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Stomach bleeding is a kind of gastrointestinal disease which can be diagnosed noninvasively by wireless capsule endoscopy (WCE).
However, it requires much time for physicians to scan large amount of WCE images. Alternatively, computer-assisted bleeding
localization systems are developed where color, edge, and intensity features are defined to distinguish lesions from normal tissues.
This paper proposes a saliency-based localization system where three saliency maps are computed: phase congruency-based edge
saliency map derived from Log-Gabor filter bands, intensity histogram-guided intensity saliency map, and red proportion-based
saliency map. Fusing the three maps together, the proposed system can detect bleeding regions by thresholding the fused saliency
map. Results demonstrate the accuracy of 98.97% for our system to mark bleeding regions.

1. Introduction

Bleeding is one of the most common lesions about gas-
trointestinal (GI) disease [1]. The conventional detection
method requires physicians to scan real-time images through
an endoscope-attached wire, which is clinically invasive.
Capsule endoscope camera, on the distal side of which a
miniaturized sensor is mounted, can sweep past patients’
gut wall. Such noninvasive endoscopy, called wireless capsule
endoscopy (WCE), can capture a video of nearly 57,000
frames, where the bleeding locations are recorded. Detecting
and interpreting the lesions from numerous frames need
physicians to be concentrated [2]. To ease the task of
subjective diagnosis, computer-assisted bleeding localization
systems are proposed [3].

The state-of-the-art bleeding localization systems depend
mainly on color features. For instance, authors in [4]
extracted mean and variance in the HSI color space: hue, sat-
uration, and intensity. In [5], high-order statistical moments
including kurtosis were added to the RGB color space.
Similarly, statistical features based on intensity histogram [6]
and local binary pattern are computed in the RGB and HSV
color space. Unlike color features, edge was discarded since
it increased false positive (FP) rate [7]. More importantly,

these systems generally compose these statistical features
from different color spaces into a vector, followed by a
supervised pattern classification tool such as artificial neural
network or support vector machine. As a result, the task of
localization is degraded since classification fails to predict
accurate positions of a lesion.

This paper proposes a saliency detection method that is
devoted to localizing the bleeding regions in WCE images.
Visual saliency models that extract the most interesting part
from an image have been proposed in the nature image
recognitions [8–11]. However, it is undesirable to apply the
models directly to medical image analysis. Firstly, most
existing saliency models assume that the visual fixation tends
to stay within the center of images [12], while, in medical
images, the fixation mainly refers to lesions which appear
anywhere in the field of view. Secondly, salient regions in the
natural images tend to be in the foreground where edge and
color information is quite distinguishable; however, lesions
in the WCE images vary according to the specific diseases.
For instance, the bleeding lesions are small and dark red,
while the colon lesions appear large and highly laminated.
Thirdly, in the bleeding localization system, the salient region
must exclude not only normal tissue, but also gastric fluid and
undigested residue.The latter two are quite different from the
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normal, which can prevent the system from recognizing FP
samples.

To detect the bleeding regions with both high sensitivity
and specificity, the traditional methods take full advantage
of color features and ignore other features. However, when
diagnosing the bleeding area, physicians use multiple fea-
tures, such as edge, intensity, and color. In order to simulate
the diagnosis process, a visual saliency-based WCE bleeding
detection system is proposed, which includes three kinds of
saliency maps, color, intensity, and edge. The main contribu-
tion of this paper is that intensity and edge saliency maps
are introduced to better imitate the diagnosis of physician.
Salient intensity is extracted from the intensity histograms
which have rotation invariance while edges are selected based
on the phase congruency [9] of Log-Gabor filter bank which
can solve the problem of nonuniform illumination of the
WCE. Experimental results demonstrate that our algorithm
has a very good performance for detecting the bleeding area.
The rest of this paper is organized as follows. Materials and
methods are presented in Section 2; Section 3 exhibits the
experimental results; finally, some conclusion is drawn in
Section 4.

