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Abstract

It is an essential task to construct brain templates and analyze their anatomical struc-

tures in neurological and cognitive science. Generally, templates constructed from

magnetic resonance imaging (MRI) of a group of subjects can provide a standard ref-

erence space for analyzing the structural and functional characteristics of the group.

With recent development of artificial intelligence (AI) techniques, it is desirable to

explore AI registration methods for quantifying age-specific brain variations and ten-

dencies across different ages. In this article, we present an AI-based age-specific tem-

plate construction (called ASTC) framework for longitudinal structural brain analysis

using T1-weighted MRIs of 646 subjects from 18 to 82 years old collected from four

medical centers. Altogether, 13 longitudinal templates were constructed at a 5-year

age interval using ASTC, and tissue segmentation and substructure parcellation were

performed for analysis across different age groups. The results indicated consistent

changes in brain structures along with aging and demonstrated the capability of

ASTC for longitudinal neuroimaging study.
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1 | INTRODUCTION

In the past 30 years, magnetic resonance imaging (MRI) techniques

have enabled imaging of human brains in high spatial resolution, aim-

ing at accurately measuring the shapes and sizes of the brain and its

substructures, studying structural and functional connectivity, under-

standing human cerebral development and degeneration, and assisting

treatments of brain diseases such as brain tumor, stroke, and neurode-

generative disorders. Brain image registration is often used to auto-

matically navigate and quantify intricate brain structures and facilitate

group analysis, as well as to perform neurological disease evaluation,

diagnosis, and prognosis. The construction of structural templates

from different groups of images is also essential for understanding the

brain anatomy in neurology and cognitive science.

By registering a group of images onto a common image space and

forming a template, one can establish anatomical correspondences

across individuals, allowing for analyzing and comparing images in a

group or between different groups. Therefore, for longitudinal studies,

constructing age-specific MRI templates is beneficial to neurological

research by capturing the trend of anatomical changes during the

development and degeneration courses in a population. The creation

of age-specific brain templates is more complicated as not only the

brains change with aging but also anatomical structures vary across

different subjects. More generally, age-specific templates may help

decouple individual variability with aging characteristics, and subse-

quent analysis such as brain tissue segmentation and substructure

parcellation based on age-specific templates could better quantify

age-related diseases from healthy ones.

In the literature, early attempts to construct brain templates were

based on annotating the volumetric image of the individual subject,

often represented in terms of size, shape, and image intensity of the

human brain (Brodmann, 1909; Talairach, 1988). The Talairach atlas

was the commonly used human brain template developed from sec-

tions of a 60-year-old French female. It created a standardized grid

for neurosurgery and can be employed to identify deep brain struc-

tures in stereotaxic coordinates. Today, the Talairach atlas is still com-

monly used in neuroimaging, but the lack of a three-dimensional

model makes it difficult to map locations from three-dimensional ana-

tomical MRI to the atlas automatically.

To better analyze and understand the similarity and variation of

brain structures within a population, image registration is often

applied to generate a template by warping all the images onto a com-

mon space, which can be fixed or iteratively updated. The Montreal

Neurological Institute (MNI) atlases were constructed based on sev-

eral hundreds of subjects using registration techniques (Evans

et al., 1993; Mandal et al., 2012; Mazziotta et al., 2001). MNI305

(Evans et al., 1993) is the average of linearly registered 305 normal

brain MRIs using 9 degree of freedom (DoF) affine transformations

and is considered the first MNI atlas. In 1998, a lab member of MNI

(Colin Holmes) scanned his brain 27 times and linearly registered them

to MNI305 to create an average atlas (Colin27) (Holmes et al., 1998).

Colin27 has since been used as the standard template in SPM

(Friston, 2003). Later, to generate the MNI linear template (9 DoF),

also known as the International Consortium for Brain Mapping tem-

plate, 150 high resolution and contrast-improved MRI volumes of

young adults were linearly registered to the MNI305 space. In 2009,

MNI152 was constructed with 152 images using nonlinear registra-

tion (Mazziotta et al., 2001). Atlases of T1, T2, PD, and brain tissue

maps are available for MNI152. The construction procedure involved

40 rounds of iterations, wherein individual volumes are nonlinearly

registered to the average of the warped images obtained from the

previous iteration. Similarly, templates were proposed for the cohorts

of infants and children in Shi et al. (2014), Shi et al. (2011), shi et al.

