
Research Article
Effects of Vacancy Cluster Defects on Electrical and
Thermodynamic Properties of Silicon Crystals

Pei-Hsing Huang and Chi-Ming Lu

Department of Mechanical Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan

Correspondence should be addressed to Pei-Hsing Huang; phh@mail.npust.edu.tw

Received 5 October 2013; Accepted 4 December 2013; Published 12 January 2014

Academic Editors: B. Huang and N. Sekido

Copyright © 2014 P.-H. Huang and C.-M. Lu. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

A first-principle plane-wave pseudopotential method based on the density function theory (DFT) was employed to investigate
the effects of vacancy cluster (VC) defects on the band structure and thermoelectric properties of silicon (Si) crystals. Simulation
results showed that various VC defects changed the energy band and localized electron density distribution of Si crystals and caused
the band gap to decrease with increasing VC size. The results can be ascribed to the formation of a defect level produced by the
dangling bonds, floating bonds, or high-strain atoms surrounding the VC defects. The appearance of imaginary frequencies in the
phonon spectrum of defective Si crystals indicates that the defect-region structure is dynamically unstable and demonstrates phase
changes. The phonon dispersion relation and phonon density of state were also investigated using density functional perturbation
theory. The obtained Debye temperature (𝜃

𝐷
) for a perfect Si crystal had a minimum value of 448K at T = 42K and a maximum

value of 671 K at the high-temperature limit, which is consistent with the experimental results reported by Flubacher. Moreover, the
Debye temperature decreased with increases in the VC size. VC defects had minimal effects on the heat capacity (C

𝑣
) value when

temperatures were below 150K. As the temperature was higher than 150K, the heat capacity gradually increased with increasing
temperature until it achieved a constant value of 11.8 cal/cell⋅K. The heat capacity significantly decreased as the VC size increased.
For a 2 × 2 × 2 superlattice Si crystal containing a hexagonal ring VC (HRVC10), the heat capacity decreased by approximately 17%.

1. Introduction

Because of their abundance in the Earth’s crust and their
unique optical, electrical, magnetic, and catalytic proper-
ties, silicon- (Si-)based semiconductor materials have been
employed for an increasinglywide range of applications [1–8].
Additionally, with innovative developments in the electronics
andmicroelectromechanical industries as well as light energy
conversion devices, Si-related materials have been contin-
ually investigated in recent years, and Si-based materials
have become the most critical materials for optoelectronic
products [1–8]. As the size of electronic components is con-
tinually reduced, the effects of size and surface confinement
not only lead to changes in thermal conductivity and electron
transport properties, but also produce significant variations
regarding optical and mechanical properties [9]. The effects
of carrier confinement become especially critical when the
size of materials reaches the nanoscale.

Perfect crystalmaterials do not exist in nature, and defects
comprising vacancies and interstices occur in various natural
materials [9, 10]. Some of these defects are innate, but others
are created during the material manufacturing or processing
stages. Microscopic structural defects can cause localized
electron density changes and redistribution, induce scattering
during the carrier (i.e., electron and phonon) transport pro-
cesses [4], and result in changes in thermal conductivity [5, 6].
These effects reduce the mechanical reliability of the material
structure and efficiency of electronic circuits, even shorten-
ing the lifecycles of system components. Particularly, more
significant effects are induced when microscopic defects
occur in nanoscale materials, mainly because carriers in the
mesoscopic range possess elastic scattering, whereas those
in the macroscopic range demonstrate inelastic scattering.
When materials are reduced from a macroscopic three-
dimensional structure to a smaller dimensional structure
(e.g., zero-dimensional nanoparticles and one-dimensional
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Table 1: Patterns of vacancy cluster defect and their corresponding lattice constant and band gap.

Perfect Si crystal

Point defect, VC1
Tetrahedron

vacancy clusters, TVC5

Hexagonal ring
vacancy clusters, HRVC10

Lattice constant (Å) 5.431 5.346 5.241 5.194
Band gap (eV) 0.59 0.31 0.25 0.21

nanowires), changes in the band structure and the density
of states (DOS) near the Fermi energy level occur, and
the correlation between the phonon dispersion and phonon
group velocity is affected [11, 12]. This generates an energy
filtering effect, increases the interface scattering of phonons,
and causes alterations in the thermal conductivity coefficients
of materials [7].

