10.3) 0.22

Blood levels

Low-density
lipoprotein, mg/dl

99.4 (36.1) 105 (36.8) 81 (27.5) 0.014

High-density
lipoprotein, mg/dl

52.0 (16.0) 52.4 (16.5) 50.6 (14.5) 0.68

Total cholesterol,
mg/dl

177.5 (40.0) 183.3 (41.12) 158.4 (29.82) 0.02

Triglycerides, mg/dl 133.4 (64.2) 133.6 (66.8) 132.7 (56.7) 0.96

Hemoglobin A1C,
%

6.1 (1.4) 6.1 (1.5) 6.0 (1.0) 0.92

Dental health, n (%)

Periodontal disease 43 (66.2%) 30 (58.8%) 13 (92.9%) 0.017

Plasma biomarkers,
pg/ml

TNFR1 4852 (1078) 2993 (1073) 10,532 (4150) 8.2e-6

TNFR2 6505 (790) 4951 (398) 11,254 (2724) 0.0004

KIM1 205 (27) 147 (16) 382 (89) 0.0003

MCP1 207 (24) 178 (10) 296 (92) 0.07

YKL40 82,622 (22,198) 80,713 (28,998) 88,455 (17,300) 0.003

IL18 554 (56) 515 (67) 674 (92) 0.029

eGFR (ml/min
per 1.73

71.0 (30.0) 83.2 (23.1) 44.1 (25.4) 4.2e-10

eGFR, estimated glomerular filtration rate; IL18, interleukin-18; KIM1, kidney injury
marker�1; MCP1, monocyte chemoattractant protein�1; TNFR1, tumor necrosis factor
receptor�1; TNFR2, tumor necrosis factor receptor�2; YKL40, chitinase 3-like�1 gene
product.
Data are presented as n (percentage) or mean (SD).
Bold indicates P < 0.05.
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other. In all, 23% had CKD. As expected, CKD was
more prevalent in patients with hypertension, history
of coronary heart disease, or periodontal disease
(Table 1). CKD patients were more likely to be treated
with antihypertensive medications and insulin.

Survey of Oral Microbiome

From study participants, we collected 277 oral sam-
ples, of which 75 were from the anterior mandibular
lingual area, 68 from the left molar, 69 from the right
molar, and 65 from saliva. Fifteen plaque samples
from 5 subjects were excluded from further analysis
because of low DNA yield. In total, we obtained 26
million high-quality 16S rRNA sequencing reads
from 262 samples, or w 100,000 reads per sample.
After assigning taxonomic identification to each
sample, we found that the dominant phylum in
anterior mandibular lingual area, left molar, right
molar, and saliva included Actinobacteria (9.0% �
4.6%, 10.0% � 6.9%, 11.6% � 11.3%, and 8.6%
� 5.4%, respectively), Bacteroidetes (15.5% � 9.3%,
23.5% � 9.4%, 23.3% � 8.7%, and 30.7% � 10.4%,
respectively), Firmicutes (15.6% � 17.2%, 31.6%
� 10.6%, 32.0% � 10.2%, and 32.5% � 9.7%,
respectively), Fusobacteria (22.1% � 12.5%, 16.7%
� 8.1%, 15.4% � 8.5%, and 4.7% � 3.3%,
respectively), and Proteobacteria (11.1% � 8.9%,
10.4% � 7.2%, 10.3% � 8.2%, and 17.6% � 9.9%
respectively). The nonmetric multiple dimensional
scaling plot (Figure 1a) visualizes the dissimilarity of
the overall oral microbiome abandance among the
oral samples (b diversity) by sampling location. The
pairwise PERMANOVA test suggested significant
differences in the microbiota composition among all
sampling locations (all P values # 0.001 with
permutation ¼ 999) except for the left and right
molars (P ¼ 0.74 with permutation ¼ 999). The
Student t test to compare the mean overall diversity
(a diversity) measured by Shannon or inverse Simp-
son index showed that the anterior mandibular
lingual samples possessed the highest, while saliva
the lowest, a diversity (Figure 1b).

