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SUMMARY

Metabolic reprogramming is a defining feature of pancreatic cancer, influencing tumor progression and the 
tumor microenvironment. By integrating single-cell transcriptomics, spatial transcriptomics, and spatial me- 
tabolomics, this study visualized the spatial co-localization of metabolites and gene expression within tumor 
samples, uncovering metabolic heterogeneity and intercellular interactions. Spatial transcriptomics identi- 
fied distinct pathological regions, which were further characterized using single-cell transcriptomic data 
and pathologist annotations. Pseudotime trajectory analysis revealed metabolic shifts along the malignant 
progression, while single-cell Metabolism (scMetabolism) delineated metabolic differences between patho- 
logical regions, classifying them as hypermetabolic or hypometabolic. Notably, aberrant cell communication 
between cancer cells, macrophages, and fibroblasts was observed, with key receptor-ligand pairs signifi- 
cantly co-expressed in malignant regions and correlated with poor prognosis. Spatial metabolomics imaging 
identified signature metabolites, highlighting metabolic alterations in amino acid metabolism, polyamine 
metabolism, fatty acid synthesis, and phospholipid metabolism. This integrated analysis provides critical in- 
sights into pancreatic cancer metabolism, offering potential avenues for targeted therapeutic interventions.

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant 

tumor with a poor prognosis. It has the characteristics of insid- 

ious onset, difficulty in early diagnosis, rapid progression, and 

frequent local invasion and distant metastasis. 1 In recent years, 

the incidence and mortality of pancreatic cancer have continued 

to rise worldwide. The latest statistics from the American Cancer 

Society show that in 2024, it is expected that the number of new 

cases of pancreatic cancer in the United States will reach 

66,400, and the number of deaths will exceed 60,000. The overall 

five-year survival rate is less than 9%, ranking fourth among pa- 

tient deaths caused by malignant tumors. It is expected that by 

2030, pancreatic cancer will rank second in malignant tumor- 

related deaths in the United States. 2 There is an urgent need to

develop accurate and effective comprehensive diagnosis and 

treatment strategies for pancreatic cancer. 3 

Metabolic reprogramming has gradually been recognized as 

one of the hallmarks of cancer. It refers to the adaptive changes 

in the balance of anabolism and catabolism that occur in tumor 

cells during malignant proliferation in order to meet the large de- 

mand for substances and energy. This allows tumor cells to gain 

a survival advantage in the nutrient-poor tumor microenviron- 

ment (TME) caused by rapid proliferation. 4 Since the discovery 

of the Warburg effect by Otto Warburg in the early 20th century, 

the study of tumor metabolism has begun. The various metabolic 

reprogramming mechanisms of tumor cells have been gradually 

elucidated, and they can use non-traditional pathways to pro- 

mote growth and proliferation and serve as raw materials for 

the de novo synthesis of nucleic acids, lipids, and proteins.
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People have gradually discovered that tumor metabolism is an 

overall change in the metabolic network at multiple levels, and 

the metabolic interactions between tumors and surrounding 

cells have a significant impact on cancer progression and anti- 

tumor immune response. In-depth research on metabolic disor- 

ders in the occurrence and development of pancreatic cancer, 

finding metabolic differences and key targets, clarifying the mo- 

lecular mechanisms that regulate metabolic reprogramming in 

pancreatic cancer, and targeted intervention of key regulatory 

molecules in the metabolic reprogramming process are ex- 

pected to become new diagnostic targets and therapeutic 

strategies. 

However, due to the complexity of the cellular metabolic 

network, the heterogeneity of the TME, and the diversity of 

intercellular metabolic communication, it is still challenging to 

visualize tumor metabolic reprogramming and intercellular inter- 

actions from a spatially resolved multi-omics level. The develop- 

ment of new technologies in recent years has made this possible. 

Spatial transcriptomics (ST) can obtain transcriptome expres- 

sion profiles at a resolution close to the single-cell level while re- 

taining the spatial location information of each cell on the tissue 

section. At the same time, combining scRNA-seq data for anno- 

tation can further clarify and explore the relationship between 

various types of cells in the TME. In addition, the gradually devel- 

oped spatial metabolomics (SM) based on airflow-assisted 

desorption electrospray ionization-mass spectrometry imaging 

(AFADESI-MSI) can identify small molecule metabolites in tissue 

sections at micron resolution with high throughput while retain- 

ing spatial location information. In this study, we adopted the 

above-mentioned comprehensive spatially resolved multi-omics 

approach to elucidate the main metabolic reprogramming that 

occurs in PDAC at the metabolic and transcriptional levels, and 

at the same time gain a deep understanding of the biochemical 

heterogeneity within the tumor and its key role in tumor growth 

and development.

RESULTS

The ST profiles of PDAC reveal intratumor heterogeneity 

To investigate the spatial multi-omics characteristics of pancre- 

atic cancer tissue and reveal key molecular events in the process 

of malignant transformation, we collected fresh tissue samples 

from 6 patients who were clinically diagnosed with pancreatic 

cancer and underwent surgical resection (Table S1). Consecu- 

tive frozen slices were prepared according to the protocol and 

stained with H&E. Based on H&E staining, experienced patholo- 

gists selected representative areas of the samples containing 

malignant tumors, acinar or normal ductal epithelium, immune 

infiltration areas, and stromal tissue. According to the maximum 

slice area detected by the platform, two adjacent continuous sli- 

ces of tissue were selected for SM analysis with a size of 

10 × 10 mm and ST analysis was further performed on a repre- 

sentative area with a size of 6.5 × 6.5 mm. 

The schematic diagram of the sample collection and spatial 

multi-omics integrated analysis process is shown in the figure 

(Figure 1A). By using the 10× Genomics Visium platform for 

ST (Figure S1A), a total of 25,928 spots were detected from 6 

samples, with an average of 35,391 unique molecular identifiers

(UMIs) per spot, representing 6,127 genes. After integrating and 

normalizing the spots of each sample, unsupervised clustering 

analysis was performed using uniform manifold approximation 

and projection (UMAP), and the results showed that there 

was no obvious batch effect between samples (Figure S1C). 

All spots in the 6 samples were divided into 16 clusters 

(Figure 1B), and different sub-regions were divided according 

to the spatial distribution of each spot on the tissue section 

and the tissue pathological structure (Figure S2). Among 

them, the malignant region is mainly located in the tumor region, 

including several clusters (C2, C4, C5, C10, and C11); the 

normal region is mainly located in the acinar and normal duct 

epithelial area, including some clusters (C3, C6, and C9); the 

stroma region is mainly located in the tumor stroma and con- 

nective tissue area, including some clusters (C1, C8); the im- 

mune region is mainly located in the immune infiltration area, 

mainly including cluster 7. 

Next, we annotated the biological characteristics of each clus- 

ter based on the top 10 differentially expressed marker genes, 

revealing transcriptional similarities between different subtypes 

(Figure S1D). Specifically, in cluster 1, we found that the chemo- 

kine CCL19 produced by fibroblasts and markers of tumor-asso- 

ciated fibroblasts such as SFRP1, PI16, and ADH1B were signif- 

icantly expressed. Correspondingly, in cluster 8, we can find that 

SGCA is significantly expressed, which is considered to be a 

marker of pancreatic stellate cells (PSCs). In cluster 3, we can 

observe the upregulation of pancreatic acinar-related genes 

FGL1 and AMY2A; and in cluster 6, in addition to FGA and 

FGG related to alpha cells, SERPINA6 related to ductal cells is 

also significantly upregulated. In cluster 7, multiple macro- 

phage-related markers were upregulated, such as LY86, 

AQP9, and BCL2A1. In addition, we also show the markers of 

corresponding cell types in other clusters (Figure S3). 

In summary, we identified 16 different clusters for PDAC tis- 

sues and divided them into four different regions including malig- 

nant region, normal region, stromal region, and immune region. 

By combining transcriptome data with spatial information and 

corresponding histopathological features, we laid the foundation 

for further analysis of cell type diversity, cell evolution, and inter- 

cellular communication.