Recently, various theoretical, numerical, and experimen-
tal methods have been employed to investigate the physical
properties of Si materials. Dai et al. [2] adopted the lattice
kinetic Monte Carlo method to examine the morphological
evolution of voids and defects during high-temperature Si
crystal growth. Lee et al. [3] combined the Metropolis
MonteCarlomethod, tight-bindingmolecular dynamics, and
density functional theory (DFT) to investigate interstitial
defect growth in crystalline Si. Lysenko and Volz [8] used
the scanning probe experimental method to measure the
thermal conductivity of porous Si and determined that the
thermal conductivity coefficient 𝑘 was significantly smaller
than that of bulk single-crystal Si and isotopically pure Si
crystals (measured using a steady-state heat flux method).
Poter et al. [11] conducted simulations of the phonon disper-
sion curve and relevant thermal properties of silicon using
the Stillinger-Weber, Tersoff, and hybrid potential energy
functions.They confirmed that the thermal expansion coeffi-
cient, elasticity coefficient, and yield strength values derived
from the Stillinger-Weber potential energy function were
consistent with experimental values and that the simulated
phonon dispersion curve and specific heat approximated
those obtained during experiments. Currently, the majority
of numerical studies have focused on exploring the properties
of perfect Si crystals and nanostructures [12]. However,
numerous issues regarding the effects of vacancy cluster (VC)
defects on the electrical and thermal properties of Si semi-
conductor materials require further clarification. Therefore,
this study employed first-principle calculations to investigate
differences in the electrical and thermodynamic properties
between perfect Si crystals and crystals with VC defects. In
addition, changes in band structures andDOSwere explored,
and corresponding relationships between defects and various
thermal properties, such as heat capacity (𝐶V), enthalpy, and
free energy, were analyzed.

2. Numerical Method

Si semiconductor material possessing a diamond structure is
part of the Fd3m (No. 227) group and is composed of two
superimposed face-centered cubic structures at a distance of
(1/4, 1/4, 1/4) 𝑎

0
, where 𝑎

0
represents the Si lattice constant

(𝑎
0
= 5.4309 Å). Each unit cell is composed of 8 Si atoms.

In this study, a first-principle plane-wave pseudopotential
method based on DFT calculations was employed to analyze
the electrical and thermodynamic properties of perfect Si
crystals and crystals containing VC defects. The following
three types of VC defects were explored: (a) a single atomic
vacancy (VC

1
), (b) a tetrahedron VC (TVC

5
), and (c) a

hexagonal ring VC (HRVC
10
). The subscript numbers in the

acronyms represent the number of vacant atomic sites in the
crystals (details concerning cluster defect shapes and relevant
data are provided in Table 1).

The Cambridge serial total energy package (CASTEP)
[13–18] provided by Taiwan’s National Center for High-
Performance Computing was used to conduct theoretical
calculations. First, structural optimization of the total energy
for the Si crystal model was performed using the Broyden-
Fletcher-Goldfarb-Shanno method [15], which adopts a
plane-wave pseudopotential approach to describe the poten-
tial energy of electron-ion interactions. The electronic wave-
functions are expanded through a plane-wave basis set
to determine the plane-wave cutoff energy and calculate
a selected function, and the local-density approximation
(LDA) method is used to describe the exchange-correlation
potential. As the cutoff energy for calculation increases,
numerical error decreases, but computational load substan-
tially increases. In this study, the cutoff energy with a value of
350 eV was selected, at which value of the simulations of total
energy and lattice constantwere approximately constant. Self-
consistent field (SCF) calculations adopt the special k-point
sampling method of the Monkhorst-Pack scheme [13] to
conduct Brillouin-zone (BZ) integration, with a k-pointmesh
of 4 × 4 × 4, a k-point interval of 0.5 nm−1, and a convergence
precision of 10−6 eV/atom. All simulations employed ultrasoft
pseudopotentials in reciprocal space during calculations.
Finally, density functional perturbation theory (DFPT) was
adopted to calculate phonon and thermal properties. Phonon
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Figure 1: The calculated band structure for (a) perfect, (b) VC
1
, (c) TVC