Association Between CKD Status and Location-

Specific Oral Microbiome

The overall microbiome of saliva and anterior mandib-
ular lingual samples showed significant association with
CKD status in both univariate (P¼ 0.009 and P¼ 0.014,
respectively; Supplementary Figure S1) and multivariate
PERMANOVA test after the adjustment for type 2
diabetes, coronary heart disease, periodontal disease,
hypertension, and BMI (P ¼ 0.01 and P ¼ 0.012,
respectively; data not shown). In samples from right or
left molar plaques, a trend for association of the oral
196
microbiota composition with CKD status was observed
in univariate but not in multivariate analyses (P ¼
0.087 and P ¼ 0.21, respectively).
Kidney International Reports (2018) 3, 193–204



Figure 1. Overall oral microbiome diversity by sampling location. (a) Comparison of the relative microbiota abundance (b diversity) between oral
locations by the permutational multivariate analysis of variance (PERMANOVA) test. P values # 0.001 with 999 permutations for all comparisons
except for left and right molar (P ¼ 0.74 with 999 permutations). The Bray�Curtis distance matrices were visualized using a nonmetric multiple
dimensional scaling plot. (b) Comparison of the overall bacterial diversity (a diversity) between sampling locations (**P < 0.01, ***P < 0.001 by
Student t test).
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Bacterial Taxa Features Associated With CKD

Status

The linear discriminant analysis effect size test was
performed using 16S sequencing data from saliva and
anterior mandibular lingual samples, the 2 locations to
show significant differences in the overall microbiome
composition by CKD status (Supplementary Figure S1),
in order to select particular discriminative features of
CKD. The results showed that the microbiota of CKD
patients in both locations had significantly higher
prevalence of Proteobacteria, in particular, Neisseria,
and lower prevalence of Veillonella and Atopobium
(Figure 2a and b). However, many selected features
were location specific. For instance, among the most
significant features, we found increased Gammapro-
teobacteria and Burkholderoales only in anterior
mandibular lingual samples of CKD patients, but not in
saliva samples. In contrast, decreased Lactobacillales
and Streptococcus were found in CKD patients’ saliva,
but not in anterior mandibular lingual samples. We
further quantified the relative abundances of those
CKD-associated genera in saliva and anterior mandib-
ular lingual locations (Figure 2b) using the sequencing
counts of the selected genus divided by the total
counts. Although the person-to-person variation in the
relative abundance of these taxa was high, particularly
for the Neisseria genus, we found that those genera
were not rare (>0.1% mean abundance), suggesting
that their abundance can potentially be quatified to
Kidney International Reports (2018) 3, 193–204
predict the CKD status. In the receiver operating
characteristic analysis aimed to assess the performance
of CKD classification based on selected microbiome
features, we found that the Neisseria/Veillonella ratio in
anterior mandibular lingual samples and Neisseria/
Streptococcus in saliva samples were able to correctly
predict the CKD status in 81% and 77% cases,
respectively, outperforming the prediction using
Neisseria, Veillonella or Streptococcus alone (Figure 2c).

Differential Predicted Functional Metagenome

Features and Their Association With Oral

Location and CKD Status

We performed the PICRUSt analysis to predict the full
metagenomic content of microbial communities using
16S gene surveys34 and compared the predicted meta-
genomic pathways by oral location and CKD status
(Figure S2). The nonmetric multidimensional scaling
plot (Figure S2a) suggested that the predicted meta-
genomic pathways of saliva microbiota were signifi-
cantly different from those of the other 3 locations
(P ¼ 0.001 by PERMANOVA). In the saliva and ante-
rior mandibular lingual samples, we found several
pathways to be differentially abundant by CKD status
(P < 0.05 after false discovery rate [FDR] adjustment;
Figure S2b). Among those pathways, the ether lipid
metabolism in saliva samples showed a nearly 2-fold
reduction in CKD patients. We also observed
increased abundance of fatty acid metabolism and
197



Figure 2. Oral microbial features associated with chronic kidney disease (CKD). (a) The cladoplots depict differential oral microbial features
selected by linear discriminant analysis effect size analysis by CKD status in anterior mandibular lingual and saliva samples. Differential taxa
between CKD and no CKD are demonstrated in color for the most abundant class: green indicating increase and red indicating reduction in CKD
patients. (b) Comparison of the relative abundance of selected microbial features by CKD status. P value 1 (P1) was obtained from a Wilcoxon–
Mann–Whitney test. P value 2 (P2) was obtained from a multivariate regression assuming a g distribution for taxa and normal distribution for
ratios while adjusting for type 2 diabetes, hypertension, coronary heart disease, periodontal disease, and body mass index. After multivariable
adjustment, the association of CKD status with bacterial genera and ratios remained significant. (c) Receiver operating characteristic (ROC)
curves and area under the curve (AUC) values to indicate the diagnostic accuracy of the selected features to predict CKD status.
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genetic information processing in anterior mandibular
lingual samples and decreased abundance of the
antibiotic biosynthesis, cellular processes, and phos-
photransferase pathways in saliva of patients with CKD
compared to those with no CKD (Figure S2b). No
significant differences by CKD status were found in
samples from the left and right molar sites (data not
shown).

