
Vol.:(0123456789)1 3

Basic Research in Cardiology (2018) 113:29 
https://doi.org/10.1007/s00395-018-0688-8

INVITED REVIEW

Physiological and unappreciated roles of CaMKII in the heart

Jan Beckendorf1,2,3 · Maarten M. G. van den Hoogenhof1,3 · Johannes Backs1,3

Received: 28 March 2018 / Accepted: 11 June 2018 / Published online: 15 June 2018 
© The Author(s) 2018

Abstract
In the cardiomyocyte, CaMKII has been identified as a nodal influencer of excitation–contraction and also excitation–tran-
scription coupling. Its activity can be regulated in response to changes in intracellular calcium content as well as after sev-
eral post-translational modifications. Some of the effects mediated by CaMKII may be considered adaptive, while effects 
of sustained CaMKII activity may turn into the opposite and are detrimental to cardiac integrity and function. As such, 
CaMKII has long been noted as a promising target for pharmacological inhibition, but the ubiquitous nature of CaMKII 
has made it difficult to target CaMKII specifically where it is detrimental. In this review, we provide a brief overview of 
the physiological and pathophysiological properties of CaMKII signaling, but we focus on the physiological and adaptive 
functions of CaMKII. Furthermore, special consideration is given to the emerging role of CaMKII as a mediator of inflam-
matory processes in the heart.
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Introduction

Heart failure is one of the most prevalent diagnoses upon 
hospital admission and, despite all therapeutic progress over 
the last decade, is still associated with a high rate of mor-
bidity and mortality [54, 77]. In the diseased myocardium, 
CaMKII plays central roles in processes such as maladaptive 
remodeling [1, 3, 44, 45, 48, 50, 72, 115, 117], arrhythmo-
genesis [63], interstitial fibrosis [3, 45] and apoptosis [21, 
22, 103, 112]. As such, CaMKII is a promising target for 
pharmacological inhibition and the development of inhibi-
tory compounds is racing ahead [73]. Two compensatory 
mechanisms during heart failure are (a) an excessive pro-
duction of catecholamines and (b) the activation of the 
renin–angiotensin–aldosterone system. For each of these 

mechanisms, CaMKII has been shown to play an integral 
role in conveying the following (mal)adaptive processes, 
leading to cardiac remodeling and heart failure [18, 30, 
113]. However, while there is vast knowledge of the role 
of CaMKII in cardiac disease, the role of CaMKII in physi-
ological processes is less well studied. This review aims at 
highlighting the sparse insights into the physiological role 
of CaMKII signaling in the heart and also its role in some 
underappreciated inflammatory processes in the heart.

CaMKII structure and activity

Calcium(Ca2+)/calmodulin(CaM)-dependent kinases 
(CaMK) are serine/threonine (Ser/Thr)-specific phospho-
kinases. They respond to changes in intracellular [Ca2+], 
which is the major second messenger inside the cardio-
myocyte and indispensable for the coupling of membrane 
excitation with myofibril contraction, also termed exci-
tation–contraction coupling (ECC) [55]. As free calcium 
ions are quickly removed from the cytosol during diastole, 
they can be bound by the Ca2+-sensor calmodulin [14] 
to allow the exertion of functions that last longer than 
just one depolarization, resp. one systole, especially on 
gene transcription or epigenetic regulation, often termed 
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excitation–transcription coupling (ETC) [8]. An increase 
of [Ca2+] inside the cardiomyocyte leads to the activa-
tion (and potentially overactivation) of calcium-dependent 
signaling. As a result, overall CaMKII activity is upregu-
lated ~ 3-fold in human heart failure [42], and the expres-
sion rate of CaMKIIδ was shown to be increased ~ 2-fold 
[33].