5
, and (d) HRVC

10
Si crystals.

scattering was determined using the norm-conserving pseu-
dopotential method (NCPM) proposed by Hamann et al.
[18], where the cutoff energy was 350 eV. The convergence
precision of SCF was 10−6 eV/atom, a 2 × 2 × 2 BZ mesh was
selected for k-point density, the k-point interval was 0.07 nm,
and a 2 × 2 × 2 supercell was used for the simulation system.
This model was employed to calculate band structure, DOS,
phonon spectrum, and phonon DOS properties.

3. Results and Discussion

Table 1 shows the first-principle calculation results regarding
the lattice constants and band gape changes for Si crystals
containing VC

1
, TVC

5
, and HRVC

10
defects after structural

optimization. The simulation results indicate that VC defects
altered the lattice structure and length of the covalent bonds
surrounding the defects. The lattice constant and band gap
declined as the VC size increased. Figures 1(a)–1(d) show
the band structures along the BZ high-symmetry points
for a perfect Si crystal and crystals containing VC

1
, TVC

5
,

and HRVC
10
defects; the corresponding calculation of high-

symmetry k-point paths in BZ is summarized as shown in
Table 2. The dotted line in Figure 1 represents the zero-point
energy of the Fermi energy level. The distance between the
highest point of the Fermi energy level valence band (𝐸V) and
the lowest point of the conduction band (𝐸

𝑐
) can be used to

determine the energy required for valence electrons to move
to the conduction band, which is also known as the forbidden
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Table 2: List of high-symmetry 𝑘-point paths.

Symbol of symmetry points Starting points Corresponding points Symbol of symmetry points
𝑊 (0.5, 0.25, 0.75) (0.5, 0.5, 0.5) 𝐿

𝐿 (0.5, 0.5, 0.5) (0, 0, 0) 𝐺(Γ)
𝐺(Γ) (0, 0, 0) (0.5, 0, 0.5) 𝑋

𝑋 (0.5, 0, 0.5) (0.5, 0.25, 0.75) 𝑊

𝑊 (0.5, 0.25, 0.75) (0.375, 0.375, 0.75) 𝐾
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Figure 2: Total DOS and partial DOS of electrons for perfect Si
structure; vertical dotted line indicate Fermi line.

band or the band gap. The simulation results in Figures 1(a)–
1(d) demonstrate that the band structure ranged between
approximately −12.5 and 2.3 eV. The maximum value of the
valence band and the minimum value of the conduction
band were located on different symmetry points, indicating
that forbidden bands for Si crystal are indirect band gaps.
Furthermore, the system band gap became narrow as the
sizes of VC defects increased, which could be attributed
to the increased probability of carrier scattering near the
defects. Perfect crystals have a band gap value of 0.59 eV,
which differs slightly from the experimental value of 1.1 eV.
This result occurs commonly when the generalized gradient
approximation and LDA methods are adopted to calculate
band gap values [19]. However, this result does not affect
energy band and electronic structure analyses. The band
structures shown in Figures 1(b)–1(d) indicate that Si crystals
with VC

1
, TVC

5
, and HRVC

10
defects possess band gap

values of 0.31, 0.25, and 0.21 eV, respectively. A comparison
between the band structures of defective and perfect crystals
shows that as the VC defects increased, the distribution areas
of the band structures became more concentrated and the
band gap decreased. This phenomenon occurred because
the VC defects in the crystals altered the distributions of
the energy bands and localized electron densities. Due to
the increased probability of electron scattering, the electron
mobility of Si crystals with VC defects changes, which can
affect the semiconductor properties of Si crystals.