Correlation Between Plasma Biomarkers and

CKD-Associated Oral Microbiota Features

We measured plasma levels of 6 kidney biomarkers
that represent different but complementary pathways
for CKD development and progression: TNFR1 and
TNFR2, representing global inflammation; KIM1,
representing tubular injury; IL18; MCP1,
representing both inflammation and injury; and
198
YKL40, representing fibrosis/repair. The biomarker
levels were significantly higher in individuals with
CKD (Table 1) and negatively correlated with eGFR
(Spearman correlation rho < �0.3) (Figure 3a and
b). eGFR also showed a strong positive correlation
with the relative abundance of the taxa features
selected from linear discriminant analysis effect size
analysis, including Alloscardovia and Streptococcus,
and a strong negative correlation with Neisseria
(Figure 3a). Moreover, inflammatory biomarkers
showed a positive correlation between IL18 and
Neisseria genus and a negative correlation between
TNFR1 and Streptococcus (Figure 3a). At the OTU
level, 3 OTUs from the Streptococcus genus and 1
OTU from the Atopobium genus were strongly
positively associated with eGFR (Figure 3b). Also,
negative correlations of IL18 and TNFR1 with
Kidney International Reports (2018) 3, 193–204



Figure 3. Correlation analysis of the saliva microbiome with serum biomarkers. (a,b) Spearman correlation analyses conducted among the
following: (a) the 5 most differential genera selected from the linear discriminant analysis effect size analysis, 6 plasma biomarkers, and
estimated glomerular filtration rate (eGFR), and (b) 22 operational taxonomic units (OTUs) from the 5 genera, 6 plasma biomarkers, and eGFR.
The results are presented as a heatmap and are grouped using unsupervised clustering. The scale ranges from þ1.0 (red) to �1.0 (blue). An
asterisk (*) indicates a Spearman rho > 0.3 or rho < �0.3. Circled in blue are correlations that survived the correction for eGFR using Spearman
partial correlation analysis. (c,d) Correlation network constructed using the Fruchterman�Reingold layout in the R [Igraph] package. The nodes
of the network represent the genera (c) or OTUs (d), plasma biomarkers and eGFR, where the edges (i.e., connections) correspond to a
significant (P < 0.05, q < 0.05) and negative (blue, Spearman rho < �0.3) or positive (red, Spearman rho > 0.3) correlation between the nodes.
The size of the nodes represents relative abundance of bacterial taxa.
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Veillonella and Streptococcus, and of TNFR2 with
Veillonella, were observed (Figure 3b). Pairwise
Spearman correlations between CKD-associated
microbiota features (5 genera), 6 host kidney
biomarkers, and eGFR were further visualized in a
correlation network consisting of 30 edges
(correlations) and 12 nodes (bacterial genera and
Kidney International Reports (2018) 3, 193–204
host parameters) (Figure 3c and d). We found eGFR
to be the hub of the entire network, with 2
subnetworks created for plasma biomarkers and oral
microbiota features (Figure 3c). To further test
whether the observed correlations were independent
of eGFR, we performed the Spearman partial
correlation between circulating biomarkers and the
199
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oral microbial genera while correcting for eGFR. We
found that the significant positive correlation of
IL18 with Neisseria genus was independent of eGFR
(P ¼ 0.0074 and P ¼ 0.026, with and without the
adjustment for eGFR, respectively), whereas the
negative correlation of TNFR1 with Streptococcus
was diminished (P ¼ 0.019 and 0.31, respectively),
indicating no independent relationship between
Streptococcus and TNFR1. At the OTU level, we
detected similar results with 2 subnetworks
clustered by biomarkers and bacterial OTUs
connected through eGFR (Figure 3d). Importantly,
after correcting for eGFR, several OTUs remained
significantly associated with IL18, indicating the
association that is independent of eGFR, whereas the
association between other OTUs and biomarkers
did not survive the adjustment (Figure 3a and b).
Interestingly, strong correlations between the 2
subnetworks were observed only for OTUs with low
relative abundance.
DISCUSSION

In this study, we used a biobanking setting, EMR, and
dental record systems to analyze existing blood samples
and collect additional oral samples and dental infor-
mation during a regular dental visit for a cohort of
patients participating in the Mount Sinai BioMe
Biobank Program. For the first time, we compared the
microbiota from 4 oral locations (saliva, mandibular
anterior lingual area, and plaques from both left and
right molar) between individuals with and without
CKD and detected significant differences in the overall
oral microbiome diversity, mostly pronounced in saliva
and anterior mandibular lingual samples. As expected,
the abundance of specific taxa was site specific. In
particular, at the genus level, we detected the enrich-
ment of Neisseria (Proteobacteria phylum) and deple-
tion of Veillonella and Streptococcus (both Firmicutes
phylum) in CKD patients. The high abundance of
Neisseria and the lower abundance of Streptococcus and
Alloscardovia (Actinobacteria phylum) also correlated
with lower eGFR.