(2010), and Zhang et al. (2016).

Accurate image registration plays an important role in template

construction, but the ones built upon a single reference image could

introduce a systematic bias toward the shape of that image. Group-

wise registration (Wu et al. 2011), therefore, takes the role to solve a

population center, while aligning all the images onto the common

space (Wu et al., 2012), which results in more accurate and consistent

results for better investigating group similarity and variation.

One of the most popular group-wise registration pipelines is first

calculating the average of the warped images and then registering all

subject volumes to this average image, and iteratively refining the

template by repeating the registration and averaging procedure. How-

ever, the results may be undermined by the blurry average image at

the beginning as all the subject volumes are far from being well-

aligned, which might lead to slow convergence in the downstream

registration due to the lack of anatomical details. For better initializa-

tion, Park et al. (2005) selected a template closest to the geometrical

mean among a population using multidimensional scaling and regis-

tered other subject images onto the template. Another method is to

first perform pair-wise image registration and then solve a group aver-

age of deformations as the initialization for the group-wise registra-

tion (Seghers et al., 2004). The former might be still biased to the

selected subject, while the latter could bring a computational burden,

especially for large population size. Additionally, simultaneous regis-

tration of all the subject images based on a global cost function opti-

mization can be performed (Learned-Miller, 2005; Q. Wang

et al., 2010; Zitova & Flusser, 2003), but the high dimensionality of

variables makes the optimizer easy to be stuck into local minima.

To overcome large anatomical differences between images,

methods have been proposed to register each subject with the group

center image with the help of intermediate templates, which are more

similar to the subject. In light of this, Kim et al. (2011) and Baloch and

Davatzikos (2009) and Baloch et al. (2007) generated intermediate

templates and combined the deformation from the template to the

intermediate template with that from the intermediate template to

the subject. The method was also applied to diffusion tensor images

(DTI) in Jia et al. (2011). Similarly, Munsell et al. (2009) built a mini-

mum spanning tree (Kruskal, 1956), wherein each node represents an

image, and each edge corresponds to the distance between two nodes

or the image similarity such as intensity mean square error, to help

bridge the registration between the template to each subject.

With the network constructed among subject images, manifolds

formed by the image set provide intrinsic relationships among the
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subjects, from which the pseudo-geodesic median image can be

selected as the template (Hamm et al., 2009). Because any neighbor-

ing image pair in the network are similar to each other, large anatomi-

cal differences between the template and a subject can be well-

aligned through a network path connecting them along the network

edges. Based on the learned manifold, ABSORB (Jia et al., 2010) was

proposed to warp each subject image to the template step by step,

and the population center can also be updated iteratively. In this way,

each subject only deforms locally to its qualified neighbors according

to a learned manifold, and large shape differences can be better toler-

ated during the registration.

Another task for template construction is to estimate a sequence

of templates to capture the trend of anatomical changes in a popula-

tion, which is particularly valuable for studying neural development

and degeneration from the fetus, infant, or children, to the elderly

(Dittrich et al., 2014; Fonov et al., 2011; Habas et al., 2010;

Kuklisova-Murgasova et al., 2011; Serag et al., 2012; Zhang

et al., 2016). In 2010, a Chinese brain atlas Chinese_56 (Tang

et al., 2010) was created based on 56 male volunteers from 20 to

30 years old. Later, to increase the number of samples and to cover

different ages, the Chinese2020 atlas (Liang et al., 2015) was con-

structed with over 2000 subjects from multiple centers. The tem-

plates were constructed in 12 different age groups using T1-weighted

images. Recently, G. Yang et al. (2020) constructed age-, sex-, and

sample size-matched Caucasian and Chinese adult brain/head volu-

metric templates with probability tissue maps of gray matter (GM),

white matter (WM), and cerebrospinal fluid (CSF) to quantify the

impacts of sample sizes and population on brain template construc-

tion, and to assess the morphological differences between Caucasian

and Chinese.

