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MRI is the standard modality to assess anatomy and response to treatment in

brain and spine tumors given its superb anatomic soft tissue contrast (e.g., T1

and T2) and numerous additional intrinsic contrast mechanisms that can be used

to investigate physiology (e.g., diffusion, perfusion, spectroscopy). As such, hybrid

MRI and radiotherapy (RT) devices hold unique promise for Magnetic Resonance

guided Radiation Therapy (MRgRT). In the brain, MRgRT provides daily visualizations

of evolving tumors that are not seen with cone beam CT guidance and cannot be

fully characterized with occasional standalone MRI scans. Significant evolving anatomic

changes during radiotherapy can be observed in patients with glioblastoma during the 6-

week fractionatedMRIgRT course. In this review, a case of rapidly changing symptomatic

tumor is demonstrated for possible therapy adaptation. For stereotactic body RT of the

spine, MRgRT acquires clear isotropic images of tumor in relation to spinal cord, cerebral

spinal fluid, and nearby moving organs at risk such as bowel. This visualization allows

for setup reassurance and the possibility of adaptive radiotherapy based on anatomy

in difficult cases. A review of the literature for MR relaxometry, diffusion, perfusion, and

spectroscopy during RT is also presented. These techniques are known to correlate with

physiologic changes in the tumor such as cellularity, necrosis, and metabolism, and serve

as early biomarkers of chemotherapy and RT response correlating with patient survival.

While physiologic tumor investigations during RT have been limited by the feasibility and

cost of obtaining frequent standalone MRIs, MRIgRT systems have enabled daily and

widespread physiologic measurements. We demonstrate an example case of a poorly

responding tumor on the 0.35 TMRIgRT systemwith relaxometry and diffusionmeasured

several times per week. Future studies must elucidate which changes in MR-based

physiologic metrics and at which timepoints best predict patient outcomes. This will

lead to early treatment intensification for tumors identified to have the worst physiologic

responses during RT in efforts to improve glioblastoma survival.
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INTRODUCTION

Despite the potential of Magnetic Resonance image guided
Radiation Therapy (MRgRT) to treat brain tumors, a recent
review (1) highlighted that only one out of twenty recent
studies used MRgRT to treat brain tumor patients (2). This is
because MRgRT has been almost exclusively applied to treat
moving tumors located in the torso, such as in the lungs (3),
breast (4), pancreas (5, 6), liver (7), prostate (8) and pelvis
(9). Tumor and healthy tissue in these regions can move
significantly between or during treatments due to physiological
motion such as respiration (3, 10, 11), digestion (12), and
involuntary movements (13). Additionally, target geometry may
change during treatment from tumor growth or shrinkage
or patient weight loss or gain. Therefore, MRgRT has been
applied to detect and compensate motion, as well as detect and
compensate for daily anatomic changes with rapid radiotherapy
(RT) plan updates. These implementations of MRgRT are
commonly termed “adaptive radiotherapy” and are available
within existing MRgRT products. Since this existing workflow
adapts to anatomy, we propose that these techniques be termed
“anatomic adaptive radiotherapy.”

MRI can also provide physiologic information such as
tumor cellularity, vascularity, and metabolism that correlate
with radiotherapy response. For example, changes in regional
water mobility are detectable by diffusion weighted imaging
(DWI) and are associated with increased cellularity (tumor
growth) or necrosis (14, 15). Increased blood volume and
flux (16) can be estimated from perfusion MRI and correlate
to tumor oxygen consumption (16). Tumor extension and
aggressiveness are also associated with its metabolic profile
and can be estimated by magnetic resonance spectroscopy (17)
(MRS). Among others, these techniques are collectively termed
multiparametric MRI (mpMRI). Since changes in mpMRI
during RT correlate with eventual tumor response (18–20),
there is significant interest within the MRgRT community in
adapting RT to mpMRI findings (21). For example, if mpMRI
demonstrates that a tumor is increasingly cellular, metabolic,
and angiogenic during treatment (i.e., resistant to standard
therapies), should RT dose-escalation or other additional
therapies be considered? When adapting RT to changes in tumor
physiology, these applications can be called “physiologic adaptive
radiotherapy” (PART).