Figure 2 shows the corresponding DOS distribution
curves for perfect Si crystals under various energy levels. A
high DOS at a specific energy level indicates that numerous

states are available for occupation, whereas a DOS of zero
suggests that no states can be occupied at a given level. The
calculation results shown in Figure 2 demonstrate that Si
conduction and valence bands are primarily formed by the
s- and p-orbitals and have distinct band edges; consequently,
band gaps can be clearly defined. Specifically, the conduction
band is extended to 2.36 eV and the valence band to−12.27 eV.
The corresponding DOS distribution curves for Si crystals
with VC

1
, TVC

5
, and HRVC

10
defects indicate conduction

bands extending to 2.15, 2.09, and 1.90 eV and valence bands
extending to −12.34, −12.40, and −12.49 eV. Compared to a
perfect crystal structure (Figure 2), when the VC size of
a defective crystal increased, the DOS of the valence band
expanded and the width of the conduction band decreased.
In addition, as the VC defect size increased, the DOS curves
near the Fermi energy level became relatively smooth, and
the corresponding DOS values were comparatively small. An
increase in the valence band width indicates that electron
delocalization has increased, reducing the band gap. Simul-
taneously, the narrowing of the conduction band denotes
weakened electron delocalization. Therefore, the occurrence
of VC defects causes significant changes in the electrical
conductivity of Si crystals because the dangling bonds,
floating bonds, and high-strain atoms surrounding defects
generate a defect level. This level is a type of localized state
in which electrons are confined to a certain region of the
structure.These excess energy gap states create an area inside
the material that causes it to behave similarly to metal.

To explore the effects that VC defects have on the ther-
modynamic properties of Si crystals, CASTEP first-principle
calculations and the isovolumetric specific heat calculation
method derived by Baroni et al. [16] were employed to
analyze thermodynamic properties and temperature effects.
The curve distributions in Figures 3(a) and 3(b) demonstrate
the phonon dispersion relation and phonon DOS along the
BZ high-symmetry points for a perfect crystal and a crystal
with an HRVC

10
defect. Phonon DOS (or vibrational density

of states) is calculated by the integration over the Brillouin
zone and all 3𝑁 phonon bands, where 𝑁 is the amount of
atoms in the cell. The partial (or projected) phonon DOS is
obtained by a contribution from the given atom to the total
phononDOS.The contribution to the partial DOS on atom 𝑖,
from each phonon band, is calculated by the following [15]:

𝑁
𝑖 (𝐸) = ∫

𝑑𝑘

4𝜋3

𝑒
𝑗 (𝑖)



2

𝛿 (𝐸 − 𝐸
𝑛 (𝑘)) , (1)

where 𝑒
𝑗
is the eigenvector associatedwith themode of energy

𝐸
𝑗
. The partial density of states (PDOS) is then obtained by

summation of these contributions over all phonon bands. By
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Figure 3: Phonon dispersions and projected phonon density of states for (a) perfect and (b) HRVC
10
Si crystals.

construction, all the partial phonon DOS sums up to the
true phonon DOS [15]. The left-hand diagram in Figure 3(a)
shows that no imaginary frequencies occurred in the phonon
dispersion relation of the perfect crystal, indicating that the
crystal structure was fairly stable. By contrast, Figure 3(b)
shows that a frequency of less than zero appeared in the
phonon spectrum for the Si crystal containing an HRVC

10

defect, which suggests that portions of the crystal structure
were unstable and that the structure of the defect regions
could cause crystal phase changes or gliding. Moreover, the
dispersion relation and phonon DOS shown in Figure 3(b)
demonstrate that the HRVC

10
defect induces two additional

band gaps in its vibration modes, that is, 7.55–8.25 THz

and 15.01–15.92 THz. Regarding DOS, the high-frequency
peak value of DOS for a Si crystal containing an HRVC

10

defect was lower than that for a perfect crystal, and the
reduced portion transferred to 15.92–16.22 THz, forming
another peak value and band gap. These results demonstrate
that the vacancy defect region possessed a stronger phonon
scattering effect. As the size of VC defect increased, the
proportion of phonons distributed in low-frequency regions
became larger, thereby reducing the slope of the overall
dispersion curve and slowing phonon group velocity. This
further induced a lower thermal conductivity coefficient for
the crystal containing the HRVC