The structure of the functional CaMKII enzyme is 
dodecameric, taking the form of two stacked hexameric 
rings [13]. Each monomer consists of an N-terminal cata-
lytic domain and a C-terminal association domain. In 
between, an autoregulatory domain, which also includes 
the Ca2+/CaM binding site, regulates the activation status 
through Ca2+/CaM-binding and also by autophosphoryla-
tion [35]. Ca2+/CaM-dependent activation of CaMKII is 
dependent on total [Ca2+]i in a dose-dependent manner, 
but also on Ca2+ spark frequency, amplitude and duration, 
as well as the previous activation state [15]. When inac-
tive, the catalytic domain is sterically blocked by the regu-
latory domain, a mode also referred to as the autoinhibi-
tory state. CaMKII is activated upon Ca2+/CaM binding 
to the CaM-binding site of the regulatory domain, lead-
ing to a conformational change, which exposes the kinase 
substrate and adenosine triphosphate (ATP) binding sites 
of the catalytic domain [81]. When one monomer enters 
the active state, the regulatory domains of neighboring 
CaMKII monomers become available for autophosphoryla-
tion at Thr287 (in CaMKIIδ, the exact numbering changes 
slightly between different CaMKII isoforms), furthering 
CaMKII activation and also blocking re-association of 
the catalytic domain with the autoinhibitory domain [35, 
47], maintaining kinase activity even after dissociation of 
the Ca2+/CaM complex. Autophosphorylation of Thr287 
leads to another interesting effect called CaM trapping, in 
which CaM binding affinity is increased 1000-fold, keep-
ing the Ca2+/CaM complex in place and thus sustaining 
CaMKII activity under conditions of low [Ca2+]i [61]. 
Further research unveiled other mechanisms of CaMKII 
activation via post-translational modifications (PTM) of 
the regulatory domain that are Ca2+/CaM independent, 
such as oxidation of the Met281/282 residues by reactive 
oxygen species (ROS) [18] and S-Nitrosylation of Cys290 
through a nitric oxide (NO)-dependent pathway [19], and 
O-GlcNAcylation at Ser279 during hyperglycemia [20]. 
However, these mechanisms still need the initial activation 
of CaMKII via the canonical Ca2+/CaM binding. Eventu-
ally, CaMKII can be inactivated via dephosphorylation 
of Thr287 by protein phosphatase 2A (PP2A) or protein 
phosphatase 1 (PP1) [96]. Another phosphatase-independ-
ent mechanism for negative regulation of CaMKII activity 
exists via autophosphorylation of Thr305/306, preventing 
CaM from binding to the regulatory domain again once 
it dissociated from its binding site (CaM-capping) [78].

CaMKII genes and splice variants

The group of calcium/calmodulin-dependent kinases 
consists of three classes: CaMKI, CaMKII and CaMKIV. 
CaMKII is further distinguished by its four isoforms α, 
β, γ, δ—each isoform being encoded by a separate gene 
[98]. The expression rates of CaMKII isoforms differ 
between tissue types. CaMKIIα and β are predominantly 
expressed in neuronal tissue, while the CaMKIIδ and γ 
isoforms can be found in cells of almost any differentia-
tion [34]. CaMKIIδ and γ are the main isoforms found 
in cardiac tissue, with the δ isoform outweighing the γ 
isoform ~ 2.5-fold [3].

All CaMKII genes are subjected to alternative splicing, 
but CaMKIIδ splicing is most well studied in the heart. 
Alternative splicing of CaMKIIδ results in at least 11 dif-
ferent splice variants, among which the δA, δB, δC and 
δ9 are most seen in the heart (Fig. 1) [24]. The δA splice 
variant preferentially localizes to t-tubules, sarcolemmal 
and nuclear membranes, and is implicated in the formation 
of maladaptive cardiac hypertrophy after catecholaminer-
gic stimulation [48, 111]. CaMKIIδB uniquely contains a 
nuclear localization sequence (NLS) and thus predomi-
nantly localizes to the nucleus, while CaMKIIδC mainly 
localizes to the cytosol [95]. At the moment, very little is 
known about CaMKIIδ9, but as it resembles CaMKIIδA 
the most, it may function in a similar manner. Three 
splice variants of CaMKIIγ have been found in the heart 
[88], but in contrast to the CaMKIIδ splice variants, the 
respective function of each CaMKIIγ splice variant in the 
heart is unknown. Each completely assembled dodecamer 
is constructed of different isoforms and splice variants. 
It is thought that the relative predominance of a certain 
splice variant in the heteromultimer might confer the target 
specificity for the respective cell compartment of the entire 
enzyme [62]. There is evidence that the differential com-
partmentalization of the splice variants also reflects dif-
ferences in function, as the δB variant may predominantly 
regulate transcription and the δC variant may rather influ-
ence excitation–contraction coupling [114]. The different 
functions and relative importance of the splice isoforms of 
CaMKIIδ are, however, far from clear. For instance, it has 
been shown that δC is also able to block the nuclear import 
of histone deacetylase 4 (HDAC4), thereby possibly affect-
ing gene expression as efficient as the δB variant [4, 116]. 
Systematic analyses of these different splice variants in 
different stages of cardiac development and disease are 
therefore awaited with great interest.