Studies of physiologic changes during fractionated RT are
not currently widespread because it has never been feasible
before MRgRT systems to obtain mpMRI on a daily basis. It
has been very difficult to obtain image data weekly due to
the cost and logistics of scanning RT patients every week on
diagnostic MRI scanners. Therefore, existing data of mpMRI
during RT has been limited to a small number of institutions
and patients and a limited number of time points (typically
once or twice during a 6-week course of RT). While this data
has been promising, MRgRT devices allow the possibility of
obtaining mpMRI with high frequency throughout treatment
to elucidate trends in tumor physiology that can be leveraged
to make adaptive treatment decisions. With this in mind, this
review discusses the potential use of anatomic and physiologic

adaptive radiotherapy for treating brain and spine tumors with
an emphasis on glioblastoma.

ADAPTIVE RADIOTHERAPY FOR BRAIN
TUMORS

Intrafraction motion is typically not a major concern for brain
tumors given the use of thermoplastic masks to immobilize
the patient’s head and negligible physiologic motion. However,
interfraction changes in tumor size can be problematic in
numerous scenarios. For example, certain tumors can have rapid
cyst expansion, which has been most commonly described for
craniopharyngioma (22). This leads to a recommendation for
weekly or bi-weekly diagnostic MRI to ensure appropriate target
dose coverage and adapt RT plans offline to anatomic changes
if needed. While it has not yet been reported in the literature,
cysts can be monitored on an MRgRT system and RT can be
adapted easily without requiring standalone diagnostic MRIs.
Additionally, edema and resection cavities are visualized with
default imaging on the initial version of the 0.35T MRI system
(2). For example, at University of Miami during a course of
conventionally fractionated RT we have used scans obtained with
MRgRT to identify or rule out serious pathologies in patients
with headaches during treatment, identify edema increase or
decrease during RT, and reassure patients, manage steroid doses,
or consult neurosurgery based on findings (e.g., Figure 1A).

Glioblastoma
Glioblastoma is the most common cancer originating in the
brain with ∼12,000 new diagnoses per year in the U.S.A. and
median survival about 18 months (23–25). First-line treatment
for glioblastoma includes biopsy or resection followed by 6 weeks
of RT with concurrent temozolomide chemotherapy and 6–
12 months of continued temozolomide (26). Clinically, MRI is
obtained before RT for planning and then 1 month after RT to
assess early response, usually an interval of∼3 months.

Anatomic Changes in Glioblastoma During
RT
T1 post-contrast and T2-FLAIR images are typically used for
determining tumor response to treatment, most commonly
by applying criteria specified by Response Assessment in
Neuro-Oncology (RANO) (27). Up to 49% of patients with
glioblastoma demonstrate growth on T1 gadolinium-enhanced
MRI acquired after the 6 weeks of standard chemoradiation
treatment (28, 29). Patients with true progression of non-
responding tumor continue to progress on serial MRIs and
often die within 9 months (30–32). Some patients with growth
on MRI after chemoradiation will stabilize or spontaneously
regress without treatment modification, a condition termed
pseudoprogression (30–32). This condition reflects therapy
response with recruitment of blood vessels and/or necrosis and
improved median survival ∼38 months (28, 33). Unfortunately,
no current technique reliably distinguishes true progression and
pseudoprogression when these changes are present within the
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FIGURE 1 | Serial MRI of two patients with glioblastoma acquired during MRgRT on the 0.35 T MRIdian (Viewray, Cleveland, OH) combination MRI and RT system at

the University of Miami (top of image, blue rectangle). Imaging was obtained at simulation (week 0) and daily on MRIdian through the course of treatment, though

shown weekly for simplicity (gray arrows with treatment week number). Our MRIdian workflow for glioma patients includes 20min for daily patient setup and intensity

modulated RT which includes whole brain highly T2 weighted bSSFP (1.5 × 1.5 × 1.5mm, 128 s) for positioning, 3D couch shifts applied by the therapist analogous

to non-MRI guided RT systems, and cine MRI during RT for position verification through treatment. RT is then followed by 15min per day of additional mpMRI imaging

with the patient in the same position for a total daily time of about 35min. Comparison images are shown for each patient from a 3T Skyra (Siemens, Erlangen,