10
defect when compared to

the perfect crystal. Moreover, a material’s electronic structure
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Figure 4: Debye temperature (𝜃
𝐷
) of (a) perfect, (b) VC

1
, and (b) HRVC

10
Si crystals as a function of temperature.

and elastic modulus can be used to estimate its Debye
temperature (𝜃

𝐷
), which is commonly employed to identify

the high- and low-temperature areas of a solid. The value of
the Debye temperature at a given temperature is obtained by
calculating the actual heat capacity (𝐶𝐷V ) by the following [17]:

𝜃
𝐷 (𝑇) = 𝑇[

9𝑁𝑘

𝐶𝐷V
∫
𝜔𝐷/𝑇

0

𝑥4𝑒𝑥

(𝑒𝑥 − 1)
2
𝑑𝑥]

1/3

, (2)

where 𝑁 is the amount of atoms per cell. When 𝑇 > 𝜃
𝐷
,

all vibration modes have an energy of 𝑘
𝐵
𝑇; in other words,

the heat capacity of the material tends to be a fixed value.
However, when 𝑇 < 𝜃

𝐷
, all high-frequency modes fail

and the material’s heat capacity decreases as the temperature
declines. Therefore, Debye temperature calculations possess
critical physical meaning. Figures 4(a)–4(c) show the Debye
temperature curve of a perfect Si crystal and crystalswithVC

1

and HRVC
10

defects at temperatures between 0 and 1000K.
The 𝜃

𝐷
value of a perfect Si crystal is 671 K at the high-

temperature limit, which is consistent with the experimental
results (674K) reported by Flubacher et al. [20]. Furthermore,
the predicted Debye temperature curve has aminimum value
of 𝜃
𝐷
= 448K at 𝑇 = 42K. This result is consistent with

the experimental data (i.e., a minimum Debye temperature
of 462K at 𝑇 = 38K). In addition, because the Si crystal
contains vacancy defects, the Debye temperature curve shifts
downward and toward the bottom left of the figure, as
shown in Figure 4. Particularly, the Debye temperatures of Si
crystals with VC

1
and HRVC

10
defects, respectively, decrease

to 655K and 632K at 𝑇 = 800K. Because the Debye

temperature can be used to identify the covalent structural
strength of crystals, higher Debye temperatures typically
suggest superior mechanical strength and thermodynamic
stability. Consequently, the Debye temperature calculation
results in Figure 4 are consistent with the analysis results of
phonon DOS in Figure 3.

The results of a calculation of phonon spectra can be
employed to compute energy (𝑈), free energy (𝐹), entropy
(𝑆), and lattice heat capacity (𝐶V) as functions of temperature.
The CASTEP total energy yields the total electronic energy at
0 K. The temperature dependence of the energy is calculated
by the following [16, 17]:

𝑈 (𝑇) = 𝐸tot + 𝐸zp + ∫
ℎ𝜔

exp (ℎ𝜔/𝑘𝑇) − 1
𝐹 (𝜔) 𝑑𝜔, (3)

where𝐸zp is the zero-point vibration energy, 𝑘 is Boltzmann’s
constant, ℎ is Planck’s constant, and 𝐹(𝜔) is the phonon
DOS.The vibrational contribution to the free energy (𝐹) and
the entropy (𝑆) are expressed as

𝐹 (𝑇) = 𝐸tot + 𝐸zp + 𝑘𝑇∫𝐹 (𝜔) ln [1 − exp(−ℎ𝜔
𝑘𝑇
)]𝑑𝜔,

𝑆 (𝑇) = 𝑘 {∫
ℎ𝜔/𝑘𝑇

exp (ℎ𝜔/𝑘𝑇) − 1
𝐹 (𝜔) 𝑑𝜔

−∫𝐹 (𝜔) [1 − exp(−ℎ𝜔
𝑘𝑇
)]𝑑𝜔} .