Spatio-temporal evolution model of PDAC 

According to previous literature, there are different hypotheses 

about the progression of pancreatic cancer. We constructed a 

spatiotemporal evolution model based on the transcriptional 

profile during the progression from acinar to malignant ductal 

cells. Because the spatial resolution of ST is limited, we inte- 

grated the scRNA-seq data previously published by our center 

(PRJCA001063) 5 and performed SPOTlight analysis on each 

spot (Figure S4A). 

First, we re-annotated the cell types on the PRJCA001063 

data and obtained 10 cell types, including acinar cell, ductal 

cell type 1, ductal cell type 2, endocrine cell, endothelial cell, 

fibroblast cell, macrophage cell, stellate cell, B cell, and T cell, 

as well as their characteristic gene expression features. Then, 

we deconvoluted the 10 cell types for each spot in the ST data 

and visualized the top 1 (Figure S4B) and top 2 (Figure S4C) cells 

in each spot. At the same time, we calculated the proportions of
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various cells in different spots corresponding to clusters 

(Figure S4D) and the interactions among different cell types 

(Figure S4E), reflecting the complex TME and intercellular

communication of pancreatic cancer. In addition, we visualized 

the different cell types in the tissue sections of each patient 

(Figure S5).
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Figure 1. Flow chart and spatial transcriptomic landscape of pancreatic cancer

(A) Schematic diagram exhibiting the detection and analysis of ST and SM in pancreatic cancer.

(B) Unsupervised clustering analysis UMAP divided all spots from six samples into 16 clusters.

(C) H&E staining images (left), UMAP plots (middle), and ST feature plots (right) of 16 clusters in six samples.

(D) The tissue of six samples was divided into four regions based on the histopathological features, including malignant, normal, immune, and stroma regions. 

H&E staining images (left), ST images of spots with tissue regions annotated by different colors (middle), and the proportion of spots and corresponding clusters in 

each tissue region (right) were presented, respectively.

(E) ST feature plots showing the expression of representative marker genes in each spot of different tissue regions.
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Figure 2. Pseudotime analysis, scMetabolism, and cell communication reveal metabolic reprogramming and interactions

(A) Trajectory reconstruction of PDAC consisted of three branches: pre-branch (before bifurcation), T1 branch (bottom), and T2 branch (top). Each point cor- 

responds to a spot.

(legend continued on next page)
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To explore the spatiotemporal transcriptomic characteristics 

of pancreatic cancer malignant transformation, we selected a to- 

tal of 17,398 spots (mainly clusters 2, 3, 4, 5, 6, 10, and 11) from 

malignant and normal regions (Figure S6) and used Monocle2 for 

pseudotime analysis, while other clusters were excluded from 

subsequent pseudotime analysis due to lack of epithelial cell dis- 

tribution or small number of spots. We constructed the malignant 

progression trajectory of PDAC (Figure 2A), in which the initiation 

(front branch) of PDAC occurred in the acinar (from clusters 3 and 

6). Cluster 2 and cluster 5 play a decisive role in influencing the 

evolutionary direction of branch 1 and branch 2. 

To further explore the temporal and functional differences in 

the malignant trajectory of pancreatic cancer, we attempted to 

annotate the differentially expressed genes (DEGs) in the spots 

on the two branches. Pre-branch mainly shows biological func- 

tions of pancreatic secretion and insulin secretion. Enrichment of 

metabolism-related pathways (such as fatty acid degradation, 

taurine, and hypotaurine metabolism, and several amino acid 

metabolism pathways) can also be observed. In branch 2, tumor 

cells show significant enrichment of cell cycle, RNA transport, 

and translation-related genes. In terms of metabolism, module 

2 can be enriched in glycerolipid metabolism, but module 3 is en- 

riched in oxidative phosphorylation and TCA cycle, suggesting 

that metabolic heterogeneity seems to exist even in tumor cells. 

The branch is more like an acinar-ductal metaplasia (ADM) state, 

functionally combining the characteristics of both, with signifi- 

cant enrichment of glycosaminoglycan biosynthesis (Figure 2B).

ST reveals metabolic heterogeneity and cellular 

interactions in PDAC 

Based on the suggestion that pancreatic cancer progression 

may be accompanied by metabolic reprogramming, we evalu- 

ated the metabolic activity of each spot according to the patho- 

logical regions using scMetabolism and observed significant dif- 

ferences between the different partitions (Figure S7). 

In addition, we performed functional variation analysis based 

on SM, calculated the scores of related pathways at each 

pixel, and visualized them. Subsequently, we selected four 

metabolic pathways (glycolysis/gluconeogenesis, pentose 

phosphate pathway, oxidative phosphorylation, and glutathione 

metabolism) based on the consistent trends and biological 

behavior of ST and SM (Figure S8). The metabolic scores of 

the four pathways were calculated by scMetabolism, and the 

average metabolic score was used as the metabolic feature, rep- 

resenting the metabolic activity of each spot in the tissue. All 

spots were clustered into two categories: hypermetabolism 

and hypometabolism (Figures 2C–2E). Cell types have different 

metabolic tendencies. For example, macrophages and ductal 

cell type 2 tend to accumulate in hypermetabolism regions, while 

fibroblasts do the opposite. We found that even in the malignant

region, there was a relatively high and low metabolic activity, and 

we further explored the communication in different metabolic re- 

gions and the mechanism of metabolic subtypes of PDAC. 

Communication between different cells in TME is the main 

mechanism of interaction, so we analyzed the cell-cell interac- 

tions in different metabolic regions. We found that the communi- 

cation intensity between macrophages, fibroblasts, and ductal 

cell type 2 in the hypermetabolism region was significantly higher 

than that in the hypometabolism region. Then we used the 

ligand-receptor analysis algorithm CellChat to perform ligand- 

receptor interaction analysis on the above cells. We screened 

out the ligand-receptor pairs with significant interactions in the 

hypermetabolism region (Figure 3A). The expression pattern of 

representative ligand-receptor pairs was displayed by ST 

(Figure 3B). We performed a clinical relevance analysis on the 

representative ligand-receptor pairs in the PAAD data from 

TCGA and found that the ligand-receptor pairs represented by 

ADGRE5-CD55, AGRN-DAG1, EFNA1-EPHA2, COL1A1-CD44, 

THBS1-SDC4, and LGALS9-CD44 were expressed at a higher 

level in tumor tissues compared with normal tissues, and the 

high expression of ligand-receptor pairs was associated with 

poor prognosis (Figures 3B and S9–S11). 

In addition, we also performed SECNIC analysis on duct cell 

type 2 cells in hypermetabolic and hypometabolic regions to 

explore potential driving factors (Figure S12). There are notable 

differences in the regulon activity scores (RAS) between regions. 

In the hypermetabolic regions, regulators such as SREBF2, 

SREBF1, and NHF4A show increased activity. In contrast, the 

hypometabolic regions exhibits higher activity scores for 

RBPJL, IRF3, and NR5A2 (Figures S12A and S12B). In the regu- 

lon specificity score (RSS) analysis, CEBPA and PTF1A regula- 

tors appear to be specifically associated with the hypermetabol- 

ic and hypometabolic regions, respectively (Figure S12C). 

Subsequently, association clustering was performed, and the 

connection specificity index (CSI) was used to assess the rela- 

tionships between different regulons. Modules 1 and 3 exhibit 

similar gene expression patterns, while modules 2 and 4 show 

a trend of differentiation (Figures S12D and S12E).

SM atlas reveals metabolic reprogramming in PDAC 

We established the SM landscape of PDAC using the AFADESI- 

MSI platform (Figure 4). We annotated the m/z information with 

metabolites, annotating 522 and 642 metabolites in the cation 

and anion modes, respectively (Table S2). Spatial shrunken cen- 

troids clustering (SSCC) was performed on the quantitative ma- 

trix to visualize the clustering results of the overall expression 

levels of differential metabolites in different tissue regions. All de- 

tected variables were decomposed into 15 clusters to reveal the 

main spatial characteristics of tissue metabolites, indicating that 

there is significant intratumor metabolomic heterogeneity in

(B) BEAM heatmap plot displaying the expression patterns of pseudotime-specific genes and the corresponding GO pathway terms (hierarchically clustered into 

three profiles) in the malignant trajectory.