Germany) clinical scanner (bottom of image, gray rectangle) during simulation and at week 5 (RT fraction 21) of treatment. (A) Anatomical images (bSSFP, T2, T1, and

DWI) from a 29 year old woman with a centrally located glioblastoma (IDH-1 and IDH-2 mutations negative, MGMT non-hypermethylated, H3K27M mutation

negative). The patient underwent biopsy 2 weeks prior to simulation, started RT 1 week after simulation, and received 6 weeks of radiation therapy to 60Gy in 30

fractions on the MRIdian system with concurrent temozolomide. At the bottom of the figure, the clinical scans from the left to the right-hand side are T1 post-contrast,

T2 FLAIR and DWI, respectively. During week 3 of treatment, the patient’s left temporal lateral ventricle became obstructed by growth of the centrally located tumor

and progressive enlargement was observed. The patient became symptomatic during week 4 with headache and nausea that was controlled with dexamethasone

2mg twice daily. After consultation with neurosurgery, the patient’s radiation therapy and chemotherapy course was completed without additional intervention. The

gadolinium enhancing tumor at fraction 21 had grown 7mm outside of the gross tumor volume defined at simulation. (B) Multi-parametric images of a 58 year old

woman with partially resected glioblastoma (IDH-1 R132H wildtype, MGMT non-hypermethylated) of the left temporal lobe with unresected portions extending into the

left basal ganglia and corona radiata as shown. From top to bottom, bSSFP, T1, R2*, and T2 maps, and DWI are presented. DWI data was not available on our

MRIdian system until the third week of treatment when it was added to our acquisition protocol every other day. On the bottom of the image, comparison 3 T scans at

simulation and week 5 (fraction 21) from the left to the right hand side are T1 post-contrast, T2 FLAIR and DWI, respectively. This patient had progressive growth

throughout treatment that was particularly prominent on fraction 21 T1 post-contrast scan (enhancing gross tumor volume margin growth of 8mm) and R2* mapping.

radiotherapy field. Therefore, RANO criteria suggest follow-
up imaging over the next 3–6 months to assess whether
changes spontaneously resolve without modification of therapy
or continue to progress.

Consistent with these well-known changes, a recent series
of 14 patients treated with MRgRT identified T2-weighted
volume increases >25% in 4 patients who had been scanned
daily during RT treatment delivery (34). Most growth occurred
late in treatment for three of the four patients, a previously
unreported finding that could hold prognostic significance.
Another study observed meaningful tumor dynamic changes
during chemoradiation therapy by analyzing T1 post-contrast
and T2-Flair images of 62 patients with glioblastoma (35). Since
the amount of gadolinium enhancement is the primary metric
used currently to evaluate glioblastoma evolution, a challenge
to the MRgRT community in evaluating glioblastoma changes

during RT is when and how often to administer gadolinium
contrast during RT; or whether to use alternative measures of
tumor growth. While it is unclear whether frequent gadolinium
poses risks to non-allergic subjects with normally functioning
kidneys, there is significant concern about potential gadolinium
deposition in the brain due to repeated administrations and
unclear symptoms that may associate with gadolinium (36).

Multiparametric MRI of Glioblastoma for
Response Assessment
Existing data suggests that there is an evolution in tumor
physiologic changes that occur in glioblastomas during RT.
Different MRI contrasts such as T1-weighted (37), T2-weighted
(38), Perfusion (39), Diffusion Weighted Imaging (DWI) (40)
and proton Magnetic Resonance Spectroscopy (MRS) (41) have
been investigated for early detection of glioblastoma response to
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treatment. Many of these techniques have been implemented or
are in development on MRgRT devices, and an example is given
in Figure 1B.

T1 and T2 and Quantitative Multi-Parametric

Mapping MRI
Spin-lattice (T1) and spin-spin (T2) relaxations are mechanisms
intrinsic to the tissues and measurable by MRI. The different
rates of relaxation can be mapped, and quantitative measures of
MRI changes can be provided. For example, quantitative multi-
parametric mapping (qMPM) is a technique to obtain multiple
MRI parameters in a short amount of time (42). This technique
has allowed for fast and accurate mapping of different relaxation
parameters such as R1 (1/T1), R2∗ (1/T2∗), and R2 (1/T2)
and their association with glioblastoma diagnosis. A previous
study showed that R1 and R2 maps identify shorter relaxation
times for voxels closer than further from the tumor, which was
suggested to reflect tumor invasion (43). Other studies have
shown promising results for using qMPM to detect sites of future
tumor progression (44) and to early detect tumor progression in
patients undergoing treatment with bevacizumab (45).