Image segmentation plays an important role in template construc-

tion. The commonly used brain parcellation methods can be catego-

rized into three types: multi-atlas registration-based parcellation

(Aljabar et al., 2009; Artaechevarria et al., 2009; Klein & Hirsch, 2005;

Shi, Fan, et al., 2010), machine learning-based parcellation using hand-

crafted features (Ashburner & Friston, 2005; Pereira et al., 2016; van

Opbroek et al., 2013; L. Wang et al., 2015), and deep learning (DL)-

based methods (Chen et al., 2018; Çiçek et al., 2016; He et al., 2016;

Stollenga et al., 2015). The multi-atlas-based methods can align multi-

ple templates to the target image and fuse the respective warped label

maps to yield the final labels. Registration is often time-consuming

and may suffer from registration errors. Machine learning methods

employ classifiers such as the support vector machine (van Opbroek

et al., 2013), Gaussian mixture models (Ashburner & Friston, 2005), or

random forests (L. Wang et al., 2015) with spatial and intensity fea-

tures. However, the handcrafted features may suffer from limited rep-

resentation capability for accurate recognition considering the large

structural variation of the brain. Data-driven DL-based methods can

learn the feature representation, and networks such as 3D convolu-

tional neural network (CNN) (Çiçek et al., 2016), long short-term

memory (Stollenga et al., 2015), and deep residual learning (Chen

et al., 2018; He et al., 2016) prompted the brain parcellation in an

end-to-end manner. These DL methods can achieve accurate segmen-

tation results and do not require any manually designed features.

No matter what template construction strategies, image registra-

tion is inevitably the building block of the pipeline. Earlier research only

used linear registration, which could fail to accurately map the anato-

mies to the template. Conventional deformable registration such as

Demons (Vercauteren et al., 2009), HAMMER (Shen &

Davatzikos, 2002; Zacharaki et al., 2008), ORBIT (Zacharaki et al.,

2008) and SyN (Avants et al., 2008) were later used in template con-

struction. However, iterative optimization procedures made the com-

puting slow. DL-based registration has been investigated to improve

computational efficiency while providing comparable accuracy (Fu

et al., 2020; Gu et al., 2020; Litjens et al., 2017). To train registration

networks, supervised learning is based on carefully building/simulating

the ground-truth deformations (X. Cao et al., 2018; X. Cao et al., 2017;

Eppenhof & Pluim, 2018; Lv et al., 2018; Rohé et al., 2017; Sokooti

et al., 2017; Uzunova et al., 2017; X. Yang, 2017), and unsupervised

learning (Balakrishnan et al., 2018, 2019; de Vos et al., 2019; Ferrante

et al., 2018; Hu et al., 2019; Sedghi et al., 2018; Sokooti et al., 2017;

Stergios et al., 2018) is more popular as it does not require ground-

truth deformations but learns by maximizing the similarity between

images, such as the sum of squared difference and cross-correlation

(CC), together with deformation regularization losses. The inferring of

DL registration often takes only a few seconds. Therefore, we inte-

grated DL registration and segmentation in this work.

An artificial-intelligence-based age-specific template construction

(ASTC) framework is presented to generate templates for different

age groups using MRIs in this article. T1, T2, and T2 FLAIR images of

646 subjects from 18 to 82 years old were collected from four medical

centers. The procedure of ASTC consists of three major steps: (1) age-

specific brain templates were constructed using DL-based registration

with a 5-year age interval; (2) state-of-the-art DL-based brain parcella-

tion algorithm was applied for image segmentation; and (3) because

the templates were average warped images, a DL-based image map-

ping network trained from a separate image data set was presented to

sharpen image contrast and to provide clear anatomical structures.

After computing the T1-based templates, we statistically analyzed

the volumes of brain regions and their longitudinal changes. The

results show that volumes of anatomical structures obtained from the

templates are consistent with the measures obtained from the original

images and also show consistent aging trends. We also applied the

deformation fields to generate T2 and T2 FLAIR template images as

well as the tissue segmentation maps (in the supplemental material).

This article is organized as follows. Section 2 presents the detailed

steps of ASTC, including iterative registration for template construc-

tion and image sharpening using CNN. In Section 3, we describe the

experiments to evaluate the constructed templates. Sections 4 and 5

are the discussion and conclusion of this study, respectively.