CaMKIIδ splicing is regulated by at least two dif-
ferent splicing factors, ASF/SF2 and Rbm20 [26, 111]. 
Members of the Rbfox protein family and SC35 have also 
been implicated in CaMKIIδ splicing, but their in vivo 
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relevance is less clear [29]. Interestingly, during develop-
ment CaMKIIδ switches from the CaMKIIδA splice vari-
ant, to the CaMKIIδB and CaMKIIδC variants, and loss of 
either ASF/SF2 or Rbm20 leads to persistent expression of 
fetal CaMKIIδA. It has been hypothesized that CaMKIIδA 
is necessary for enhanced L-type calcium current in neo-
natal cardiomyocytes, as they rely on L-type calcium cur-
rent instead of calcium-induced calcium release (CICR) 
for contraction [27, 111]. While it is not yet known how 
CaMKIIδA enhances L-type calcium current, this hypoth-
esis is in line with the observed increased calcium tran-
sients in ASF/SF2 knockout (KO) mice and CaMKIIδA-TG 
mice [111]. Interestingly, this effect seems to be gender 
dependent, as only male ASF/SF2 KO and CaMKIIδA-TG 
mice were affected. Very recently, van den Hoogenhof 
et al. found that Rbm20 KO mice have an intracellular 
Ca2+ overload, which leads to spontaneous Ca2+ releases 
from the SR [101]. It seems likely that this underlies the 
increased risk of arrhythmias in RBM20 mutation carri-
ers. Interestingly, this Ca2+ overload was due to increased 
L-type Ca2+ current density, and as loss of Rbm20 also 
induces a shift to the fetal CaMKIIδA isoform, this is 
completely in line with the hypothesized function of 
CaMKIIδA.

CaMKIIδB is involved in remodeling via the epigenetic 
regulator HDAC4 during pathological pressure overload [4, 
116]. However, it was also suggested that CaMKIIδB might 
mediate cardioprotective effects, as it strongly suppresses 
cardiomyocyte apoptosis after doxorubicin treatment and 
during oxidative stress [51] [74]. Nevertheless, CaMKIIδB 
transgenic mice develop hypertrophy and moderate cardiac 
dysfunction at 4 months of age [115]. Transgenic overex-
pression of CaMKIIδC in mice, on the other hand, results 

in a rapid progression of heart failure and premature death 
[117], and Sossalla et al. demonstrated the role of CaMKIIδC 
in diastolic dysfunction and arrhythmogenesis [93]. How-
ever, in contrast to these previous findings, the collabora-
tive work of our laboratory with Wolfgang Linke pointed 
to a reduction in passive stiffness of cardiomyocytes after 
phosphorylation of the sarcomeric structure protein titin by 
CaMKIIδC, improving diastolic filling, an effect that may 
be partially beneficial in diastolic dysfunction [28]. The 
latter finding warrants further investigations to explore its 
functional relevance in in vivo situations including diastolic 
dysfunction. However, functional redundancy among the dif-
ferent CaMKII genes and perhaps with other related kinases 
including protein kinase D complicate such studies because 
they require breeding of different mouse models.

Physiological and adaptive functions 
of CaMKII

As CaMKII is a ubiquitously expressed and multifunctional 
kinase, its function and importance have been studied in a 
multitude of tissues. Outside the heart, CaMKII is has been 
shown to be critically involved in vital processes like mem-
ory formation through long-term potentiation [2], hepatic 
glucose production and insulin signaling [69, 70], vascular 
smooth muscle cell function [99], cell cycle progression 
and fertility [5, 39], as well as the immune system [10]. In 
the heart, the role of CaMKII under conditions of patho-
logical cardiac stress has been studied extensively. However, 
relatively little is known about the role of CaMKII in the 
non-diseased heart after physiological stimuli, as well as 
its possible adaptive roles in the diseased heart. The newly 

Fig. 1   Alternative splicing of 
CaMKIIδ. Alternative exons 
(exons 14–16) in the pre-mRNA 
are depicted in gray. Differential 
alternative splicing gives rise to 
the different CaMKIIδ isoforms, 
which have different preferen-
tial cellular localizations and 
potentially different functions. 
Exon 14 contains a nuclear 
localization signal (NLS) and 
the serine (Ser322) adjacent to 
the NLS can posttranslationally 
be modified to affect nuclear 
localization
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generated conditional KO models [3, 5] of the two ubiqui-
tously expressed CaMKII genes δ and γ might provide a 
toolbox that allows to identify unknown essential CaMKII 
functions.