2. Materials

A total of 200 WCE frames, with the pixel resolution of 480-
by-480, are used with a warrant from Ankon Incorporation,
Wuhan, China. Two physicians, with three-year clinical
experience, drew bleeding masks independently; the two
masks of each image are fused together by pixel-to-pixel AND
operation. Randomly selected six bleeding images andmasks
are presented in Figure 1.

3. Saliency Map Extraction
Clinicians discriminate the bleeding lesions from a WCE
image mainly based on some salient information. Here we
classify the information into three categories: edge informa-
tion, intensity information, and color information, each of
which is quantified using a saliency map.

3.1. Edge Saliency Map. When clinicians calibrate the bleed-
ing location, the clear contour of bleeding area is an impor-
tant reference condition. Therefore, the outlines of bleeding
area will occupy a large proportion in the clinician's attention
mechanism to distinguish the bleeding area from the normal.
In order to simulate the diagnosis of clinician, we propose the
edge saliency map.

Generally, edges can be obtained from spatial edge detec-
tors such as Roberts, Laplace, or Canny, but all these detectors
are vulnerable to the image noise. Edge detection based
on PC has the brightness invariance properties, which can
compensate for the instability luminance of color channels
[13]. The solution of extracting noise-insensitive edge is to
convert an image into the spectrum domain and to calculate
the phase congruency (PC [9]). Still, there are many fre-
quency transformation tools like Fast Fourier Transformation
(FFT), discrete cosine transformation (DCT), and Gabor
filters. However, the FFT and DCT fail to be analyzed in
the multiresolution of scales and orientations, which make
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Figure 1: Bleeding images and masks.

the PC too coarse. Though Gabor filters can be used in
the different scales and orientation, they tend to be bias
frequency components towards the lowest band. Hence, the
PCs calculated from Gabor frequency bands are not isolated.
Here we choose the Log-Gabor wavelet transform because
it is competent to extract the PC at the isolated center
frequencies with symmetry attenuation responses [14]. The
scales and orientations parameters are empirically set to 5
and 6, respectively. According to the spectrum analysis, an
image can be decomposed into a combination of amplitude
spectrum and phase spectrum. Accordingly, the Log-Gabor
filter is constructed by multiplying the frequency response of
the two components together in the polar coordinates system
as follows:

LG (𝜌, 𝜃) = exp{− log (𝜌/𝑓0)2𝜎𝜌2 } ⋅ exp{−(𝜃 − 𝜃0)22𝜎𝜃2 } , (1)

where (𝜌, 𝜃) represents the polar coordinates and 𝑓0 is the
center frequency of the filter and it is related to our current
scale 𝑛 by 𝑓0 = minWave × mult𝑛 in which minWave is the
wavelength of smallest scale filter and mult is the scaling fac-
tor between the successive filters. 𝜃0 is the orientation angle
of the filter and 𝜎𝜌 and 𝜎𝜃 determine the scale bandwidth
and the angular bandwidth, respectively. In our experiments,
the parameters for the Log-Gabor filters are set as follows:
minWave = 6.0, mult = 2, 𝜎𝜌 = 0.75, 𝜎𝜃 = 0.6.
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At each orientation, a PCmap in the 𝑛th scales is fused by
PC (𝑥, 𝑦)

= √(∑𝑛 𝐼 (𝑥, 𝑦) ∗ 𝑅𝑛)2 + (∑𝑛 𝐼 (𝑥, 𝑦) ∗𝑀𝑛)2
𝜀 + ∑𝑛√(𝐼 (𝑥, 𝑦) ∗ 𝑅𝑛)2 + (𝐼 (𝑥, 𝑦) ∗𝑀𝑛)2

, (2)

where 𝑅𝑛 and𝑀𝑛 denote the even and odd spectrums at the𝑛th scale. The constant 𝜀 stabilizes the denominator. The 𝜀
value of 0.01 is used for all the results presented in this paper.