(C) Heatmap shows the metabolic score representing glycolysis, pentose phosphate pathway, oxidative phosphorylation, and glutathione metabolism for each 

region. All spots were categorized into two clusters based on their metabolic activity: hypermetabolic, and hypometabolic.

(D) Deconvolution results indicate the proportion of representative cell type of each spot in different types of metabolic regions.

(E) Representative spatial transcriptomic tissue slides show the spatially projected metabolism clusters.

(F) Heatmap showing the counts and strength of cell-cell communication between different cell types in the two metabolic regions.
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pancreatic cancer tissues (Figures S13A–S13G). According to 

the histopathological structure of HE staining and combined 

with the SSCC clustering results, the target area was selected 

for subsequent analysis. 

By using orthogonal partial least squares discriminant analysis 

(OPLS-DA), we identified differentially enriched metabolites 

(DEMs) within each region, and some metabolites were signifi- 

cantly different in the malignant region compared to other re- 

gions. We then displayed the top 50 most significantly different 

m/z within each region (Figure S14). We visualize some of these 

representative metabolites. 

The Warburg effect is one of the most typical metabolic 

changes in tumor cells. Through the presentation of carbohy- 

drate metabolism (Figure S15), we found that the content of

glucose (m/z 215.0329) in the malignant region increased signif- 

icantly, and lactic acid (m/z 89.0242) was also significantly en- 

riched, both of which reflected the characteristics of rapid glycol- 

ysis metabolism in tumor cells. However, at the same time, some 

metabolites such as acetic acid (m/z 96.9702) and malic acid 

(m/z 168.9903) also increased in the malignant region, but there 

was metabolic heterogeneity. 

Amino acid metabolism plays an important role in pancreatic 

tissue metabolism (Figures S16 and S17). Due to the functional 

characteristics of pancreatic acinar cells, some amino acids 

tend to be enriched in normal regions, such as glycine (m/z 

74.0249), alanine (m/z 88.0401), proline (m/z 114.0570), and argi- 

nine (m/z 347.21552). Glutamine (m/z 145.0615) is the main 

source of carbon and nitrogen for cancer cells, which can be
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Figure 3. Interactions between cell types in different metabolic regions and potential clinical significance

(A) Dot plots showing ligand–receptor pairs that are significantly expressed in hypermetabolic regions.

(B) ST feature plots exhibiting the expression level and spatial distribution of representative ligand–receptor pairs. The correlation between transcriptomic level 

and prognosis were also presented.
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converted to glutamate (m/z 146.0431) in mitochondria. It is up- 

regulated in the malignant region compared to other amino 

acids, but still lower than the normal region, and there is hetero- 

geneity between individuals and within tissues. Aggressive tu- 

mor tissues are characterized by higher glutamine consumption, 

so the availability of glutamine in tissues is low. 6 In addition, 

amino acid metabolites such as ornithine (m/z 131.0831) were 

significantly accumulated in the malignant region, suggesting a 

possible active polyamine metabolic signature. In the stroma 

and immune regions, enriched histidine (m/z 112.0876) was 

observed, which is believed to be related to the immunosuppres- 

sive microenvironment. 

Lipid metabolism can meet the high energy demand of tumor 

cell proliferation (Figures S18–S22). Lipid metabolism can meet

the high energy demand of tumor cell proliferation. Free fatty 

acids represented by palmitic acid (FA 16:0, m/z 255.2321) and 

stearic acid (FA 18:0, m/z 305.2477) are significantly downregu- 

lated in malignant regions, which may regulate cell apoptosis. 7 

Phospholipids are important components of the cell membrane 

system, and there is usually significant phospholipid metabolic 

reprogramming during tumor progression. PC (32: 1) (m/z 

754.5372) and others are enriched in the malignant region, while 

PG (38: 0) (m/z 851.5768) and LysoPC (16: 0) (m/z 518.3215) etc. 

are enriched in the normal region. Interestingly, PC (35: 4) (m/z 

766.5343), PI (36: 1) (m/z 885.5453), and PS (38: 3) (m/z 

794.5369) etc. are enriched in the stroma/immune region. 

In terms of nucleotide metabolism (Figure S23), urate (m/z 

167.0215) and inosine (m/z 267.0747) were significantly
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Figure 4. Spatial metabolomic atlas of pancreatic cancer

(A and B) MSI images showing the abundance and distribution of representative metabolites and m/z information in each histopathological region in negative 

pattern (A) and positive pattern (B). 

(C) MSI images exhibiting the abundance of representative differential metabolites in different regions.
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upregulated in all malignant regions, while adenine (m/z 

134.0466) was relatively reduced. We also visualized some other 

metabolites (Figure S24), such as taurine (m/z 124.0069) was 

significantly enriched in malignant regions, while ascorbic acid 

(m/z 175.0238) was the opposite.

Integrative analysis of amino acid metabolism disorders 

Amino acid metabolism can affect cancer cell status and sys- 

temic metabolism through energy metabolism and signal trans- 

duction. The synthesis or consumption of amino acids is the 

result of a complex interaction between tissue-specific gene 

expression programs, dietary consumption, and local consump- 

tion/secretion rates. This results in the intrinsic complexity of 

amino acid metabolism. Glutamine is the amino acid with the 

highest consumption rate in PDAC cells, with a higher abun- 

dance than other amino acids. Glutamate occupies a central po- 

sition in the amino acid metabolism network because it can 

affect the biosynthesis of proline, aspartate, alanine, and serine. 

Related genes such as GOT2, ALDH18A1, PYCR, and PSPH 

show an upregulated trend, but GPT, GLS, and GLUL do not 

show significant differences between regions. Aspartate is 

further used to generate asparagine, and ASNS enrichment 

can be observed in malignant regions, which is then used to 

generate arginine through the urea cycle. Serine provides methyl 

groups for single-carbon metabolism and generates glycine in 

the process. SHMT2 also shows an up-regulated trend. Serine 

can also be used in the trans-sulfurization pathway to generate 

cysteine (Figures 5A and 5B). 

Polyamine metabolism is one of the important nitrogen-con- 

taining metabolic pathways, which plays a role in various malig- 

nant biological processes by regulating tumor cell metabolic flux 

and participating in epigenetic modification. Metabolites and en- 

zymes related to polyamine metabolism show specific distribu- 

tion in malignant regions, which may drive malignant progres- 

sion. In the urea cycle (responsible for the upstream anabolism 

of polyamines), ARG1 and OTC are expressed at low levels, 

while ASS1 and ASL are the opposite. This shows the depen- 

dence of pancreatic cancer tissue on arginine. The increase in 

ornithine aminotransferase (OAT) suggests that the glutamate- 

proline metabolic pathway is a potential ornithine compensation 

pathway. Upregulated spermidine/spermine N1-acetyltransfer- 

ase 1 (SAT1) and downregulated polyamine oxidase (PAOX) indi- 

cate that N 1 -acetylspermidine and N 1 -acetylspermine tend to be 

excreted from cells rather than replenishing spermidine and pu- 

trescine. At the same time, there are differences in spatial distri- 

bution and abundance between the two, suggesting that there 

are differences in demand (Figures 5C–5F).

Integrated analysis of lipid metabolism and gene 

expression 

The role of lipid metabolic reprogramming in tumors has been 

increasingly revealed (Figure 6A). ACC and FASN catalyze the 

de novo synthesis of fatty acids, which are then desaturated 

and elongated into different types of fatty acids under the ac- 

tion of SCD, FADS, and ELOVL. The above genes are highly ex- 

pressed in malignant regions, but fatty acids are not signifi- 

cantly enriched in abundance. Phospholipids are basic 

components of cell membranes, and their metabolic reprog-

ramming can participate in signal transduction. This study pre- 

sents the spatial characteristics of different phospholipids, 

including phosphatidylethanolamine (PE), phosphatidylserine 

(PS) and phosphatidylinositol (PI), phosphatidic acid (PA), 

phosphatidylglycerol (PG), phosphatidylcholine (PC) and sphin- 

gomyelin (SM), etc. We found that although the content of 

these phospholipids is low, polyunsaturated long-chain phos- 

pholipids often have lower content in malignant regions 

(Figures 6B and 6C). Kennedy pathway and CDP-DG pathway 

are pathways for mutual conversion between phospholipids, 

and most of the genes in them are upregulated in malignant re- 

gions, suggesting active phospholipid remodeling. We then 

found that PLA2G3 and PLA2G4F were highly expressed in ma- 

lignant regions, PLA2G1B in normal regions, and PLA2G2D in 

immune regions, suggesting the phospholipids heterogeneity 

between different regions (Figure 6D). 