CaMKII is recognized as an instrument of the cell for 
the fine-tuning of its intracellular calcium content, espe-
cially concerning the ECC in myocytes. During the plateau 
phase of the action potential, calcium shifts into the cell 
through L-type calcium channels (LTCC), which leads to 
a relatively low increase of subsarcolemmal calcium in the 
dyadic cleft between the sarcolemma of the T-tubules and 
the sarcoplasmic reticulum. There, each LTCC is juxtaposed 
by a cluster of ryanodine receptors (RyR2). The initial cal-
cium influx is followed by an amplifying mechanism called 
calcium-induced calcium release (CICR), during which even 
more calcium is quickly released from the sarcoplasmic 
reticulum through the ryanodine receptor, boosting [Ca2+]i. 
Thereby, the binding of free cytosolic calcium with troponin 
C is made possible, which then leads to the conformational 
change of the tropomyosin/actin complex and enables myo-
sin binding, ultimately leading to myofilament contraction 
[92]. During diastole, free calcium is rapidly removed from 
the cytosol, either by transport into the extracellular space 
through the sodium/calcium exchanger (NCX) or by reup-
take into the SR via the SR-Ca2+-ATPase (SERCA).

These processes can be regulated by CaMKII: CaMKII 
can, for example, phosphorylate several subunits of the 
LTCC, thereby increasing Ca2+-dependent facilitation of 
the LTCC [36, 43]. In addition, CaMKII phosphorylates the 
sarcoplasmic reticulum (SR) membrane protein-complex 
phospholamban (PLN) at Thr17 [87], leading to increased 
calcium reuptake from the cytosol into the SR via SER-
CA2a [59]. Lastly, the ryanodin receptor 2 (RyR2), which 
is located in the sarcoplasmic reticulum membrane, is phos-
phorylated by CaMKII at Ser2809 [107] and more impor-
tantly Ser2814 [102, 104], leading to reduced SR [Ca2+] 
through increased SR calcium leak into the cytosol. The 
details of CaMKII and its role in ECC and ETC, however, 
are beyond the scope of this review and both have previously 
been reviewed in depth by many investigators including Lars 
Maier [55] and Donald Bers [8], respectively.

CaMKII is not only pivotal for calcium handling in ECC 
and ETC, but is also required for the increase in heart rate 
(HR) after β-adrenergic stimulation, also known as the fight 
or flight response [109]. Sinoatrial node (SAN) cells rely 
on an inward ‘pacemaker’ current through HCN4, lead-
ing to faster action potential generation, but HCN4 KO 
mice retain their ability to increase HR after β-adrenergic 
stimulation. Wu and colleagues showed that activation of 
CaMKII in SAN cells enhances SR Ca2+ filling and release, 
and increases the diastolic depolarization rate. This leads 
to faster action potential generation, independent of HCN4 
current. Interestingly, CaMKII inhibition only affects HR 

after β-adrenergic stimulation, and not at baseline. It must 
be noted that this effect did not depend on a single CaMKII 
in PLB or RyR2, but rather that the concerted action on 
multiple phosphorylation targets decreases SR Ca2+ content 
below a certain threshold which seems to be required for the 
fight or flight response [110].

A recent study showed that CaMKII is centrally involved 
in the adaptive contractile response after aerobic training, 
and therefore indispensable for the adequate response of the 
heart to a physiological stimulus [12]. Mechanistically, this 
effect was shown to depend on increasing levels of insulin-
like growth factor 1 (IGF-1) after exercise, which leads 
to activation of the nitric oxide (NO) synthase 1 (NOS-1) 
through the PI3K/Akt pathway. This, in turn, leads to acti-
vation of CaMKII, putatively through the NO-dependent 
S-nitrosylation of Cys290, resulting in the enhancement of 
calcium cycling through SERCA2a and the desirable effects 
of increased inotropy and lusitropy. Interestingly, blockade 
of CaMKII with the inhibitory peptide AC3-I abolished the 
effects on contractility and relaxation, but not the cardio-
myocyte hypertrophy.