There may be some benefit of these quantitative measures
in assessing glioblastoma response. A recent study showed the
feasibility of applying the Strategically Acquired Gradient Echo
(STAGE) (46) to obtain R1, R2∗, and Proton Density (PD) maps
in patients with GBM after each fraction by using the 0.35T
MRI-linac system (47). Another study used MR fingerprinting
to obtain these maps using the 1.5T MRI-linac system (48). The
capability of observing tumor response to treatment via its size
and relaxation time variations over the course of fractionated RT
is an important step toward using MRgRT to adapt glioblastoma
radiation treatment.

Perfusion
There are two main methods for measuring perfusion with
gadolinium using MRI: Dynamic Susceptibility Contrast (49)
(DSC) and Dynamic Contrast Enhancement (50) (DCE). DSC
is based on detecting T2∗ signal loss due to susceptibility
effects from the passage of a bolus of gadolinium contrast agent
(51). This method is used for estimating hemodynamic related
parameters of relative cerebral blood flow (rCBF) and relative
cerebral blood volume (rCBV) (52, 53), which are reported as the
most sensitive parameters for differentiating tumor progression
from pseudoprogression after RT (54). Multiple post-RT studies
have shown that tumor progression is associated with higher
values of rCBV in comparison to pseudoprogression (19, 55,
56). Alternatively, DCE parameters are obtained by detecting
signal increases from dynamic acquisition of T1-weighted images
during a gadolinium bolus passage (57). The resultant signal
changes are used to estimate parameters such as area under the
curve (AUC) and volumetric transfer constant (Ktrans), fractional
blood plasma volume (Vp) and extracellular volume (Ve) (58).
The Ktrans andAUC are the DCE-derived parameters consistently
reported to be higher for recurrent gliomas when compared to
radiation necrosis and pseudoprogression (59–61).

MRI perfusion derived parameters have been shown to change
due to chemoradiation treatment and correlate with eventual

patient outcome (62, 63). For example, CBF and Ktrans increased
30 and 10%, respectively, when DSC and DCE data from
2 weeks after treatment completion were compared to pre-
treatment data (16). Larger increases were associated with shorter
patient survival when compared to patients showing smaller
CBF and Ktrans changes (16). In another study, reduction in
CBV post-treatment was associated with doubling of patient
survival compared with patients showing increased CBV (19).
Other DCE-based parameters have also been shown to change
significantly due to treatment. For example, a larger decrease on
volumetric plasma volume 90th percentile histogram (VP90%) of
DCE data acquired before and after treatment was associated
with pseudoprogression when compared to true progression
(−39.6 vs. −2.6%) (60). Changes in perfusion parameters have
also been reported for data acquired during chemoradiation
treatment. For example, patients showing tumor progression
presented a significantly reduced rCBV during week three
of treatment when compared to pseudoprogression patients
(64). Another study acquired perfusion data weekly during
chemoradiotherapy to evaluate tumor perfusion response to
antiangiogenic therapy during a clinical trial (65). The MRI-
linac systems can provide frequent data for evaluating perfusion
parameters more frequently over the course of radiotherapy.
Alternatives to gadolinium such as arterial spin labeling (ASL)
(66) and intra-voxel incoherent motion (IVIM) (67) may be
promising to evaluate survival of patients with gliomas (68, 69)
and even daily measurements during RT to evaluate tumor
response may be possible on MRI-linac systems without the
added risk of exogenous contrast.

Diffusion
Diffusion weighted imaging (DWI) is an MRI modality
capable of measuring the apparent diffusion coefficient (67)
(ADC), an estimate of Brownian motion of water molecules
within an imaging voxel. Water molecules in the intra-cellular
environment experience a highly restricted environment, while
water molecules present in the extra-cellular environment
experience relatively unrestricted diffusion (70). Thus, low ADC
correlates with areas of high tumor cellularity (71, 72) and
aggressiveness (14, 73).