Cancer cells can absorb fatty acids through fatty acid trans- 

porters (FATPs), fatty acid translocases (CD36), and fatty acid 

binding proteins (FABPs). We found that CD36 was highly ex- 

pressed in the immune regions, and FATP4 (also called 

SLC27A4) was highly expressed at the boundary between the 

malignant regions and the stromal regions, which may indicate 

their different metabolic requirements.

Integrative analysis of metabolic differences between 

pathological regions 

In addition to using scMetabolism to enrich pathways for 

different pathological partitions in the previous article, we also 

performed enrichment analysis based on DEGs and DEMs in 

ST and SM to find common differential pathways. Significant dif- 

ferences in pancreatic secretion and protein digestion and ab- 

sorption pathways are evident between malignant tumor regions 

and normal tissues, indicating dysregulated pancreatic function 

in malignant areas. Enrichment analysis across multiple data- 

bases further confirmed notable variations in cell junction and 

cell adhesion pathways (Figure S25). Additionally, extracellular 

matrix (ECM)-related pathways differ between malignant tumor 

areas and stromal regions, potentially linked to the fibroprolifer- 

ative TME characteristic of pancreatic cancer. Enrichment 

analyses also revealed dysregulated fatty acid production and 

transport, contributing to the lipid metabolism reprogramming 

observed, suggesting that stromal regions may supply lipid 

‘‘fuel’’ to malignant areas (Figure S26). The immune region ex- 

hibited distinct differences in arachidonic acid metabolism and 

antigen processing and presentation pathways. Pathway enrich- 

ment analysis identified notable immune activity, including 

lysosome, ferroptosis, and phagosome-related pathways, indi- 

cating an immune response aimed at curbing the unchecked 

proliferation of cancer cells. Furthermore, cholesterol meta- 

bolism emerged from multi-omics enrichment analyses, war- 

ranting further investigation (Figure S27). 

Using two specimens collected after neoadjuvant therapy, we 

explored the metabolic reprogramming of malignant and stromal 

regions post-treatment. Malignant areas displayed significant 

differences in glycolysis and pentose phosphate pathways, 

reflecting inhibited tumor proliferation. Interestingly, several 

metabolic pathways, such as central carbon metabolism in can- 

cer, arginine and proline metabolism, protein digestion and
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Figure 5. Visualization of metabolic reprogramming of amino acid metabolism in pancreatic cancer

(A) The interconnected pathways of amino acids (AAs) metabolism. Glutamine and glutamate have a central role and can each be used for the synthesis of other 

AAs. Glutamate can be utilized to generate alanine, aspartate, serine, proline and also histidine. Aspartate is further utilized to generate asparagine. Serine makes 

glycine and donates methyl groups for one-carbon metabolism. Serine can also generate cysteine via the trans-sulfuration pathway. Violin plot show expression 

levels of key genes in amino acid metabolism.

(B) Schematic maps of polyamine metabolism, including urea cycle (blue arrows), polyamine synthetic metabolism (yellow arrows), ornithine salvage synthesis 

(red arrows), polyamine catabolic metabolism (green arrows), and methionine salvage metabolism (brown arrows). 

(C–F) The spatial distribution feature of metabolic products and enzymes in the urea cycle (C), polyamine synthetic metabolism (D), polyamine catabolic 

metabolism (E) and ornithine salvage synthesis (F). 

Symbols: ns. denotes non-statistically significant, * indicates a p-value <0.05, ** represents a p-value <0.01, and *** signifies a p-value <0.001. Data are rep- 

resented as mean ± SEM.
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absorption, and glycolysis/gluconeogenesis, showed consistent 

enrichment across the two specimens, highlighting shared gene/ 

metabolite alterations. Enrichment analysis also suggested that 

angiogenesis and hypoxia responses might underlie the 

observed differences between the two groups (Figure S28). In 

stromal regions, differences in HIF-1 signaling were identified, 

consistent with hypoxia-driven fibrosis. Notably, treatment 

enhanced fatty acid metabolism, altered antigen processing 

and presentation pathways, and influenced immune responses 

(Figure S29) However, the underlying mechanisms require 

further detailed investigation.

DISCUSSION

Metabolic reprogramming is one of the important hallmarks of 

tumor cells, which can meet the synthesis of building blocks 

and energy components required for the malignant progression 

of cancer. However, PDAC often exhibits significant heterogene- 

ity, and the complex communication between tumors and sur- 

rounding normal cells is also crucial for creating a metabolic 

microenvironment. 8 Through ST sequencing based on 10× Ge- 

nomics Visium and scRNA-seq annotation, we can accurately 

identify different tissue structures. MSI-based SM analysis can
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Figure 6. Visualization of metabolic reprogramming of lipid metabolism in pancreatic cancer

(A) Schematic maps of lipid metabolism, including fatty acid de novo synthesis (red arrows), Kennedy pathway (blue arrows), CDP-DG pathway (yellow arrows), 

and Lands cycle (green arrows).

(B) MS images of representative lipids in pancreatic cancer tissues (intensity in color scale is relative value).

(C) Expression levels of representative lipids in different regions of pancreatic cancer tissue.

(D) Spatial expression images of key genes in lipid metabolism (intensity in color scale is log2 transformed). 

Symbols: ns. denotes non-statistically significant, * indicates a p-value <0.05, ** represents a p-value <0.01, and *** signifies a p-value <0.001. Data are rep- 

resented as mean ± SEM.

10 iScience 28, 112681, June 20, 2025

iScience
Article

ll
OPEN ACCESS



analyze metabolites in tissues in situ and perform spatially 

resolved mapping of PDAC-related metabolites. Many studies 

have revealed the metabolic changes that occur during the pro- 

gression of pancreatic cancer from the perspective of transcrip- 

tomics or metabolomics. However, the spatial characteristics of 

metabolic reprogramming in the TME and the key molecular 

events in the malignant progression still need to be further 

explored. The integration of the ST and SM can provide a more 

comprehensive tumor metabolic landscape and help us visualize 

the complex process of tumor metabolic reprogramming. 

In previous literature, SM based on DESI-MSI or MALDI-MSI 

has been carried out in various cancer studies, 9 such as prostate 

cancer, 10 breast cancer, 11,12 lung cancer, 13 colorectal cancer, 14 

and hepatocellular carcinoma. 15 Although it is recognized that 

tumor cells have significant metabolic reprogramming, there is 

heterogeneity in the abundance of metabolites due to the func- 

tional characteristics of different tissues. Especially in pancreatic 

cancer, most metabolites may be present at lower levels in tu- 

mors than in normal tissues, which may be caused by the higher 

frequency of consumption than accumulation. 16 

Some previous studies have also explored the metabolomics 

characteristics of PDAC. For example, several studies have eval- 

uated circulating metabolite biomarkers in serum, 17–19 but they 

may be affected by metabolic-related confounding factors. 

Some studies explore the evaluation of surgical resection mar- 

gins based on metabolites, 20 or metabolomics analysis of pa- 

tient-derived tumor xenografts (PDTX). However, there is still a 

lack of multi-omics research to explain the mechanism of meta- 

bolic reprogramming. Zhang et al. integrated metabolomics and 

transcriptomics to explain the inhibitory effect of fatty acids in 

PDAC 7 ; Wang et al. conducted a very meaningful analysis from 

the perspective of lipidomics. 21 With the development of spatial 

multi-omics technology and the improvement of sequencing ac- 

curacy, it has become possible to visualize metabolism in 

different tissue regions and even between different cells. At pre- 

sent, there is still a lack of in-depth research on the metabolic re- 

programming process and prognostic characteristics of PDAC 

from the spatial multi-omics level. 