Along those lines, our laboratory, using CaMKIIγ/
CaMKIIδ double knockout (DKO) mice, showed that 
pathological and physiological cardiac hypertrophy in mice 
was not primarily CaMKII dependent, but rather attribut-
able to the calcineurin (CnA)–NFAT axis, while CaM-
KII was responsible for maladaptive effects, i.e., systolic 
and diastolic dysfunction [44]. A similar observation that 
hypertrophy was independent of CaMKII while maladaptive 
remodeling did require CaMKII was made by the group of 
Joan Heller Brown [50]. At baseline, CaMKIIγ/CaMKIIδ 
DKO mice exhibit a slight increase in contractile force, but 
even though PLN-Thr17 and RyR2-Ser2814 were markedly 
hypophosphorylated, no changes in cellular Ca2+ handling 
could be detected [44]. While this suggests that CaMKII 
is dispensable for normal cardiac function, CaMKII is also 
involved in the adaptive response after physiological stress. 
Upon exercise, CaMKII expression in control mice was 
unaltered, but activity was decreased by 30%. Even though 
control mice had a hypertrophic response, as indicated by 
increased heart weight/body weight (HW/BW) ratios and 
cardiomyocyte hypertrophy, this did not affect cardiac 
function. In CaMKIIγ/CaMKIIδ DKO mice this response 
was exaggerated, and the CnA target gene RCAN1–4 was 
excessively upregulated, but cardiac function was also not 
affected. However, decreased CaMKII activity decreases 
phosphorylation of the autoinhibitory Ser411 phosphoryla-
tion site of CnA, suggesting that CaMKII is necessary to 
inhibit overactivation of calcineurin.

Conversely, Ole Kemi and co-workers previously showed 
increased cardiac contractility and Ca2+ cycling after aero-
bic interval training in adult mice, and inhibition of CaM-
KII using the autocamtide-2 related inhibitory peptide II 
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(AIP) abolished these effects [41]. These animals also did 
not show an increase of overall CaMKII expression, but in 
this case CaMKII activity, as assessed by P-Thr287-CaMKII 
and P-Thr17-PLN, was increased. In human skeletal muscle, 
P-Thr287-CaMKII is increased as early as 5 min after the 
start of the exercise, and activity is increased after 40 min 
[80]. Endurance training of human skeletal muscle also 
increases P-Thr287-CaMKII and activity, but here P-Thr17-
PLN was unaltered [79]. Currently, there is no satisfactory 
answer to these seemingly contradictory results, but in these 
studies CaMKII activity has been measured in different and 
indirect assays, and exercise regimens were different, which 
could explain the discrepancies.

Another beneficial function of CaMKII is that recovery 
from acidosis depends on acute CaMKII activation. Acido-
sis, the lowering of pH, which can be of clinical significance 
during myocardial infarction and cardiac ischemia, decreases 
contractile performance and alters intracellular calcium 
handling [68]. On the electrophysiological level, acidosis 
increases extrusion of H+ from the cardiomyocyte by the 
Na+/H+ exchanger, which increases intracellular [Na+]. This, 
in turn, increases diastolic [Ca2+]i through the reverse mode 
of NCX. In cardiomyocytes, this activates CaMKII, which 
can then phosphorylate PLN to increase Ca2+ re-uptake by 
SERCA2a, ultimately leading to increased SR Ca2+ content 
and increased Ca2+ transients [60]. The increase in Ca2+ 
transients is pivotal in overcoming the decreased contractil-
ity during acidosis, and CaMKII activation has proven to 
be necessary for this coping mechanism, both in vitro and 
in vivo [65, 68]. However, acute activation of CaMKII also 
has adverse effects; for example, ethanol and doxorubicin 
can acutely activate CaMKII, which ultimately leads to an 
increased SR Ca2+ leak that seems to be pro-arrhythmic [64, 
82]. Ethanol and doxorubicin both increase ROS produc-
tion, which consequently can activate CaMKII by oxidation. 
Activated CaMKII is known to promote diastolic SR Ca2+ 
leak, for example by hyperphosphorylation of RyR2, which 
increases the open probability of the channel. Ultimately, 
this can repress Ca2+ transients and contractility and serve 
as a basis for arrhythmogenic effects. It must be noted that 
CaMKII and protein kinase A (PKA) share a number of 
phosphorylation targets, among which are RyR2 and PLN 
[23, 110]. RyR2, for example, can be phosphorylated by 
CaMKII at Ser2815 and by PKA at Ser2809, and both phos-
phorylation events increase the open probability of the RyR2 
channel and are therefore pro-arrhythmic. Fisher et al. have 
recently shown that during hypertrophy, both CaMKII- and 
PKA-dependent phosphorylations of RyR2 are increased, 
which may induce SR Ca2+ leak, but during the transition 
from hypertrophy to heart failure, only CaMKII-dependent 
phosphorylation of RyR2 is increased [23]. Discussing the 
differential roles of CaMKII vs. PKA in the regulation of 
their phosphorylation targets is beyond the scope of this 