Although most of the direct functional evidence
points to the pathogenic Neisseria and Streptococcus
species, such as N. gonorrhoeae, N. meningitides,
S. sanguinis, S. mutans and others, playing a role
in the dysregulation of the host inflammation
response,37 the commensal Neisseria, Veillonella and
Streptococcus are known to represent the major
proportion of the core saliva microbiota.38 Yet,
several recent studies have shown that the commensal
Neisseria and Streptococcus could modulate the
host inflammation39–41 and further contribute to the
200
dysbiosis observed in the salivary microbiota of
patients with inflammatory bowel disease42 and can-
cers.43,44 Moreover, Veillonella and Streptococcus have
been reported in the majority of atherosclerotic pla-
ques, where their combined abundances correlated
with those in the oral cavity.45 At the phylum level,
our findings are consistent with previous studies in
the gut demonstrating that pediatric patients with
end-stage renal disease (ESRD) had a decreased
relative abundance of Firmicutes and an increase in
Proteobacteria,46 further suggesting the role for these
taxa in kidney dysfunction. Also, a lower abundance
of Streptococcus taxa have been reported in 1 previous
study of the subgingival microbiome of patients with
ESRD on dialysis.47 Like in our study, in Araújo
et al.,47 CKD and control groups did not differ in the
individual proportions of periodontitis-associated
taxa. However, the major differences between the
ESRD and control groups were driven by Prevotella
dentalis (Bacteroidetes phylum) and Abiotrophia
defective (Firmicutes phylum)—the taxa not enriched
in our CKD patients. There are several potential
explanations why we did not fully replicate these
findings, including the fact that none of our CKD
patients were on dialysis and that different adapter-
specific primers and sequencing platforms were
used by our study, leading to dissimilarities in
bacterial identification. Future studies are warranted
to validate our results using comparable technologies.

Interestingly, we found that the Neisseria/Veillonella
ratio in anterior mandibular lingual and Neisseria/
Streptococcus in saliva samples were the best oral
microbiome biomarkers to predict CKD diagnosis,
correctly predicting CKD status in 81% and 77% cases,
respectively. If independently replicated, this infor-
mation could help detect disease in individuals without
prevalent CKD, or identify those whose disease will
eventually progress.

Given that CKD is prevalent in individuals with
diabetes, hypertension, cardiovascular disease, and
periodontal disease, the disorders that have been
previously associated with altered oral microbiome, we
adjusted for CKD-related comorbidities in our analyses.
We found that the association between the oral
microbiota and CKD status remained significant after
the adjustment, suggesting that the observed associa-
tions may reflect biological mechanisms largely
independent of common CKD risk factors.

Analysis of inferred metagenomes indicated that
the altered oral microbiome is associated with CKD
through influencing a number of metabolic pathways,
while simultaneously having consequences for
cellular processing and genetic replication and repair.
Specifically, we revealed decreased abundance of the
Kidney International Reports (2018) 3, 193–204
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ether lipid metabolism, antibiotic biosynthesis, and
phosphotransferase pathways, as well as increased
abundance of fatty acid metabolism and phosphati-
dylinositol biosynthesis pathways in saliva or
mandibular anterior lingual samples of patients with
CKD compared to those with no CKD. The link to the
lipid and fatty acid metabolism is particularly inter-
esting, given that patients with CKD have dyslipide-
mia (reviewed by Tsimihodimos et al.48), while recent
translational research has shown that deranged fatty
acid metabolism in renal tubular cells is linked to
profibrotic pathways responsible for kidney disease
progression.49,50 Thus, the link between oral micro-
biota, dysregulated metabolic pathways, and CKD
development/progression should be evaluated in
detail further.