Now five interscale PCmaps at each orientation are fused
together. The edge saliency map is obtained by maximizing
the singular value-based moment of PC maps at six orienta-
tions:

𝐶𝑥 (𝑥, 𝑦) = ∑
𝑑

[PC (𝑥, 𝑦) × sin (𝜃)]2 ,
𝐶𝑦 (𝑥, 𝑦) = ∑

𝑑

[PC (𝑥, 𝑦) × cos (𝜃)]2 ,
𝐶𝑥𝑦 (𝑥, 𝑦) = ∑

𝑑

[PC (𝑥, 𝑦) cos (𝜃) × PC (𝑥, 𝑦) sin (𝜃)] ,
𝑆1 (𝑥, 𝑦) = 𝐶𝑥 (𝑥, 𝑦) + 𝐶𝑦 (𝑥, 𝑦)

+ √𝐶𝑥𝑦 (𝑥, 𝑦)2 (𝐶𝑥 (𝑥, 𝑦) − 𝐶𝑦 (𝑥, 𝑦))2,

(3)

where 𝜃 denotes the orientation angle. 𝑆1(𝑥) is the edge
saliency map. Figure 2 provides the flowchart of extracting
the PC-based edge saliency map, and Figure 4(b) visualizes
the final high-resolution edge saliency maps.

3.2. Intensity Saliency Map. The PC-based edge saliency map
is sensitive to bleeding contours. On the other hand, the
luminance intensities inside the contours are also prone to
saliency. The difference in luminance is an indispensable
condition for clinicians to distinguish between normal tissue
and diseased tissue. Based on this principle, the gray-scale
image histogram is exploited to compute an intensity saliency
map.The histogram shown in Figure 3 is built by counting the
gray-scale intensities within the bins. The counts of each bin
are normalized to be a probabilistic value (𝑝𝑖) such that

𝑁∑
𝑘=0

𝑝𝑘 = 1, (4)

where 𝑘 denotes the 𝑘th bin. There are totally 𝑁 bins, and,
in this paper, 𝑁 = 256, which means that one gray-scale
corresponds to one bin.

𝑆2 (𝑥, 𝑦) =
{{{{{{{{{{{{{{{{{

0 𝑝𝐼(𝑥,𝑦) > 𝑝
0.25 𝜆𝑝 < 𝑝𝐼(𝑥,𝑦) ≤ 𝑝
0.5 𝜆2𝑝 < 𝑝𝐼(𝑥,𝑦) ≤ 𝜆𝑝
0.75 𝜆3𝑝 < 𝑝𝐼(𝑥,𝑦) ≤ 𝜆2𝑝
1 𝑝𝐼(𝑥,𝑦) ≤ 𝜆3𝑝,

(5)

where 𝑝 and 𝜆 are set to 1/72 and 0.6, empirically; (𝑥, 𝑦)
denotes the pixel position in the gray-scale image 𝐼. The
function values constitute the intensity saliency map, which
is visualized in Figure 4(c).

Edge saliency map

PC pooling

WCE image

Scale pooling 

Phase
congruency

1 2 5 6

1 2 5 6

Log-Gabor
decomposition

· · ·

· · ·

Figure 2: The flowchart of extracting edge saliency map.
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Figure 3:The histogram of a gray-scaleWCE image where different
probabilistic regions are marked with different colors.

3.3. Color Saliency Map. Besides the above two features,
the color feature which is the most widely used in the
bleeding area detection cannot be ignored. The obvious
color information of the bleeding area is the most intuitive
reference for the clinicians, so the state-of-the-art methods
utilize the color feature to distinguish the bleeding fromother
regions [5, 15–17]. In perspective of the visual saliency, color
is another visual stimulus that is isotropic to the contour and
luminance. Hence color saliency map is also computed and
fused together with the above two maps. As most bleeding
lesions appear to be red, we calculate the proportion of the
red of the color saliency map,

𝑆3 (𝑥, 𝑦) = 𝑟 (𝑥, 𝑦)
𝑟 (𝑥, 𝑦) + 𝑔 (𝑥, 𝑦) + 𝑏 (𝑥, 𝑦) + 𝜀 , (6)
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 4: The WCE images with the bleeding and the corresponding different saliency maps. (a) Original WCE images. (b) Edge saliency
map. (c) Intensity saliency map. (d) Color saliency map. (e) Fusion of the edge and intensity saliency map. (f) Fusion of the edge and color
saliency map. (g) Fusion of the intensity and color saliency map. (h) Fusion of the three saliency map. (i) Suspected bleeding regions (green)
by thresholding the fused saliency map.

where [𝑟, 𝑔, 𝑏] is a color vector at the pixel position of (𝑥, 𝑦)
and 𝜀 is a small constant for the purpose of stabilization.