review, but extensive literature on this subject exists (see 
for example Johnston et al. [37] or Marx et al. [57]).

Nevertheless, the beneficial sides of short-term or acute 
activation of CaMKII need not be disregarded, and further 
studies are needed to unravel the relative contributions of 
CaMKII in the different phases of the adaptive response of 
heart and skeletal muscle to physiological stress. It will be 
interesting to identify and investigate the targets of CaMKII 
at different time points after physiological stimuli, to discern 
what mechanisms, be it calcium cycling remodeling, gene 
regulation, or metabolic remodeling, are most prominently 
affected.

The role of CaMKII in apoptosis 
and necroptosis

While apoptosis (or programmed cell death) is an important 
physiological mechanism of well-ordered organ develop-
ment, it is also one of the pathophysiological hallmarks of 
myocardial remodeling in heart failure where it entails detri-
mental effects on cardiac contractility through cell loss [40]. 
The role of CaMKII in apoptotic signaling in non-cardiac 
cancer cells was first published by Wright et al. [108] and, 
a few years later, Zhu et al. demonstrated that CaMKII was 
essential for cardiomyocyte apoptosis after beta-adrenergic 
overstimulation [119]. Since then, a huge body of work sup-
ports the pro-apoptotic properties of CaMKII signaling as 
recently reviewed by Feng and Anderson [22]. However, 
these experiments were mostly done using chemical or pep-
tide-based kinase inhibition (AIP, KN-93, AC3-I), which 
are prone to several limitations (as discussed in [105]). In 
these studies, CaMKII inhibition seemed to be clearly anti-
apoptotic. However, new studies indicated different roles 
of CaMKIIδ splice variants in apoptosis, when Peng et al. 
and Little et al. confirmed pro-apoptotic properties only for 
CaMKIIδC, but unexpectedly found anti-apoptotic properties 
for CaMKIIδB after oxidative and doxorubicin-induced myo-
cardial damage [51, 74]. This seemingly clear-cut picture 
of good and evil became muddled when our group aimed 
to dissect the individual roles of CaMKIIδ, CaMKIIγ and 
especially the CaMKIIδC and δB splice variants after experi-
mental ischemia/reperfusion (I/R) injury [105], which is a 
potent driver of apoptosis [16]. Using this model, our group 
was unable to detect a CaMKII-dependent effect of either 
isoform or splice variant. In contradiction, Ling et al. dem-
onstrated a clear increase of apoptotic cell death after I/R, 
which was abrogated by CaMKIIδC knockout [50]. There-
fore, in I/R damage the role of CaMKII signaling must be 
considered unresolved.

In contrast to apoptosis, necrosis was long thought to be 
a passive non-ATP-dependent process of cell death, usu-
ally triggered upon, e.g., hypoxia. However, under certain 
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circumstances, even the chaotic process of necrosis may 
underlie some cellular control. This regulated form of necro-
sis has therefore been termed necroptosis as a portmanteau 
of necrosis and apoptosis [46]. Necroptosis can be triggered 
by activation of receptor-interacting protein 3 (RIP3), a pro-
tein phosphokinase that has CaMKII as a substrate [118]. 
This is a unique finding, as CaMKII was previously not 
known to be phosphorylated by any other kinase than itself. 
Disruption of RIP3 or CaMKII signaling leads to a marked 
reduction of cell death after I/R or doxorubicin treatment. 
CaMKII was previously suggested to influence the opening 
of the mitochondrial permeability transition pore (mPTP) by 
increasing inner membrane mitochondrial calcium uniporter 
currents (IMCU), leading to depolarization of the mitochon-
drial inner membrane and ultimately cell death [38]. It may 
be speculated that through its involvement in necroptosis, 
CaMKII may also play a regulative role, possibly by prevent-
ing uncontrolled necrosis during cardiac injury.