2 | METHODS

2.1 | The framework for ASTC

Age-specific brain templates are beneficial to analyze brain develop-

ment and degeneration disorders. Generally, the templates of

GU ET AL. 863



different ages should not only reflect common anatomical structures

in each age group but also consistently capture the longitudinal

changes. Therefore, after grouping the subjects according to ages, our

objective is to generate a template for each age group by defining the

voxel-wise correspondences between the template and each subject,

which should be accurate enough to reflect a clear subcortex and

gyral structures in the population center.

Figure 1 shows the ASTC pipeline, where the sample images are

from the 25-year group. The template for each age group was con-

structed independently, and totally 13 templates from 20 to 80 years

old at a 5-year interval were constructed. Given a group of T1 images,

first, the template was constructed using an iterative DL-registration

algorithm. As the averaged images are often blurry in appearance, we

implemented an image sharpening procedure to enhance the T1 tem-

plate using a DL-mapping network. The deformation between the T1

template and each subject was recorded for transforming the corre-

sponding T2 and T2 FLAIR images onto the template space. The T1

images were also segmented into WM, GM, and CSF maps using a

CNN segmentation network and transformed onto the template

space. In this way, we obtained the T1, T2, and T2 FLAIR templates;

the T1 enhanced template, as well as the tissue probability maps for

the age group. The enhancement of T2 and T2 FLAIR templates could

be performed in the same way as the T1 mapping, but the procedure

was not implemented in this article.

The detailed registration framework, segmentation network, and

sharpening methods will be discussed below.

2.2 | ASTC algorithm details

The images were grouped according to age, and 13 templates were

constructed from 20 to 80 years old at a 5-year interval. For each

group, intersubject registration was first performed to bring all the

subject images roughly to a common space, that is, the global center.

In preprocessing, we first aligned all the T1 images onto the MNI152

atlas using 9 DoF linear transformations and B-Spline interpolation.

We refer to these globally aligned images as the original subject

images.

The iterative registration procedure for an age group is shown in

Figure 2. Basically, we used the iterative registration and group mean

method (Joshi et al., 2004) to update the average warped image to

obtain the final template. A DL-based group-wise image registration

network (Gu et al., 2020) was employed to perform intersubject regis-

tration, wherein the conventional losses like the smoothness and the

mean squared image intensity similarity losses, as well as the inverse-

consistency loss were used for training the network. In the first itera-

tion (Figure 2a), the initial template (blue) was set as the average of

the inputs (green), and DL-registration was performed to register the

input images onto the template, resulting in respective warped images

(yellow). Because all the structures of the brain may not be perfectly

aligned, the warped images are not exactly the same as the template.

However, compared to the original subject images, they are much sim-

ilar to the template. Therefore, the new average of the warped images

(yellow) was used as the new template in the next iteration. In the

second iteration (Figure 2b), we applied DL-registration to register the

new template with each subject image (i.e., the warped images from

iteration 1 represented by yellow) and obtained the new warped

images (red). The new template can thus be updated again. In this

way, the template was iteratively updated. In this work, we applied

two iterations to obtain the final template as the warped images have

a similar appearance. The final deformation between the template and

each subject can be the composition of the deformation fields

obtained in each iteration.

For T2 and T2 FLAIR images and brain tissue maps, we first

aligned them to T1 images using 6 DoF rigid registration. To generate

the final templates, global and deformable transformations were com-

bined into one by composing the rigid transformation matrix with the

deformation fields, and image transformation and interpolation were

only performed once to minimize partial volume effects. Finally, the

templates of T2 and T2 FLAIR images were obtained by averaging the

warped images, and the brain tissue probability maps were obtained

in the same way.

F IGURE 1 The artificial-intelligence-
based age-specific template construction
(ASTC) pipeline for one age group. First,
iterative deep learning (DL)-registration is
used to compute the T1 template,
followed by DL-mapping for image
enhancement (T1 enhanced template);
then, the segmentation network is applied
for tissue segmentation; and T2, T2 FLAIR

templates and brain tissue probability
maps are obtained by using the
deformation fields from T1 registration
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F IGURE 2 Iterative registration in artificial-intelligence-based age-specific template construction (ASTC). (a) In the first iteration, the average
image (blue) of all the input images (green) is calculated and registered with the input images, and the warped images are represented in yellow,
whose average is used as the new template in (b) (gray); (b) all the images (yellow) are registered onto the new template (gray), which provides the
new warped images (red) to be averaged as another new template. In this way, the final template can be generated from the input image group.