(4)
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Figure 5: (a) Enthalpy, entropy, and free energy (b) heat capacity for perfect, VC
1
, and HRVC

10
Si crystals as a function of temperature.

The lattice contribution to the heat capacity, 𝐶V, is

𝐶V (𝑡) = 𝑘∫
(ℎ𝜔/𝑘𝑇)

2 exp (ℎ𝜔/𝑘𝑇)
[exp (ℎ𝜔/𝑘𝑇) − 1]2

𝐹 (𝜔) 𝑑𝜔. (5)

Figure 5(a) shows the correlations between enthalpy,
free energy, entropy, and lattice temperature. As temperature
increases, the enthalpy and entropy values increase, whereas
free energy decreases. This result indicates that increases in
the internal energy of the entire system at high tempera-
tures cause disorder in the crystal structure. Furthermore,
Figure 5(b) shows the 𝐶V and temperature relationship for a
perfect Si crystal and crystals containing VC

1
and HRVC

10

defects: when the temperature range was between 0 and
400K, heat capacity increased dramatically as the tempera-
ture increased, and when the temperature exceeded 400K,
changes in heat capacity slowed and gradually approximated
a constant (i.e., 𝐶V = 11.85, 11.70, and 9.78 cal/cell⋅K for
perfect, VC

1
, and HRVC

10
Si crystals, resp.). In addition,

Figure 4(b) clearly exhibits that when the temperature was
below 150K, the heat capacity versus temperature curves of
the perfect crystal and crystals containingVCdefects approx-
imately overlapped, implying that the effect of VC defects
on heat capacity was insignificant in low-temperature states.
When the temperature exceeded 400K, heat capacity rapidly
decreased with the increasing size of the VC defects. For
example, the heat capacity of the HRVC

10
crystal decreased

significantly to 9.78 cal/cell⋅K at 𝑇 = 1000K. This result can
be attributed to a stronger phonon scattering effect, reduce
phonon group velocity, and lower Debye temperatures at the
boundaries of the VC defects, which generated a substantial

decline in endothermic capacity and a decrease in thermal
conductivity for the Si crystal.

4. Conclusion

The first-principle plane-wave pseudopotential method was
conducted to investigate the effects of VC defects on the
electrical and thermodynamic properties of Si crystals. The
formation of a defect level produced by dangling bonds and
floating bonds surrounding the VC defects caused significant
changes in the electrical conductivity of Si crystals.The excess
energy gap states create an area inside the defective silicon
crystals which causes it to behave somewhat similarly to
metals. As the size of VC defect increased, the proportion of
phonons distributed in low-frequency regions became larger,
thereby reducing the slope of the overall dispersion curve and
slowing phonon group velocity. This further induced a lower
thermal conductivity coefficient for the crystal. The Debye
temperature values obtained in this study consist with the
experimental results [20]. As the Si crystal contains vacancy
defects, a significant decrease in Debye temperature was
observed.
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parameters in developing interatomic potentials,” Journal of
Applied Physics, vol. 82, no. 11, pp. 5378–5381, 1997.

[12] J. K. Kuo, P. H. Huang, W. T. Wu, and C. M. Lu, “Mechanical
and fracture behaviors of defective silicon nanowires: combined
effects of vacancy clusters, temperature, wire size, and shape,”
Applied Physics A, 2013.

[13] H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-
zone integrations,” Physical Review B, vol. 13, no. 12, pp. 5188–
5192, 1976.

[14] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D.
Joannopoulos, “Iterative minimization techniques for ab initio
total-energy calculations: molecular dynamics and conjugate
gradients,” Reviews of Modern Physics, vol. 64, no. 4, pp. 1045–
1097, 1992.

[15] “Theory in CASTEP,” http://www.tcm.phy.cam.ac.uk/castep/
documentation/WebHelp/CASTEP.html.

[16] S. Baroni, S. de Gironcoli, A. dal Corso, and P. Gian-
nozzi, “Phonons and related crystal properties from density-
functional perturbation theory,” Reviews of Modern Physics, vol.
73, no. 2, pp. 515–562, 2001.

[17] N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders
College, Philadelphia, Pa, USA, 1976.
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