The aforementioned three saliency maps localize the
bleeding ROIs in WCE images from different aspects. More
importantly, the quantities in all the three saliency maps are
between 0 and 1; thus we can derive the fused saliencymap by
fusing them together by the following formula, and the three
saliency maps are pooled by

𝑆 (𝑥, 𝑦) = 13
3∑
𝑖=1

𝑆𝑖 (𝑥, 𝑦) . (7)

As an illustration, Figure 4 presents the three test WCE
images in Figure 4(a). For each image, three isolated saliency
maps and the contrastive fused saliency maps are arranged
from Figures 4(b)–4(h). Figure 4(i) localizes the suspected
bleeding ROIs by thresholding the fused saliency map.

4. Experimental Results and Discussion
To evaluate our saliency-based bleeding detection system, we
compared the saliency maps with the golden-standard masks
that are marked by two physicians. As each saliency map
implies the probability of bleeding positions, a receiver oper-
ator characteristic (ROC) curve can illustrate both sensitivity
and specificity of a map. Both criteria are defined as follows:

Sensitivity = TP
TP + FN

,
Specificity = TN

FP + TN
, (8)

where TP denotes true positive rates and FP false positive
rates; TN and FN denote true negative and false negative,
respectively. TP means that a bleeding pixel is correctly clas-
sified by a saliency map while FP means that a nonbleeding
pixel is incorrectly regarded as bleeding.

4.1. Quantitative Analysis. Given that a threshold increased
from 0 to 1, a series of sensitivity and specificity values
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Figure 5: ROC curves of fused saliency maps with regard to six
images.

are obtained. Relying on these values, a ROC curve can be
plotted. As an illustration, Figure 5 plots the ROC curves of
fused saliency maps with regard to the six images in Figure 1.

From Figure 5, it can be observed that the fused saliency
map shows unbalanced performance on the six representative
bleeding images. Area under curves (AUC) is 0.994, 0.989,
0.986, 0.926, 0.895, and 0.869, respectively. Note that the
fused saliency map tends to be more sensitive to tiny
and sharp bleeding region (Figure 1(f)) than opaque one
(Figure 1(a)). This may result from the fusion strategy which
weights three isotropic maps equivalently.

To further evaluate the performance of the proposed
saliency map, the three kinds of saliency maps, saliency maps
of different combinations, and the peer algorithm [17] are
listed in Table 1, where accuracy, sensitivity, and specificity
values for different saliencymaps are presented.The accuracy
criterion is computed as

Accuracy = TP + TN
TP + TN + FP + FN

, (9)
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Figure 6: (a) Sensitivity of 200WCE bleeding frames. (b) Specificity of 200WCE bleeding frames. (c) Accuracy of 200WCE bleeding frames.

Table 1: Performance comparison of the different saliency maps.

Accuracy (%) Sensitivity (%) Specificity (%)
Edge 0.6372 0.9878 0.6317
Intensity 0.9684 0.8672 0.9736
Color 0.9496 0.7143 0.9615
Edge + intensity 0.9769 0.9329 0.9778
Edge + color 0.9635 0.8645 0.9774
Intensity + color 0.9779 0.8455 0.9919
[17] 0.9371 0.8958 0.9371
Fused 0.9897 0.9407 0.9915

where TP, TN, FP, and FNare obtained based on the threshold
that is the mean value.

It can be observed that edge and intensity saliency maps
are helpful to enhance bleeding detection accuracy. The edge
saliency map has high degree of sensitivity to improve the

sensitivity of the fused saliencymap and the higher specificity
of the fused saliency map benefits from the intensity saliency
map; it is clear that the proposed saliency map is better than
the saliency map in [17], which uses single color features. In
order to discuss the robustness of the proposed saliency map,
the histogram is drawn in Figure 6. FromFigure 6(a), it can be
seen that the sensitivity of edge saliencymap is better than the
other saliency maps; the specificity in Figure 6(b) illustrates
that effect of the fused saliency map is very ideal and the val-
ues are very close to 1, while the main contribution of speci-
ficity of the fused saliency map is from the intensity saliency
map; Figure 6(c) shows that the accuracy of the fused saliency
map is the best, which meets the expectations of our design.