Pancreatic acinar cells have the ability to dedifferentiate into 

ductal-like cells, ADM. Under abnormal conditions such as 

oncogene mutations, ductal-like cells continue to over-prolifer- 

ate, forming pancreatic intraepithelial neoplasia (PanIN), which 

can further progress to PDAC. 22–24 We used pseudotime anal- 

ysis to explore metabolic changes in the evolution of pancreatic 

cancer. In the Pre-branch, acinar-based metabolic processes 

dominate, including fatty acid and amino acid degradation, while 

in branch 1, active extracellular matrix remodeling gradually 

emerges. In branch 2, tumor cells exhibit a completely different 

metabolic state, with enhanced metabolic activity that supports 

malignant proliferation, accompanied by enrichment of cell cycle 

and translation genes as well as endocytic activity. This suggests 

that during the progression from acinar to PDAC, significant 

metabolic remodeling occurs. 25,26 

To explore the metabolic heterogeneity of pancreatic cancer, 

scMetabolism, and SM enrichment analysis were performed to 

indicate metabolic activity in pancreatic tissue according to the 

defined pathological regions, and hypermetabolism and hypo- 

metabolism regions were distinguished. Because PDAC pre-

sents a complex TME, intercellular communication may help 

create this metabolic reprogramming. In the hypermetabolism 

region, although there was no significant increase in the overall 

number and intensity, a significant decrease in communication 

with astrocytes was found, accompanied by active communica- 

tion with macrophages and fibroblasts. 

To further explore the metabolic-immune microenvironment, 

we found that some ligand-receptor pairs were significantly 

enhanced in high-metabolism regions and correlated with prog- 

nosis. ADGRE5 (also called CD97) and its ligand CD55 are upre- 

gulated in PDAC, 27 and function at cell-cell contacts, consis- 

tently being slightly upregulated in hypermetabolic regions. 

THBS1 and THBS2 are reported to be associated with ECM 

and angiogenesis inhibition processes in intrahepatic cholangio- 

carcinoma, 28 and THBS1-related intercellular communication 

plays a role in liver fibrosis 29 and contributes to immunosuppres- 

sion and metastasis of colorectal cancer 30 ; THBS2+ cancer- 

associated fibroblasts (CAFs) can promote the invasiveness of 

early lung adenocarcinoma. 31 THY1 (also known as CD90) is a 

marker of fibroblasts, 32 CAF-derived THY1 promotes metastasis 

through cross-talk within TME. 33,34 COL1A1, COL1A2, and 

COL6A1 are related to type I collagen signaling and are signifi- 

cantly highly expressed in fibroblasts. Their interactions with 

SDC4, CD44, and various immune complexes are enhanced, 

shaping the immune barrier, preventing immune cell infiltration, 

and assisting immune evasion. 35 AGRN and DAG1 have also 

been reported to be involved in ECM-receptor interactions in 

colorectal cancer. 36 Secreted signaling is also an important 

cell-cell interaction. The AnxA1/FPR1 autocrine axis can pro- 

mote invasiveness in breast cancer. 37 Eph receptor-Ephrin 

signaling mechanism-mediated cell-cell communication and 

cell-autonomous signaling plays an important role in tumor cells 

and the TME. 38 EFNA1-EPHA2 can promote breast cancer cell 

proliferation by increasing glutamine metabolism. 39 Serum exo- 

somal EphA2 protein is highly expressed in pancreatic cancer 

patients and is associated with poor prognosis. 40 Hbegf-Egfr/ 

Erbb2 is one of the main contributors to EGF signaling, 41 and 

EGFR-activated myo-CAFs can promote pancreatic cancer 

metastasis. 42 FN1-CD44 can play a role in bladder cancer drug 

resistance and glycolysis metabolic reprogramming, 43 as well 

as cancer brain metastasis 44 through the secretory protein 

pathway. Ductal cells in advanced PDAC are enriched in the 

mesenchymal marker FN1 and have high expression levels of 

the cancer stem cell (CSC)-associated gene CD44. 45 The 

Gas6/AXL signaling pathway is closely related to the malignant 

behavior of tumor cells and can cause immunosuppression. 46,47 

Chemotherapy combined with Gas6/AXL targeted therapy 

may provide new hope for metastatic pancreatic cancer. 48 

GAS6-based CAR-T cells show effective anti-tumor activity. 49 

LGALS9-CD44 communication plays a role in the resilience 

of tumor-initiating cells (TICs) and the immunosuppressive 

microenvironment. 50 

In addition, we also performed spatial multi-omics visualization 

of different pathological regions to explore metabolic characteris- 

tics and diagnostic and therapeutic potential. Representative en- 

riched metabolites can be identified in different pathological re- 

gions, such as glycocholic acid and PE (22:6) in normal regions, 

and ascladiol and 2-furoic acid in malignant regions, but further
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verification and mechanism exploration are still needed. Signifi- 

cant differences can also be observed in the metabolism of carbo- 

hydrates, amino acids, lipids, and nucleotides. 

Cancer cells take up a lot of glucose, but also waste a lot of 

glucose and convert it into lactic acid for excretion, 51 and a large 

amount of lactic acid will affect TME and promote tumorigen- 

esis. 52 In addition, cell-intrinsic programs drive immune cells 

and cancer cells to preferentially obtain glucose and glutamine, 

respectively, 53 and cancer cells show stronger glutamine 

dependence. 

PDAC can utilize glutamine to support its proliferation and 

redox balance, and therefore it is one of the most deficient amino 

acids in malignant regions, 54 and therapies that inhibit glutamine 

metabolism have recently been explored. 55 PDAC induces the 

expression of aspartate aminotransferase, which has also 

emerged as a promising therapeutic target. 56 Glutamine is con- 

verted to glutamate by glutaminase (GLS), which in turn pro- 

duces α-ketoglutarate that participates in the TCA cycle 57 and, 

therefore, depletion in malignant regions can also be observed. 

Recently, it has been found that proline supports the production 

of extracellular matrix and contributes to tumor progression, 58,59 

and the proline metabolic limiting enzyme P5CS promotes the 

proliferation of PDAC. 60 Although proline may be more depen- 

dent on pathways such as endocytosis for acquisition, active 

metabolic flux is also considered a promising target for interven- 

tion. Alanine was found to be lower in malignant regions, 61 which 

is consistent with our results, and there is also lower GPT 

expression. It has also been shown that PSCs support tumor 

metabolism through autophagic alanine secretion. 62 Tryptophan 

is an important step in one-carbon unit metabolism, 63 and 

increased PSPH expression can be seen. PDAC cells show 

abnormal histidine uptake/accumulation, which leads to oxida- 

tive stress and amino acid pool depletion. 64 Histamine is consid- 

ered to be associated with inflammation, and significantly 

elevated metabolite levels can be observed in the stroma re- 

gions, especially at the junction of normal and malignant regions. 

Polyamine metabolism is one of the important nitrogen-con- 

taining metabolic pathways in the human body, which widely af- 

fects various malignant biological processes such as cell survival 

and proliferation. 65 By integrating ST and SM data, we found that 

the metabolites putrescine, ornithine and spermine, and related 

enzymes showed specific distribution in malignant regions, indi- 

cating abnormal polyamine metabolic reprogramming. We visu- 

alized the metabolic pathways of polyamine synthesis and 

degradation. In the upstream urea cycle, malignant regions 

showed arginine depletion, 66 while the metabolic enzymes 

(ARG1/2, OTC) involved in the direct conversion of arginine 

and ornithine were expressed at a low level, while the metabolic 

enzymes involved in regulating aspartate (ASL, ASS1) were 

the opposite. This indicates that the overall metabolism of the 

urea cycle is relatively low, and PDAC may maintain ornithine 

content through other compensatory pathways. Based on previ- 

ous studies, recent studies have found that this process is 

completed through the glutamate-proline metabolic pathway 

and may be assisted by OAT. 67 Under physiological conditions, 

intracellular polyamines are mainly excreted in acetylated form, 

and a portion of acetylated polyamines can be oxidized to sper- 

mine or spermidine to maintain intracellular polyamine levels. 68

The significant expression of SAT1 in malignant regions indi- 

cates enhanced acetylation of polyamines. At the same time, 

the expression level of PAOX is low, indicating that acetylsper- 

mine is mainly excreted from cells rather than replenishing sper- 

midine levels through PAOX-dependent pathways. Although 

important metabolites in the salvage pathway were not identi- 

fied, related enzymes (SRM, SMS) were still found to be upregu- 

lated in malignant regions, suggesting that there may be activa- 

tion of the salvage pathway. In summary, our results indicate that 

PDAC has active polyamine metabolism and may have unique 

mechanisms. 