F IGURE 3 Group-wise consistent
registration network. Top: pair-wise
training; and bottom: cycle consistency
training
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2.2.1 | Consistent registration network

For intersubject deformable registration, we trained a group-wise con-

sistent CNN to preserve cycle consistency in the deformations among

the images (Gu et al., 2020). The training strategy of this network is

shown in Figure 3. The CNN structure is similar to U-net with a pair

of images m and n as the input, and the output is a deformation field

φnm. The “warp” block was implemented using the spatial transform

network (STN) (Jaderberg et al., 2015), which implemented trilinear

deformation of the moving image, so that the loss function can be

back-propagated for network training.

There were two steps during the training. The first applied the

regular unsupervised registration loss, that is, the dissimilarity loss

Ldissim, between the warped subject image n0 and the template image

m. The loss can be measured by mean square error or CC. We also

used the weighted sum of the deformation gradient and Jacobian

determinate as the smoothness loss Lsmooth. However, as shown in Gu

et al. (2020), the network trained may not yield consistent deforma-

tion fields if one swap the order of the two input images. Therefore,

we applied a group-wise consistency loss in the second step. Specifi-

cally, for a properly ordered image group (A,B,…,N), the adjacent two

images can be aligned sequentially to get a series of deformations, for

example, φAB,φBC,…,φN�1!N. Group consistency means that, when

composing all the deformations, the resultant field would be equal or

similar to the deformation estimated by directly registering the Nth

and the first images. Therefore, a cycle-consistency constraint was

employed as an additional loss Lgroup based on the closed deformation

loop, and the composition of deformations, φAB。φBC … φN�1!N。φNA,

should be close to an identity field. In this work, we set N to 3 to form

a loop for any given three images in the group. The registration can

reduce systematic bias caused by the order of input images, increase

robustness, and improve the reliability of data analysis by incorporat-

ing this constraint.

The initial network parameters were obtained from Gu et al.

(2020) trained using 100 images from a separate data set, and the net-

work was trained further based on the above-mentioned training

strategy using the images included in this study. Once the registration

network is well-trained, we applied the models and calculated the

average warped image for each age group (as shown in Figure 2). The

registration can be accomplished in 10 s for each image pair with size

182 � 218 � 182 to greatly accelerate the template construction

procedure.

2.2.2 | Brain tissue segmentation and brain
parcellation network

For brain tissue segmentation and brain parcellation, we segmented

the preprocessed T1 images into GM, WM, and CSF, as well as

106 regions of interest (ROIs) by using a pretrained cascade VB-Net,

which was designed for medical image segmentation using a typical

CNN with a U-net structure (Wei et al., 2021; Xiao et al., 2019). All

the T1 images were preprocessed by skull stripping, bias correction,

and resampling to 1 � 1 � 1 mm3. Images were manually delineated

by neurologists for evaluation. The segmentation network combined

coarse localization and segmentation refinement and was successfully

used in medical image segmentation tasks including the brain tumor

(Hua et al., 2020) and thoracic organs (Han et al., 2019). The most

time spent for brain tissue segmentation is reading and writing images,

which is about 1 s for one input. The segmentation network itself

costs only about 500 ms. On average, the segmentation can be fin-

ished in 1.6 s.

2.2.3 | Template enhancement network

As mentioned above, we incorporated group-wise consistency in reg-

istration training and iteratively updated the average image to gener-

ate the template, whose quality increased iteratively. However, the

appearance of such an averaged image is still blurry (as shown in

Figure 5) because any registration error or subtle anatomical structure

changes could contribute to unclear anatomy structure in the tem-

plate. Thus, we designed an image enhancement network in order to

enhance the image quality.

Specifically, we trained a CNN, which contains ResBlock modules

for image mapping as in Lan et al. (2020). We modified the network

structure to 3D with image patches of size [32, 32, 32] adaptive to

GPU memory. The size of input and output images is the same, as the

goal is to enhance image quality instead of super resolution. We

applied an anisotropic convolution strategy, given that the main focus

of the task was to improve the image fidelity between slices. We used

two consecutive convolution kernels with shapes 1 � 3 � 3 and

3 � 1 � 1 instead of the traditional 3 � 3 � 3 kernel during training.