CaMKII signaling in inflammation

Recent works have placed CaMKII signaling in the mid-
dle of inflammatory processes. In immune cells, CaMKII 
plays a major role in the activation of T cells and the forma-
tion of T cell memory mirroring the function of CaMKII 
in memory formation in the brain [9, 10, 66]. Furthermore, 
CaMKII signaling in the immune system was found to be 
responsible for the pro-inflammatory cytokine production 
in macrophages [52, 75] and for dendritic cell function [32]. 
CaMKII activity is also associated with the propagation of 
asthmatic bronchitis through pro-inflammatory action in the 
airway epithelium, smooth muscle cells and mast cells and 
this was mostly ROS dependent [84, 86]. However, CaMKII 
can also be activated downstream of inflammatory stimuli 
such as toll-like receptor (TLR) activation [91] or interleu-
kin-10 (IL-10) signaling [75].

In the heart, CaMKII signaling is intricately involved 
in the propagation of ischemic and reperfusion-associated 
damage to the heart muscle, thereby influencing the degree 
of inflammatory response and, thus, scar formation and 
cardiac function. The importance of CaMKII in these pro-
cesses, however, has been under debate, and opposing results 
have been reported. Some work on this subject was done 
by the group of Joan Heller Brown, where in the wake of 
60 min ischemia with following reperfusion for up to 24 h, 
cardiomyocyte-CaMKII was discovered to phosphorylate 
and thereby activate I kappa B kinase (IKK), leading to 
de-repression of nuclear factor kappa B (NF-κB), a central 
regulator of inflammation [49]. This effect could be dimin-
ished by inhibition of IKK, as well as genetic deletion of 
CaMKIIδ, leading to reduced infiltration of the ischemic 
muscle area by macrophages and eventually resulting in 

attenuated scar size and improved pump function. In a 
follow-up study, the respective roles of the splice variants 
δB and δC in the setting of injury/reperfusion (I/R) damage 
were examined [25]. Mice that overexpressed CaMKIIδC in 
a background of global CaMKIIδ deletion showed increased 
infarct size and systolic dysfunction. The opposite was 
observed in mice with isolated CaMKIIδB overexpression, 
where infarct size was even smaller than in the complete 
CaMKIIδ KO, an observation that strengthens the notion that 
CaMKIIδB can exert protective effects through suppression 
of cardiomyocyte apoptosis [51, 74]. Furthermore, it was 
shown that the activation of the CaMKIIδC–IKK–NF-κB 
axis leads to increased expression of tumor necrosis factor 
alpha (TNFα), and inhibition of either IKK or TNFα was 
sufficient to reduce infarct size [25]. This pathway was pre-
viously also implied in other models of cardiac disease [89, 
90]. However, it must be noted that clinical trials, examin-
ing the potential of a blockade of the mentioned pathways 
in the setting of myocardial infarction or heart failure so far, 
were disappointing, both for NF-κB inactivation through the 
administration of glucosteroids [11] and after treatment with 
the TNFα blocker etanercept [56, 71].

However as mentioned above, in a similar I/R study 
from our group, Weinreuter and co-workers did not observe 
a difference in infarct size or apoptosis 1 day after I/R in 
CaMKIIδ KO, CaMKIIγ KO and CaMKIIγ/δ DKO mice, 
and also after re-expression of CaMKIIδB or CaMKIIδC. 
Only at 5 weeks after I/R, CaMKIIγ/δ DKO mice showed 
a reduced infarct size and improved cardiac function. This 
effect was associated with attenuated leukocyte infiltration 
and chemoattractant signaling in the hearts of CaMKIIγ/δ 
DKO mice, in particular in the time period from 1 to 
5 days after I/R. Specifically, loss of CaMKII decreased 
the cardiomyocyte-intrinsic expression and secretion of the 
chemokines C–C motif ligand (CCL) 2 and 3, and thereby 
decreased scar area through diminished attraction of inflam-
matory cells (Fig. 2) [105]. The discrepancy between these 
studies may be due to the utilization of different KO strate-
gies or the dissimilar genetic background of the animals, and 
future studies to investigate the potential reasons underlying 
the different results are needed. Since still little is known 
about CaMKII in the setting of chronic post-ischemic heart 
failure after the cessation of acute inflammatory processes, 
further research into the role of CaMKII in chronic post-
ischemic heart failure is urgently warranted. The inflamma-
tory processes that occur in the heart after MI have different 
stages, with different cell types involved, and the chemoat-
tractant CCL2 is needed in the first stage to attract Ly-6Chigh 
monocytes [97]. Ly-6Chigh monocytes are required during 
the initial response, but can be detrimental if they persist 
too long [97]. Increased understanding of these processes, 
and how CaMKII is involved, might lead to new CaMKII-
based therapeutic strategies that point to a specific treatment 
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period after ischemic injury which aims to avoid infiltration 
of specific subsets of leukocytes into the myocardium.