The intricate roles of lipid metabolism reprogramming in 

cellular energy metabolism and cell signaling have been increas- 

ingly revealed. 69 De novo synthesis of lipids is a metabolic 

source for tumor cell growth. 70 Under the action of ACC and 

FASN, acetyl-CoA synthesizes palmitic acid (FA-16:0), and un- 

der the action of SCD, FADS, and ELOVL it can continue to de- 

saturate and extend into different types of fatty acids. We show 

here that although the above-mentioned key genes are signifi- 

cantly enriched in malignant regions, there is no enrichment of 

free fatty acids. Zhang et al. also found this phenomenon, that 

is, there is a serious lipolysis network disorder in PDAC, and pal- 

mitic acid and stearic acid are significant, which plays a tumor 

suppressor role by inducing cell apoptosis. 7 Some unsaturated 

FFAs are also upregulated in immune regions, accompanied 

by a relative increase in FADS and ELOVL in immune regions, 

indicating that it may be related to immune response. Phospho- 

lipids are basic components of cell membranes. Phospholipid 

metabolic reprogramming may play a role in biological mem- 

brane synthesis and signal transduction, 71 and has diagnostic 

and therapeutic potential in pancreatic cancer. 21 Kennedy 

pathway and CDP-DG pathway constitute a metabolic network 

for synthesizing phospholipids using PA and triglycerides 

(TG). 72 Although CDS2 did not show significant regional charac- 

teristics, most of the subsequent genes were upregulated in the 

malignant region, suggesting significant phospholipid metabolic 

reprogramming. Interestingly, although the abundance of phos- 

pholipids in the malignant region was not high, polyunsaturated 

phospholipids seemed to be distributed less in the malignant re- 

gion. This suggests that it may be to avoid ferroptosis caused by 

phospholipid peroxidation composed of polyunsaturated fatty 

acids. 73,74 We then further focused on the Lands cycle that af- 

fects lipid membrane remodeling. PLA2 and LPCAT family genes 

showed significant regional specificity. PLA2G1B and pancre- 

atic acinar cell digestion of dietary phospholipids, 75 PLA2G2D 

and anti-inflammation and immunosuppression, 76 PLA2G4F 

and membrane lipid remodeling 77 are consistent with their 

spatial localization. LPCATs also showed different enrichment 

characteristics, among which LPCAT1 and LPCAT4 controlled 

membrane phospholipid saturation and sustained proliferation 

signals, and are expected to become new targets. 78 In addition, 

FATPs, CD36, and FABPs are responsible for absorbing exoge- 

nous fatty acids and giving cancer cells metabolic flexibility. 79 At 

the same time, we also noticed that a variety of lipid metabolites 

were significantly enriched in the stroma region. Auciello et al. 

found that PSCs were activated into a fibroblast phenotype 

and underwent lipid metabolism reprogramming, including 

downregulation of lipid storage-related genes and massive lipid
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secretion, as a potential fuel source for PDAC cells, and identi- 

fied the autotaxin-LPA axis to promote PDAC cell progression. 80 

Combined with the extensive cell communication between 

PDAC cells and fibroblasts, as well as the spatial localization of 

related genes, and the possible loss of lipids during PSC trans- 

formation, we hypothesize that CAFs may be an important pro- 

vider of lipids for cancer cells, but further experimental confirma- 

tion is still needed. At the same time, our research group also 

conducted plasma lipidomics sequencing of pancreatic cancer 

and control groups (unpublished), and similar lipid metabolism 

reprogramming phenomena were observed. 

In addition, we also imaged some other metabolites. For 

example, malignant regions have higher dopamine and trau- 

matic acid, and less ascorbic acid, which may be related to 

dopamine receptors, 81,82 sarcopenia, 83 and resistance to oxida- 

tive stress. 84,85 Similar to this article, elevated taurine content 

was found in early pancreatic cancer metabolomics. 86 Recent 

studies have found that tumor cells can overexpress SLC6A6 

to compete for taurine, thereby inducing T cell death and 

dysfunction and promoting tumor progression 87 ; in addition, 

taurine secreted by TAM can inhibit ferroptosis in prostate can- 

cer by activating the liver X receptor α/stearoyl-CoA desaturase 

1 pathway. 88 Penet et al. found that the content of choline com- 

pounds in PDAC cell lines and tumors was increased, 89 which 

may be related to the synthesis of phosphatidylcholine. Inhibition 

of choline transporter can play an anti-cancer role. 90 In addition, 

11C-choline PET/CT was used to evaluate recurrent prostate 

cancer. 91 However, the role and mechanism of the above metab- 

olites need to be further explored. 

We also demonstrated differences in pathway enrichment be- 

tween different regions based on pathological regions, and 

confirmed the above-mentioned metabolic reprogramming pro- 

cess, which is expected to help with early diagnosis and mech- 

anism exploration. At the same time, understanding the meta- 

bolic reprogramming induced by neoadjuvant chemotherapy 

for pancreatic cancer is also expected to promote anti-tumor im- 

munity and chemotherapy response. 92 Similarly, there are signif- 

icant differences in glycolysis in malignant regions, significant 

differences in complement pathways and antigen presentation 

in stroma regions, and common metabolic changes in lipid meta- 

bolism. This suggests that intervention measures targeting the 

above-mentioned pathways are expected to provide new ideas 

for sensitizing anti-tumor therapy. 

This spatial multi-omics study on the metabolic reprogram- 

ming of PDAC provides a comprehensive visualization of meta- 

bolic heterogeneity within tumor tissues at the cellular level. It 

further elucidates distinct ligand–receptor communication pat- 

terns and identifies key regulatory factors across different meta- 

bolic regions, offering insights into their potential impact on dis- 

ease prognosis. Multi-omics visualization was performed at the 

level of amino acid metabolism and lipid metabolism, revealing 

the heterogeneity of metabolomics and transcriptomics. At the 

same time, multi-omics differences and enrichment analysis of 

different pathological subregions, as well as insights into can- 

cer-related metabolic dependencies and immune metabolic 

changes, are expected to better reveal the molecular mecha- 

nisms of tumors and provide new ideas for targeted clinical diag- 

nosis and treatment.

Limitations of the study 

Unfortunately, the accuracy of the study is hampered by the 

limited spatial omics resolution and the lack of fine annotation 

of single cells. In addition, in vivo and in vitro experiments are still 

needed to verify the intrinsic mechanism. At the same time, with 

the progress of spatial proteomics and epigenetics, a more 

complete multi-omics analysis may better explain biological hy- 

potheses. Finally, the inclusion of healthy control samples, along 

with the application of machine learning and other advanced 

technologies, may offer new insights into the differences be- 

tween various pathological regions. Additionally, future research 

should focus on large-scale studies that minimize the influence 

of factors such as diet and treatment on metabolic pathways, 

while striving to integrate and clarify the changes and regulatory 

mechanisms within the gene-protein-metabolite axis.

Conclusions 

In summary, by integrating ST and SM, we can accurately image 

the metabolic differences between different pathological divi- 

sions of PDAC, visualize the abnormal metabolic processes, 

and further associate them with different metabolic pathways. 

Further transcriptome analysis reveals the metabolic changes 

and interactions during the progression of PDAC and explores 

its role in malignant progression, providing new clues for tar- 

geted clinical treatment.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Pancreatic cancer tissues Peking Union Medical College Hospital N/A

Critical commercial assays

10x Genomics Visium CytAssist based 

spatial transcriptomic detection

Shanghai OE Biotech CO., Ltd. N/A

AFADESI-MSI based spatial 

metabolomics detection

Shanghai Luming Biological 

Technology Co., Ltd.