The network included 32 ResBlock modules, and the number of chan-

nels is 256. The loss function was defined as the weighted sum of

mean squared error and the structural similarity index measure

between the output and the target images (Liu et al., 2021).

The training samples for image enhancement were generated as

follows. Since the deformation fields from the template and subject

images were known, we can deform all the subject images to any sub-

ject space. As shown in Figure S1, the deformation field from image I1

to I2 is the composition of the inverse of field φ1 and field φ2. The

deformation field from I1 to I3, … In can be composed in the same

manner. After deforming all the images to subject I1, the warped

images are in the same space with I1 and can be averaged to generate

the blurry image If_1 in the space of image I1. Thus, for subject t, If_t

can be formulated as:

If_t ¼ 1
N�1

XN x≠ tð Þ
x¼1

Ix φx ∘φt
�1

� �
, ð1Þ

where φt is the deformation field from the template to image It, and

φx denotes the deformation field from the template to subject x.

In this way, we can generate image pairs for each subject (a blurry

image and the original subject image), and the enhancement network

can be further trained using these samples. In order to have more
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training samples, only one enhancement network was trained by com-

bining all the sample images constructed using this method. Finally,

the template image for each age group was enhanced by using the

average template as the input. The enhancement procedure can be

finished in 1.75 min and is performed only once for generating each

age group's template. The experiments were performed on Ubuntu

16.04.1 LTS, with 1 NVIDIA TITAN Xp 12 G GPU and 32 Intel

(R) Xeon(R) CPU E5-2620 v4 @ 2.10 GHz using PyTorch 1.8.1 and

CUDA 10.0.

2.3 | Data and preprocessing details

The data set used for constructing the templates was collected from

the ongoing Chinese brain molecular and functional mapping

(CBMFM) project, aiming to develop the brain templates of Asians in

the aging process. In this article, we used T1, T2, and T2 FLAIR images

of 646 healthy subjects (334 female and 312 male participants with

an age range of 18–82 years). None of the participants reported a his-

tory of psychological or neurological disorders, and they can autono-

mously respond to neuropsychological scale tests. This article focused

on the longitudinal changes in brain structure with age, and gender

differences were not taken into account. According to the approved

Institutional Review Board protocol (No. 2019-105-01), all the volun-

teers signed informed consent forms for participating in this study. All

the T1-weighted MRI data were acquired using 3.0 T UIH uMR790

scanner at four medical institutions, as the Institute of Brain-

Intelligence Technology at the Zhang Jiang Laboratory, Institute for

Medical Imaging Technology of Shanghai Jiaotong University, Hua-

shan Hospital of Fudan University, and the Second Affiliated Hospital

of Zhejiang University.

To evaluate the interscanner reproducibility, 10 traveling subjects

were scanned using the standardized CBMFM protocols at the four

sites involved in this project. The consistency in scanners' perfor-

mance is measured using intraclass correlation coefficients (ICC)

(Fisher, 1992) and coefficients of variance (CV). For cortical thickness

assessment, the mean and standard deviations (stds) of ICC across all

the cortical ROIs are 0.79 and 0.14, respectively. In surface area esti-

mation, the mean of the regional averaged CV values is 2.69% and the

std is 1.36%. For regional volumes, the whole-brain averaged ICC is

0.91 (std = 0.09). The results showed good consistency and low varia-

tion in brain volume measurements. T1 images from 263 subjects

were quality controlled (QC) using the method proposed in (Esteban

et al., 2019). The QC metrics from the CBMFM project with those

from other large-scale data sets (e.g., the autism brain imaging data

exchange (Nielsen et al., 2013) and the consortium for reliability and

reproducibility (Zuo et al., 2014)) were compared, and the results

demonstrated the stability and reproducibility of the MRI scanners.

The detailed scanning parameters were as follows: repetition

time = 8.07 ms, echo time = 3.4 ms, inversion time = 1060 ms, acqui-

sition matrix = 320 � 300, flip angle = 8�, number of slices = 208,

spacing = 0.8 � 0.8 � 0.8 mm3. T2-weighted images and T2 FLAIR

images were also acquired using the same scanner with consistent

parameters as spacing of 0.8 � 0.8 � 0.8 mm3 for T2 images and

1.0 � 1.0 � 0.7 mm3 for T2 FLAIR images, respectively. The age dis-

tribution is shown in Figure 4.