Changes in tumor ADC during post-treatment follow up
images is also capable of differentiating true progression
from pseudoprogression and radiation necrosis (15, 74). The
rationale is that while tumor growth increases cellular density
and decreases regional water mobility, a successful treatment
causes the breakdown of cellular membranes of the tumor,
decreases regional cellular density, and increases water mobility
(18, 75). For example, Elson and colleagues reported the
potential use of ADC as an early marker for responsiveness to
treatment of glioblastoma. The authors analyzed ADC values
from voxels within the T2/Flair volume from 52 patients and
verified that elevated minimum and mean ADC values are
significantly correlated to Progression Free Survival (PFS) and
Overall Survival (OS) (75). Additional metrics derived from
DWI such as fraction, linear, planar and spherical anisotropy
have also been reported to distinguish true progression from
pseudoprogression (74).
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The observation of ADC over time is the base for functional
Diffusion Mapping (fDM) (76), a biomarker discussed as an
early detector of tumor response to treatment and survival rate
(14, 77–79). For example, a previous study analyzed DWI data
from 60 patients undergoing concomitant RT and temozolomide
(18). The authors generated fDM maps using data acquired
before, 3 and 10 weeks after the start of treatment. In their
results, they showed that patients with increasing number of
high ADC value voxels during treatment have a longer survival
rate when compared to patients with increasing number of
low ADC voxels (52.6 vs 10.9 months). The fDM technique
depends on several variables related to the ADCmaps generation
and evaluation, such as the metric chosen and thresholding for
classifying voxels showing significantly increased, decreased, or
stable ADC values over time. Although previous studies showed
that all of these concerns can be overcome (80), the choice
and number of measurement points has still been challenging,
among other reasons due to scanning time availability and patient
tolerance of standaloneMRIs. A practical benefit of daily MRgRT
is daily mpMRI to identify the best time points for comparisons
or identify trends as well as consistent scanner parameters
across centers.

A longitudinal evaluation of ADC maps obtained during
fractionated therapy of head and neck tumors was demonstrated
by Yang et al. using the 0.35T MRI-linac system (81). The group
showed that the ADC values from a ROI within responding
tumor increased consistently during treatment, while the ADC
values from a volume not treated (brain stem) stayed the same.
We believe that further studies should be done to evaluate the
feasibility of obtaining more complex DWI-based maps such
as fDM and fractional anisotropy using the MRI-linac systems
to show tumor early response to treatment and allow for early
planning adaptation.

Spectroscopy
Proton magnetic resonance spectroscopy (MRS) is a non-
invasive method capable of estimating the concentration of
different tumor-related metabolites in the brain (82). High ratios
of Choline (Cho)/N-acetyl-aspartate (NAA), Cho/normalized
Creatine (nCR), Cho/normalized Choline (nCho) are known
to correlate with tumor grade (83). Specifically, Cho correlates
to Ki-67 index, which reflects tumor proliferation of gliomas
(84, 85). A high ratio (Cho)/(NAA) has been reported as a
biomarker of tumor presence and is useful for delimitating
glioma extension and infiltration using MRS (17, 86, 87) and
MR spectroscopic imaging (MRSI) (88, 89). Given the known
correlations of MRS with tumor aggressiveness and cellularity,
MRSI has been integrated into the RT planning workflow in
one study to select areas for dose escalation (90). Other metrics
such as the choline-to-NAA index (CNI) are also commonly
investigated as potential predictors of patient outcome (41).

MRS has also been applied to detect changes of metabolites
during radiotherapy treatment and to associate themwith patient
outcome. A previous study reported that patients showing large
decreases of normalized Cho from the fourth week of treatment
to 2 months post-treatment correlated with a worse median
OS and PFS than patients not showing such decreases (91).

Another study compared MRS data from pre-RT to data from
the third week of treatment and showed that patients with stable
or decreased median or mean Cho/NAA ratio showed less risk of
tumor progression than patients presenting increased Cho/NAA
ratios over the same period (20).