In consideration of the impact of the color space [18–20],
the fused saliency map is applied to the different color spaces
in Table 2. From Table 2, the fused saliency map in the RGB
color space has better performance than theHSI and theHSV.

In addition, the proposed saliency map provides the
probability of bleeding, which is suitable to be used as
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Figure 7: Procedure of localization for bleeding area.

a postprocessing step in a superpixel detection flowchart [21].
Based on the saliency map, unimportant superpixels can be
discarded.

4.2. Qualitative Analysis. In order to intuitively see the effect
of the saliency map, we delineate the ROI of bleeding point.
As shown in Figure 7, there is the binary image next to
each saliency map. The saliency map is binarized according
to single thresholding. The threshold of a saliency map is
determined by the mean value of all quantities in the saliency
map.

It can be seen that color binary mask is oversized while
the shape binary mask is undersized. The edge binary mask
tends to reveal all potential bleeding regions. Instead of
applying logic AND or OR operations to fusing the three
isolated binary masks, the proposed fusion strategy performs
probabilistic calculation on isolated saliency maps, followed
by binarizing the fused saliency map, which increases the
fidelity of TP regions. It is obvious to see in Figure 7 that the
fused binary map reveals exactly where the bleeding point is.

4.3. Image Noise Influence. WCE images are sometimes
vulnerable to the noise contamination such as Gaussian noise
or Salt and Pepper noise. To evaluate the performance of the
proposed saliency map, we add three levels of Gaussian noise
and Salt and Pepper noise in the WCE image in Figure 8.

From Figure 9 and Table 3, we can find that the accuracy
of the proposed saliency map decreases as the level of noise
increases, but the accuracy is still in expected range.

Table 2: Performance comparison of the fused saliency maps in the
different color space.

RGB HSI HSV
Sensitivity (%) 0.9407 0.9420 0.9393
Specificity (%) 0.9915 0.9755 0.9804
Accuracy (%) 0.9897 0.9695 0.9744

Table 3: Comparison of accuracy parameters of the fused saliency
map with different level noise.

Level Salt and Pepper (%) Gaussian (%)
1 98.94 99
2 98.51 98.44
3 98.16 98.15

(a) (b) (c)

(d) (e) (f)

Figure 8: WCE image with different level noise and the fused
saliency map of the image. (a), (b), and (c) are the images with 2%,
4%, and 6% of Salt and Pepper noise. (d), (e), and (f) are the images
with Gaussian variance of 0.5%, 1%, and 1.5%.

4.4. Run-Time Evaluation. Thecomputation time of the fused
saliency map and the contrast algorithm [17] is listed in
Table 4. The algorithms are run on the MATLAB R2015b,
with Intel Core i5 CPU at 2.4GHz. Compared with [17],
the proposed algorithm reduces the algorithm complexity
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Figure 9: (a) is the performance of the fused saliency map with the images in Figure 8 with Salt and Pepper noise and (b) is on the images in
Figure 8 with Gaussian noise.

Table 4: Computation time comparison.

The fused saliency map [17]
Time/per (s) 0.0748 0.0855

of color saliency map and extracts three saliency maps in
parallel. Table 4 shows that both algorithms are very fast and
the proposed one has a minor advantage.

5. Conclusion

In this paper, a novel saliency map is proposed for bleeding
localization on the WCE diagnosis. Unlike existing methods
that use color features as the dominant criterion, we combine
edge, intensity, and color information in visual saliency
scheme.The results demonstrated that both the edge saliency
map based on phase congruency and the intensity map based
on luminance histogram dominate the saliency detection
performance. Fused saliency map can detect the bleeding in
WCE images with the average accuracy of 98.97%. Future
work involves segmenting bleeding region with precise con-
tours at a high specificity.
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