N/A

Software and algorithms

cellSens Dimension Software Olympus N/A

10x Genomics Visium library 

preparation protocol

10x Genomics 200100

Space Ranger 10x Genomics N/A

SVD OmniAnalyzer Pro N/A

Uniform manifold approximation 

and projection (UMAP)

OmniAnalyzer Pro N/A

Seurat OmniAnalyzer Pro N/A

Inferred copy number variation (inferCNV) OmniAnalyzer Pro N/A

Diffusion pseudotime (DPT) OmniAnalyzer Pro N/A

Partition-based graph abstraction (PAGA) OmniAnalyzer Pro N/A

Differentially expressed gene (DEG) OmniAnalyzer Pro N/A

R software (version 4.3.1) the R Core Team and the 

R Foundation for Statistical 

Computing

https://www.r-project.org/

clusterProfiler R package https://bioconductor.org/packages/

release/bioc/html/clusterProfiler.html

enrichplot R package https://bioconductor.org/packages/

release/bioc/html/enrichplot.html

Limma R package https://bioconductor.org/packages/

release/bioc/html/limma.html

reshape2 R package https://cran.r-project.org/web/

packages/reshape2/index.html

Ggpurb R package https://cran.r-project.org/web/

packages/ggpubr/index.html

Survival R package https://cran.r-project.org/web/

packages/survival/index.html

survminer R package https://cran.r-project.org/web/

packages/survminer/index.html

Cardinal R package https://bioconductor.org/packages/

release/bioc/html/Cardinal.html

Ropls R package https://bioconductor.org/packages/

release/bioc/html/ropls.html

Pheatmap R package https://www.rdocumentation.org/

packages/pheatmap/versions/

1.0.12/topics/pheatmap

RCTD R package https://github.com/dmcable/spacexr

addmodulescore R package https://www.rdocumentation.org/

packages/Seurat/versions/2.3.4/

topics/AddModuleScore
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Ethics approval and consent to participate 

All relevant procedures were approved by the Institutional Review Board (IRB). We designed this study in compliance with the Hel- 

sinki Declaration and Good Clinical Practice and approved by the Ethnical Committee of Peking Union Medical College Hospital (No. 

I-23PJ941). Informed written consent was obtained from all participants.

Human pancreatic cancer tissue specimen 

A total of six postoperative cancer tissue from patients diagnosed with pancreatic cancer and underwent surgery at Peking Union 

Medical College Hospital were included in this study. All the tumor classification of these patients is pancreatic ductal adenocarci- 

noma (PDAC). Diagnoses of all specimens were confirmed by two senior pathologists according to the histopathological examina- 

tion. TNM and clinical stages were defined in accordance with the eighth edition of the American Joint Committee on Cancer (AJCC) 

staging system. Fresh samples were embedded in pre-chilled optimal cutting temperature (OCT) compound after drying and snap 

frozen in dry ice and then stored at − 80 ◦ C refrigerator. the study does not involve animal models, cell lines, primary cell cultures, or 

clinical trials. Detailed information about the samples of included patients can be found in Table S1.

METHOD DETAILS

Preparation and processing of cancer tissue section 

The postoperative PDAC tissues were embedded in OTC and cut into 10 μm serial frozen sections at − 20 ◦ C on a cryostatmicrotome 

(Leica CM 1860 UV). One set of tissue sections were mounted onto Superfrost Plus slides (Thermo Fisher) for AFADESI-MSI to enable 

spatial metabolomics analysis. Before AFADESI-MSI analysis, the tissue sections were dried in vacuum for about 15min. Another set 

of tissue sections were stained with hematoxylin and eosin and evaluated by pathologists to selected a 6.5 × 6.5mm area with the 

most significant tumor heterogeneity from the entire tissue section. Then, the original tissue samples were cut according to the rect- 

angular area delineated by the pathologist mounted onto 10 × Genomics Visium array slides for spatially resolved transcriptomics 

analysis.

Spatially resolved transcriptomics analysis 

Slide Preparation, Fixation and Staining: Tissue samples were prepared and processed based on the User Guide of Visium CytAssist 

Spatial Gene Expression Reagent Kits (CG000495). Frozen tissue sections (10 μm, adjacent to the ones being analyzed by AFADESI- 

MSI) were mounted onto 10×Visium spatial slides printed with four identical capture areas, each with about 5000 unique gene 

expression spots. Each spot on the slide was approximately 55 μm in diameter, with six spots nearby, and the distance between 

adjacent array spots is 100 μm. Fixation, H&E staining, and imaging were performed based on the Methanol Fixation, H&E Staining & 

Imaging for Visium Spatial Protocols (CG000160). Sectioned slides were incubated in precooled (at − 20 ◦ C) methanol (Millipore 

Sigma, Darmstadt, Germany) and isopropanol (Millipore Sigma). Then at room temperature, these slides were incubated in Mayer’s 

hematoxylin (Dako, Agilent, Santa Clara, CA) for 7 min, stained in Bluing loading buffer (Dako) for 2 min, and Eosin (Millipore Sigma) 

diluted 1:10 in Trisbase (ThermoFisher Scientific, 0.45 m, pH 6.0) for 1 min. After each of the staining steps, slides were washed in 

Milli-Q water (Corning, Corning, NY). Next, the slides were mounted in 80% glycerol and brightfield images were taken via 3D 

HISTECH (3DHISTECH Ltd., Budapest, Hungary). 

Permeabilization, Reverse Transcription, Spatial Library Construction, and Sequencing: After fixation and staining, the issue sec- 

tions were permeabilized using permeabilization enzyme (10× Genomics, 70 μL per well) .The slides were incubated at 37 ◦ C for 

different times and then washed in 100 μL 0.1× SSC (Sigma–Aldrich, St. Louis, MO) after removing permeabilizing enzymes. Poly 

adenylated mRNA released from the overlying cells were captured by specific probes on the slides. Master Mix containing reverse

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

scMetabolism R package https://github.com/wu-yc/scMetabolism

ggplot2 R package https://ggplot2.tidyverse.org/reference/

Deposited data

The Cancer Genome Atlas (TCGA) the TCGA data portal https://portal.gdc.cancer.gov/

Spatial transcriptome data Genome Sequence 

Archive for Human

HRA009976 (Project: PRJCA034193)

Spatial metabolome data Metabolights https://www.ebi.ac.uk/metabolights/

MTBLS12204

Spatial metabolome data METASPACE https://metaspace2020.eu/project/liu-2025
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transcription (RT) reagents and fluorescently labeled nucleotides were added to obtain fluorescently labeled cDNA. After removing 

excess tissue, fluorescently labeled cDNA covalently linked to oligonucleotides were left and visualized. The optimal permeabilization 

time for this procedure was determined by the intensity of the fluorescent signal. Tissue sections were permeabilized using permea- 

bilizing enzymes at optimal permeabilization times to release mRNA from cells in the tissue sections. Reverse transcription was per- 

formed on PCR instrument (MyCycler, Bio-Rad, Hercules, CA) following Visium Spatial Gene Expression Reagent Kits – Tissue Opti- 

mization User Guide (CG000238). After reverse transcription, cDNAs in the supernatant layer were collected for synthesis, 

inactivation, in vitro transcription, and adaptor ligation, the products from which were used in a second reverse transcription for 

the construction of the spatial library. After transfer of cDNA fromthe slide, spatially barcoded, full-length cDNA is amplified by 

PCR to generate sufficient mass for library construction. Then, P5, P7, i7, and i5 sample indexes, and Tru- Seq Read 2 are added 

via End Repair, A-tailing, Adaptor Ligation, and PCR. The final libraries contain the P5 and P7 primers used in Illumina amplification. 

TruSeq Read 1 is used for priming and sequencing the 16 bp Spatial Barcode and 12 bp UMI, and TruSeq Read 2 is used for priming 

and sequencing the cDNA insert. The two 10 bp sample indexes are sequenced in the i5 and i7 read respectively. Sequencing of the 

spatial library was performed on the Illumina NovaSeq 6000 platform. 