We believe that the implementation of MRS sequences is
technically viable on MRI-linac devices to measure metabolism
during therapy. However, to the best of our knowledge it has
not been done. Such implementation would allow for a more
frequent evaluation of metabolites throughout chemoradiation
treatment to associate early glioblastoma response to treatment.
For example, glutamate and glutamine (Glx) metabolism is
altered in glioblastoma, and detection of Glx is facilitated at low
field (92). Glx detected by single voxel spectroscopy at 0.5T had
2-fold increase of signal-to-noise compared to 1.5T in the brains
of healthy volunteers due to collapse of the C3 and C4 Glx J-
coupled resonances into a “pseudo-singlet” 2.35 ppm peak at 0.5T
(93). Such implementations at 0.35 T would likely be with low
resolution single voxel spectroscopy that could give additional
information about pseudoprogression or true progression for
PART. Conversely, on 3 T scanners, whole brain Cho/NAA ratio
MRSI with 5.6 × 5.6 × 10mm resolution acquired in 15min
has been integrated into RT planning and response tracking
workflows that could be considered for adaptive RT (94, 95).
MRSI could theoretically be acquired on a 1.5 T MRgRT system
as well, though it is unclear whether Cho/NAA MRSI on a
1.5 T MRgRT system might have suitable resolution and spectral
quality for adaptive RT.

Combining Different Contrasts and Modeling

Radiomics
In the sections above we described results of studies associating
individual MRI contrast findings to glioblastoma detection and
tumor response to treatment. However, several studies showed
evidence that combining different contrasts and extracting
multiple parameters from MRI improves the sensitivity of
predicting patient outcomes (41, 72–74). Combining radiomics
metrics from multiparametric MRI to clinical variables is also
an important tool for predicting tumor treatment outcome
(96). This approach has also been showed to benefit from
the availability of multiparametric MRI. For example, the
combination of multiparametric MRI for radiomics modeling
was shown to predict patient overall survival using data from
before chemoradiation therapy (97). Another, study showed that
combining diffusion and perfusion weighted MRI for radiomics
modeling improves prediction performance when compared to
a model based only on conventional MRI or clinical predictors
(98). The availability of MRI data from every radiotherapy
fraction allows for the inclusion of a high sampling rate temporal
component into radiomics modeling.

Technical Challenges and Limitations
Another challenge for obtaining high quality images with MR-
Linac systems is related to the relatively decreased signal to
noise ratio when compared to images from higher magnetic
fields (≥1.5T). Therefore, a compromise among temporal and
spatial resolutions is inevitable. However, strong efforts are being
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FIGURE 2 | Illustration of two adaptive approaches on the 1.5 T Elekta Unity (Stockholm, Sweden) MRgRT system for stereotactic body radiotherapy (SBRT) of spine

metastases. Adapt to position (ATP) is used to correct for translational shifts by adjusting beam apertures and weights without altering reference contours. Adapt to

shape (ATS) accounts for all interfraction changes by re-optimizing the plan based on the MRI of the day, and requires adjustment of the target and adjacent organ at

risk (OAR) contours. These treatment strategies have been described elsewhere as well as their utilization for upper abdominal SBRT (109, 110). Real-time cine MRIs

(Continued)
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FIGURE 2 | acquired in perpendicular planes through the PTV center of mass are used to monitor the target during radiation delivery. (A) Axial, sagittal, and coronal

slices from 3D T2 fat suppressed MR images from Unity showing ATP SBRT plan to T12 metastatic thyroid lesion (GTV Pink, PTV Magenta). Prescription was 27Gy

(yellow) in 3 fractions. 30Gy (orange), 20Gy (purple), and 18Gy (blue) isodose lines are also shown. DVH in right upper panel compares the reference plan (solid lines)

to the adaptive plan (dashed lines). This case involves a thoracic vertebrae metastasis without any extraosseous component. The target had good separation from

dose limiting organs at risk without large variations in either target or OAR position or shape, making an ATP adaptive workflow optimal as recontouring is not

necessary. For ATP, after the patient is positioned on the table daily MR images are obtained, fused with the reference plan, and shifts reviewed and approved by

physician prior to beginning adaptation. During the adaptive process, mpMRI can be obtained simultaneously. Once a new plan is calculated, it can be reviewed by the

physician, along with a verification MR and real-time cine MRI to confirm no significant intrafraction motion. The dose volume histogram (DVH) in the right upper panel

demonstrates preserved target coverage with improved OAR doses for treatment. For conventionally fractionated treatments, total time on the table for patients range