The trained model of the DL-based group-wise image registration

network was the same as in Gu et al. (2020), where 100 images used

for training were different from our longitudinal data set, these images

formed 4950 different image pairs for training. The model's parame-

ters were then used as initialization for further refining the registra-

tion for each age group. It is worth noting that the objective of

template construction is to come up with a common-space image

representing the group in an unsupervised way, so registration does

not need to be evaluated in a traditional training–testing strategy.

For registration, the network was trained using 4950 image pairs

from a separate data set in an unsupervised manner. We applied the

registration model and calculated the average warped image for each

age group in the template construction procedure. Specifically, we

first trained the group-wise consistent deep registration network

using the 4950 image pairs as shown in Figure 3. During testing, the

initial template for each age group was the average of input images in

the first iteration. The average of the warped images was used as the

new template in the next iteration. Then, we applied the DL-

F IGURE 4 Age distribution of the
dataset
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registration to register the new template with each subject image

(i.e., the warped images from iteration 1) and obtained the new

warped images. The new template can thus be updated again. The

template was iteratively updated. The final deformation between the

template and each subject is the composition of the deformation

fields obtained in each iteration. The template of each age group was

constructed separately based on this procedure.

For segmentation, a total of 1889 images with delineation from

experts were used for training and 295 cases were used for testing.

These T1 images were collected from our collaborating institutes as a

separate data set particularly used for segmentation. It turned out that

the mean Dice coefficient of the segmented brain structures with the

ground-truth labels (delineation from experts) was 0.857, and the

standard deviation was 0.051 for the testing data set. The mean

values of GM, WM, and CSF were 95.0, 96.9, and 92.7, respectively.

After the model is trained and validated using separate data, we

applied it to segment brain tissues in our age-specific MRI scans, that

is, the samples in 13 different age groups. The 646 subject images

herein are regarded as the testing samples to apply forward propaga-

tion using the well-trained segmentation network to obtain the brain

tissue segment results.

As for preprocessing, we applied N4 bias correction, skull strip-

ping, intensity normalization (to the range of 0–255), histogram

matching, and affine alignment with the MNI152 atlas for T1

images. T2-weighted and FLAIR images were aligned to their corre-

sponding T1 images using 6 DoF rigid registration with B-Spline

interpolation. Notice that rigid registration might not exactly match

different modalities, and deformable registration could be applied in

the future to quantitatively evaluate the age-group templates for

these mapped modalities. Skull stripping was performed on T1

images by training a deep segmentation network using FSL BET

(Jenkinson et al., 2012) results as the ground truth. Brain regions in

T2 and FLAIR images were extracted using the brain masks of the

T1 images. All the final preprocessed images were with an intensity

range between 0 and 255 and isometric spacing 0.8 � 0.8 �
0.8 mm3.

Basically, compared to traditional registration, by packaging a

neural network and STN using GPU, the output deformation field can

be obtained in about 10 s for two input images with size

182 � 218 � 182. The image warping itself can be finished in less

than 1 s (interpolation is the only calculation). Traditional

optimization-based registration methods could take about 60 s

(Demons) and 40 min (SyN) to obtain the deformation field in our

experiments for the same image pairs.

For image enhancement, the initial model was first trained from

642 subjects, the same as in our previous image super-resolution

reconstruction paper (Z. Cao et al., 2021) using different samples.

Then, the model was further refined to enhance the templates in this

study. By generating a blurry image for each subject as shown in

Figure S1 and Equation (1), together with the corresponding original

subject image, we obtained image pairs to serve as training/refining

samples. Only one enhancement network was trained by using all the

sample images to guarantee large number of training samples. Finally,

after the model was well trained, 13 template images for the 13 age

groups were enhanced. Notice that in this case, the 13 averaged tem-

plates are not used for training and are regarded as the testing sam-

ples to go through the enhancement network and provide sharpened

template images with detailed cortical information.

For cortical thickness and subcortical volume extraction, we used

the “recon-all -s subject_file_path -all -qcache” command of FreeSurfer

(7.2.0 Release Version for Ubuntu 18), the computational time for

each subject required several hours.

3 | RESULTS

We first used ASTC to generate T1 templates. Figure 5 shows the

axial view of the 30-year group template after affine registration, after

the first and the second iterations, as well as after image enhance-

ment. It can be seen that the appearance of the template obtained

using affine registration is very blurry especially for the cortical areas,

as it is obtained by directly averaging the affine transformed images.