CaMKII may also play an ambiguous role in angiogen-
esis during inflammatory conditions. Westra et al. showed 
that inhibition of CaMKII leads to reduced expression of 
hypoxia-inducible factor 1α (HIF-1α) in macrophages, 
thereby also decreasing the expression of vascular-endothe-
lial growth factor (VEGF) and possibly reducing angiogen-
esis [106]. Additional evidence was recently provided by 
Banumathi et al., who showed that retinal angiogenesis is 
critically dependent on CaMKII, and inhibition of CaMKII 
with KN-93 decreased retinal angiogenesis [6]. However, 
after myocardial infarction, increased angiogenesis is highly 
desirable [85] and a potential therapeutic CaMKII inhibition 
might be disadvantageous regarding revascularization and 
collateralization of hypoxic areas.

CaMKII in infectious disease

Of note, CaMKII signaling was discovered to be involved 
in the progression of Chagas’ disease by enabling heme-
induced cell proliferation of the Trypanosoma cruzi epi-
mastigotes [67, 94]. Chagas disease is a potentially deadly 

disease afflicting many Latin American regions and its 
incidence is currently rising due to increased population 
mobility and non-vectorial transmission [76, 83]. Very 
limited therapeutic options are available for the treatment 
of this disease, especially during its chronic phase [83]. 
Here, pharmacological inhibition of CaMKII might there-
fore serve as a potential anti-infective strategy. An interest-
ing question arising from this observation is whether CaM-
KII signaling might also be involved in the propagation of 
Chagas-associated cardiomyopathy that develops in up to 
30% of patients [100], considering that an effect of T. cruzi 
on cardiomyocyte calcium handling is already known [7]. 
This thought is especially tantalizing, as it was shown that 
the related Trypanosoma brucei, which may also confer 
myocardial disease, can directly induce CaMKII-mediated 
proarrhythmogenic SR calcium leak in cardiomyocytes 
[17] and an upregulation of the chemokines CCL2 and 
CCL3 was found in T. cruzi-associated cardiomyopathy 
[53], which, we know now, is driven by CaMKII [105]. 
Combining Chagas disease with CaMKII conditional KO 
mouse models might answer this intriguing question in 
the future.

Conclusions

The role of CaMKII as a promoter of adverse cardiac 
remodeling, dysfunction, arrhythmia and inflammatory 
processes is relatively clear. However, its role in the car-
diovascular physiology in response to benign stress, e.g., 
endurance training, is a more ambiguous one. In addi-
tion, some works even describe cardioprotective effects 
of CaMKII activation under certain pathological stimuli, 
and the essential roles of CaMKII outside the heart should 
not be ignored, as these poorly understood effects could 
have a huge impact on drug development programs and 
would favor a CaMKII target-specific approach over enzy-
matic CaMKII inhibition. Overall, the beneficial effects of 
acute or short-term activation should not be disregarded 
and, though the maladaptive effects of sustained CaMKII 
activation are well studied, future studies are needed to 
discern if CaMKII really is the foe it has been made out 
for or maybe has a more acute, but neglected friendly side.
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Fig. 2   CaMKII mediates chemokine expression and secretion in/from 
cardiomyocytes. In response to sustained catecholaminergic stress or 
ischemia/reperfusion (I/R) injury, CaMKII increases expression and 
potentially secretion of chemokine ligands such as CCL2/3 either 
dependent or independent of NF-κB signaling. This figure merely 
illustrates a very specific role of CaMKII and for a more general over-
view of all CaMKII functions, we would like to direct the reader to 
[31, 58]
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