from 18 to 26min, while this patient’s SBRT delivery ranged from 40 to 60min per treatment. (B) Axial, coronal, and sagittal slices from T2 MR images from Unity

showing ATS fraction of SBRT plan to colorectal metastasis at L5 with anterior extraosseous extension. Prechemotherapy volume (blue) was prescribed 25Gy in 5

fractions (orange) while Post-chemotherapy volume (purple) was prescribed 35Gy in 5 fractions (yellow). DVH in right upper panel compares reference plan (solid lines)

to the adaptive plan (dashed lines), demonstrating isotoxic treatment to the cauda (teal), small bowel (orange), and small bowel PRV (green) while improving coverage

to both target volumes. Here the target is within close proximity to both large and small bowel. Here we use the ATS approach, with a unique parallel contouring work

flow that has been described elsewhere (111). The target was rigidly fused on the daily MR, but bowel contours were different for each of five daily fractions, requiring

recontouring. This allowed for maintenance of target coverage without violation of OAR constraints. ATS workflows take longer due to time required for recontouring

and adapting the reference plan to not just translational shifts but new relative anatomy. For this patient the total table time ranged from 59 to 70min.

applied toward developing and improving data acquisition and
reconstruction strategies, such as parallel imaging and non-
cartesian k-space trajectories (99). Such strategies provide for
fast k-space data sampling and allow more averages of the
object being imaged, resulting in higher SNR images than those
obtained from standard approaches. Additionally, model-based
reconstruction frameworks, such as motion-corrected and high-
resolution anatomically assisted (100) and image quality transfer
(101) also have been shown as alternatives for improving spatial
resolution of low-resolution images.

Finally, MRgRT allows for MRI acquisition while dose is
delivered, which may allow for the observation of tumor changes
within a single RT fraction. For example, MRI thermometry
could be used to verify tumor heating during RT with
hyperthermia (102) or blood oxygen level dependent MRI could
monitor the increased blood flow to tumors that occurs with
carbogen inhalation (103). Such approaches may be challenging,
as temporal signal variances detected during radiation delivery
can be related to magnetic field drifts and susceptibility artifacts
due to multi-leaf-collimator movements (104).

STEREOTACTIC RADIOTHERAPY OF
BRAIN AND SPINE METASTASES

The anatomic and physiologic adaptive radiotherapy discussed
above might also be applied to short courses of radiotherapy
(1–5 fraction over up to 2 weeks) commonly used in brain and
spine metastases (105). In resected brain metastases, significant
volume changes can happen if radiotherapy must start soon after
resection (106). For example, one study showed that 9 out of
22 patients required treatment adjustments based on repeat MRI
within 7 days after planning MRI and 7 out of 9 patients required
adjustments in between 8 and 14 days after planning MRI (107).
This suggests that anatomic adaptation might be helpful for
longer fractionated courses. In the spine, bowel can migrate close
to tumors within vertebral bodies, requiring anatomic adaptation
to avoid mobile bowel on a daily basis (108). Examples of the
anatomic adaptive workflows of MRgRT are shown in Figure 2.

While these short courses give a limited amount of time for
physiologic adaptation, studies have shown that mpMRI changes
correlate with response to treatment as early as 1 day and 1 week
after treatment for animal models (112) and brain metastasis
patients (113), respectively. Therefore, daily monitoring with
MRgRTmay allow for plan adaptation even in such cases. Despite
the short treatment time, radiomics analysis of imaging features
on the 0.35T MRgRT system were shown to correlate with
outcome in pancreatic cancer (114).

CONCLUSIONS

Novel MRgRT systems provide the first capability to perform
high frequency mpMRI during conventional chemoradiotherapy
of brain tumors and provide a platform for physiologic adaptive
radiotherapy. The references in this manuscript suggest that
combining different MRI modalities to trend tumor volume and
relaxation (T1/T2/T2∗ mapping), metabolism (MRS), hypoxia
(perfusion), and cellular density (DWI) may permit a better
understanding of glioblastoma response to treatment and enable
dose escalated radiotherapy to portions of tumor responding
inappropriately to treatment in efforts to improve patient
survival. The anatomic benefits ofMRImay also permit anatomic
adaptation in several scenarios such as stereotactic brain and
spine tumor courses.
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