Data Processing: First, the quality control of FASTQ files was evaluated using FastQC software. Space Ranger Soteware (Version 

2.0.1) was used to process Visium ST sequencing data and brightfield microscope images. Based on the spatial barcode information, 

total spots, total reads per spot, counts, and unique molecular identifiers (UMIs) were evaluated for quality; The STAR software in- 

tegrates the reference genome (GRCh38 human) for comparison analysis and generates a gene-spot matrix for gene expression 

analysis. After preliminary quality control, the Seurat software package (Version 4.3.0) was used for processing, scTransform was 

used for normalization and detection of high variance features (HVGs). R package Harmony was used to correct the batch effect 

of expression profiles. Principal component analysis (PCA) was used for linear dimensionality reduction, and unsupervised clustering 

and two-dimensional spatial visualization were performed using FindNeighbors, FindClusters, and RunUMAP Seurat functions. 

Based on the 16 clusters obtained by unsupervised cluster analysis, FindAllMarkers in the Seurat package performed differential 

expression analysis to find potential marker genes for each cluster. The identified marker genes were visualized with the help of 

VlnPlot and FeaturePlot functions. The significantly different genes with a p value less than 0.05 and a difference multiple greater 

than 1.5 were screened out, and GO and KEGG enrichment analysis was performed based on the hypergeometric distribution. 

Cell Type Identification: RCTD (version 1.1.0) was used to infer the composition of cell types in each spot site. Using SPOTlight, our 

center’s previous single-cell RNA-seq (PRJCA001063) was used as a reference dataset and mapped to this file. NormalizeData, 

ScaleData Seurat, RunPCA, FindNeighbors, FindClusters, RunUMAP, singleR, and FindAllMarkers Seurat functions were used to 

preprocess, reduce dimensions, cluster, visualize, and annotate cell types. The spotlight_deconvolution SPOTlight function based 

on non-negative matrix factorization (NMF) was used to deconvolute the ST data, and the spatial_scatterpie function was used to 

visualize the proportion of cell types in each spot. 

Pseudotime Analysis: Through the Monocle package, machine learning was performed based on the expression patterns of key 

genes in the malignant progression of acinar cells and ductal cells. First, genes with large gene expression variation between cells 

were selected, and spatial dimensionality reduction was performed based on their expression profiles. Then, a minimum spanning 

tree (MST) was constructed. Based on the characteristics of the malignant trajectory, a branch expression analysis model (BEAM) 

was established to simulate the differentiation trajectory and dynamic changes of cells with similar transcriptional characteristics dur- 

ing the temporal development process. 

Metabolism signature enrichment analysis: Metabolism signature enrichment analysis for spots of ST data was performed using 

the scMetabolism algorithm. scMetabolism is designed to easily quantify single cell metabolic activities by using a single line of com- 

mands. The core functionality of scMetabolism is to quantify metabolic pathway gene sets. Published gene sets and manually 

curated gene sets from the KEGG database and REACTOME database are combined to generate metabolic gene set lists. Metabolic 

activities can be quantified and correlation analysis performed with the raw data matrix using VISION, AUCell, and ssGSEA. 

Transcription Factor Analysis: SCENIC was used to analyze the transcription factors (TFs) and their regulation between high-meta- 

bolism and low-metabolism regions. GRNBoost2 was used to construct the co-expression module (regulon) of TF and potential 

target genes. The regulon activity score (RAS), regulon specificity score (RSS), and connection specificity index (CSI) were calculated 

to represent the regulon activity score of each cell, the specific correspondence between the regulon and each cell type, and the 

correlation between different regulons. 

Ligand–Receptor Interaction Analysis: The ligand-receptor interaction network between macrophages, fibroblasts, ductal cell type 

2, and T cells was inferred by Cellchat. First, the expression and interaction of ligand-receptor pairs were obtained. The cell interac- 

tion network was imaged using the R packages igraph and qgraph, and the number of ligand-receptor pairs was recorded. The dot 

plots of differentially expressed ligand-receptor pairs were visualized using the R package ggplot2. Finally, the spatial expression of 

ligand-receptor pairs was presented using the SpatialDimPlot Seurat function.

Spatially resolved metabolomics analysis 

Slide Preparation and Detection: Fixed tissue samples were placed in a Cryostat microtome (Leica CM 1950, Leica Microsystems, 

Germany) and sliced at a thickness of 10 μm and mounted on Superfrost Plus positive charge ionizing microscope slide (Thermo 

Fisher). H&E staining was performed on adjacent serial sections to annotate the histological regions. After being taken out of the

− 80 ◦ C ultra-low temperature freezer, the frozen tissue sections were quickly dried in a vacuum desiccator at room temperature
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for about 30 min. AFADESI-MSI analysis was conducted as described in previously published research. The AFADESI-MSI platform 

(Beijing Victor Technology Co., Ltd., Beijing, China) was equipped with a Q-Exactive Orbitrap mass spectrometer (Thermo Scientific, 

Bremen, Germany) and an AFADESI ion source. The spray solvent used in this study was acetonitrile and water (80:20, v/v), and the 

flow rate of the spray solvent was set at 2.0 μL/min. The experiments were performed in positive and negative ion modes at m/z 

70–1200 with a resolution of 20 000 Daltons. The flow rate of the nebulizing gas was set at 0.6 MPa. The distance from sprayer to 

surface was 3 mm and the spray angle was 60 ◦ . The imaging analysis was performed by continuously scanning the tissue slices 

at a speed of 100 μm/sec in the x direction and at intervals of 100 μm in the y direction. Data processing was performed using 

MassLynx data acquisition and HDI processing systems. 

Data Processing and Metabolites Annotation: The raw data (.raw files) was converted to. imzML files by imzMLConverter process- 

ing software and imported into Cardinal software for background subtraction, peak alignment, and peak screening. Subsequently, 

the corresponding overlap between MSI and H&E histological images can be constructed by the open software MSiReader (MSI 

Software Solutions, LLC, North Carolina, USA) based on the Matlab platform, and different tissue regions can be annotated. The cor- 

relation model of metabolites in different tissue regions was constructed via OPLS-DA and the contribution of metabolites to the dif- 

ferences between tissue regions was evaluated using the variable importance of projection (VIP) value. After averaging the m/z in- 

tensity of each pixel, the expression intensity of the corresponding mass-charge was displayed using the mass spectrum. The 

adduct ions extracted by AFADESI-MSI detection were annotated using the dedicated spatial metabolome smetDB database 

(Shanghai Luming Biotechnology Co., Ltd.) and the pySM annotation framework. Metabolite information was compared with the pub- 

lic databases Human Metabolome Database (HMDB) (https://hmdb.ca/), Metlin (https://metlin.scripps.edu/), LIPID MAPS (https:// 

www.lipidmaps.org/), KEGG (https://www.kegg.jp/kegg), ChEBI (https://www.ebi.ac.uk/chebi/), and PubChem (https://pubchem. 

ncbi.nlm.nih.gov/).All annotated metabolites had m/z ratios less than 10 ppm (parts per million) compared to their monoisotopic mo- 

lecular weights (MMW) and detailed information concerning the scanned m/z is shown in Table S1 (supplemental information). All 

annotated metabolites had m/z ratios less than 10 ppm (parts per million) compared to the monoisotopic molecular weight 

(MMW). Two-tailed Student’s t-tests were performed to confirm the statistical significance of DEMs between tissue regions. Among 

them, VIP > 1.0, |log2(FC) > 1| and p value < 0.05 were defined as the criteria of DEMs. Metabolic set variation analysis (MSVA) is a 

non-parametric, unsupervised analysis method that is mainly used to evaluate the enrichment results of chips and metabolomes, 

using the KEGG database and Reactome database.

QUANTIFICATION AND STATISTICAL ANALYSIS

We used SPSS 26.0 (IBM SPSS Statistics, Armonk, NY: IBM Corp), R software version 4.3.1 (The R Foundation for Statistical 

Computing, Vienna, Austria), GraphPad Prism 8.0 (GraphPad Software, Boston). Raw data from ST were log2 transformed and 

normalized for further analysis. Data in this study are presented as mean ± SD, and the sample size for each statistical analysis 

was at least 3. Mann–Whitney U-test was utilized to analyze continuous variables, which are presented as mean ± standard deviation 

(SD) in some conditions. Statistical significance would be considered when P < 0.05.
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