There are several potential mechanisms that may
explain the altered oral microbial ecology in CKD
patients, including dysregulated inflammatory and
metabolic pathways, higher concentration of urea in
the saliva, mucosal inflammation due to ammonia
accumulation, decrease in the salivary mucin coating
increasing vulnerability to infections, and medica-
tions specific to CKD patients.47 Moreover, in addition
to altered oral microbiota, we also tested the rela-
tionship between the oral microbiota and 6 plasma
cytokines linked to CKD and representing inflamma-
tory, injury-related, and fibrosis/repair pathways. All
of these biomarkers have been associated with
development or progression of kidney disease in
several distinct settings including diabetes, acute
injury, and transplantation.51–55 We found that the
high abundance of Neisseria genus was associated
with high IL18 plasma levels. The opposite trend was
observed for the Streptococcus genus, whereby the
lower abundance correlated with higher IL18 and
TNFR1 levels. At the OTU level, higher abundance of
Veillonella was correlated with higher TNFR1 and
TNFR2 levels. However, only the associations with
IL18 survived the correction for eGFR. Therefore,
although the common pathway between deranged
microbiota and CKD could possibly be inflammatory
in nature, most of these associations are mediated
through eGFR. Whether the bacterial link with IL18 is
causal and whether altering microbiota could change
CKD risk need to be further explored.

This study has several strengths. First, it proved
the utility of the biobank setting for comprehensive
oral microbiome studies, whereby individuals (who
already consented for biobanking and provided blood
samples, and whose extensive clinical data are avail-
able through EMR) were approached at a dental clinic
for oral sample collection and dental health record
verification. Moreover, to the best of our knowledge,
Kidney International Reports (2018) 3, 193–204
this is the first study that reportedly investigated the
association between the oral microbiome and CKD
prevalence. Sampling of multiple oral locations also
allowed parsing out the contribution of site-specific
taxa to disease risk. Furthermore, associations were
also observed with inflammatory plasma biomarkers
linked to kidney dysfunction, providing potential
mechanisms for the obtained results and reducing the
chances of our results being false positive.

Our study also has some limitations. First,
although we included race/ethnicity, age, and some
clinical variables as covariates in regression models,
our moderate sample size restricted us from further
exploring the role of other potential confounders
(e.g., medications, diet) or stratifying by CKD
severity. In addition, we did not collect information
on whether participants had dry mouth. Since half of
CKD patients are known to have a dry oral environ-
ment, this could represent an unmeasured
confounder.56 Therefore, a validation of our findings
in a larger cohort is warranted. Second, in this study,
because the oral samples were collected from the
participants who were already enrolled in the BioMe
Biobank Program with the blood samples collected at
the entry, there was on average a 48-month gap
between the blood sample collection used to measure
plasma cytokines and oral sample collection for
microbiome analysis, which could inaccurately reflect
the biomarker levels at the time of oral sampling.
Although there are no data available on changes over
a 4-year period for these cytokines, the Action to
Control Cardiovascular Risk in Diabetes (ACCORD)
clinical trial has shown changes over a period of 24
months that ranged between 0.6% and 8.2%, with
IL18 decreasing by only 2.3%.57 Also, even though
we pulled out from the EMR the eGFR estimates
closest to the oral sample collection dates and
observed significant correlations between eGFR and
the plasma biomarkers, there is still a possibility that
we underestimated the relationship between
CKD-associated microbial taxa and biomarker levels.
In addition, we excluded individuals who received
antibiotics # 3 months prior to oral sampling;
however, one may argue that this time is not suffi-
cient for the flora to recover. Yet, prior studies have
shown that, as oppose to the gut, where short-term
antibiotic treatment may shift the microbiota to
long-term alternative dysbiotic states,58 the salivary
microbiome recovers quickly and is surprisingly
robust toward antibiotic-induced disturbance.59

Moreover, our study subjects were pooled from the
Biobank that represents the diverse local commu-
nities of upper Manhattan served by the Mount Sinai
Medical Center, with w90% African American and
201
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Hispanic/Latino and <4% whites; therefore, our
results may not be generalizable to the general
population. Also, our study design did not allow
determining whether the altered oral microbiome is a
risk factor for CKD or its consequence. Future pro-
spective studies will be needed to address these
issues and to assess the predictive value of the oral
microbiome composition reported here on CKD
development and progression. Finally, although the
16S sequencing is very informative and cost-efficient
for microbiome survey, its amplicon size is merely
460 base pairs, limiting our ability to identify
bacterial taxa at the strain level, otherwise provided
by metagenomic sequencing. Nevertheless, we used
an imputation tool to predict functional differences in
the oral microbiota by CKD status.

In summary, we detected distinctive microbiota
composition in saliva and anterior mandibular lingual
samples associated with CKD diagnosis. A better
understanding of the role of the oral microbiome in
kidney function may shed new light on the patho-
genesis of renal diseases and help in the designing of
novel interventions aimed at restoring oral symbiosis to
treat or prevent CKD.
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