F IGURE 5 An example of the evolution of the average images during the course of template construction for the 30-year group. (a) Initial
template by averaging all the affined transformed images, (b) the template after the first round of deep learning (DL) registration, (c) the template
after iteration 2, and (d) the template after DL mapping
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The template can be iteratively refined by using DL image registration

and becomes clearer after each iteration. However, the result is still

not satisfactory along the cortical surface.

Taking the advantages of image mapping technology, the DL-

based image sharpening network can learn the appearance and cortical

structures from a large number of samples and make the averaged

warped images clear enough to identify brain structures, as shown in

Figure 5d. The 3D rendering volumes of the averaged images during

the course of template construction are provided in the supplementary

material (Figure S2). It can be seen that the cortical structures become

clear with the iteration and sharpening procedure. The reason for dif-

ferent gyral patterns across different age groups could be that images

used for different age groups are from different subjects. Although iter-

ative reconstruction generates a template that is close to the samples,

such templates could be biased to the brain shapes of the subjects

within their group, especially when the number of samples is small.

Using the same ASTC procedure, we generated 13 T1 templates

for different age groups from 20 to 80 years old at an age interval of

5. For T2-weighted templates, T2 FLAIR templates and tissue distribu-

tion maps, the deformation fields generated for T1 templates were

applied to get the warped maps, and the averages of their warped ver-

sions were recorded as the templates. Herein, because the major

objective in this article was to analyze T1 templates, DL mapping was

not used for T2 and T2 FLAIR images.

We generated sharpened T1 templates over the whole age range,

as shown in Figure 6. T1 templates, T2-weighted templates and T2

FLAIR templates are provided in the supplementary material

(Figure S3, Figure S4, and Figure S5), and only the axial views are

F IGURE 6 Sharpened T1 weighted longitudinal template. The red boxes mark zoomed in details

GU ET AL. 869



illustrated. In each slice, the template images show clear anatomical

structures in the cerebral tissue, subcortical regions, cerebellum, and

brainstem. Similar morphological structures can be found in the brain

gyri and sulci across the longitudinal templates, while slight anatomical

differences are present in the peripheral GM and WM regions

(Figure S6). This is because the images used for constructing the age-

group templates are from different subjects, and the number of sub-

jects is still considerably small. It can also be seen that the size of the

ventricle enlarges with age, especially after 60 years old. WM atrophy

can also be visible from the images.

Cortical thickness maps of Y20 and Y80 are shown in Figure 7.

FreeSurfer (Fischl, 2012) was used for constructing and computing

the thickness using the sharpened T1 weighted longitudinal templates.

An age-related decrease in cortical thickness can be observed in the

figure. The most decreased cortical thickness locations are in the fron-

tal lobe, occipital lobe, and paracentral lobules (indicated by the red

arrows). The results are consistent with the demonstrations in Fran-

gou et al. (2022) and Podg�orski et al. (2021).

Additionally, one-sided unpaired statistical test was performed

followed by cluster-correction with vertex-wise threshold �lg pð Þ> 3,
and cluster-wise p-value threshold, p < .05. The regions with signifi-

cant differences are shown in Figure 8. The colormap shows voxel-

wise p-value in �lg pð Þ scale. The results reveal three clusters on the

left hemisphere: superior temporal, superior frontal, and

F IGURE 7 Cortical thickness maps of 20- and 80-year-old template. Lateral views of left and right hemispheres are shown, respectively

F IGURE 8 Regions with significant cortical thickness differences between fifty 20- and twenty 80-year-old subjects

870 GU ET AL.



parahippocampal gyrus, and four clusters on the right hemisphere:

superior temporal, fusiform, rostral middle frontal, and superior

parietal gyri.

For tissue volumes, we calculated the volumes of WM, GM, and

the lateral ventricles for each subject and for the templates before

and after sharpening. Figure 9 shows the boxplots of volumes of dif-

ferent tissues types of the subjects. It can be seen that the volumes of

GM decrease with age, and those of WM decrease after 45-year-old

group. The ventricles show an enlarged tendency with age. The red

points “x” and blue points “�” inside the boxes are volumes computed

from the templates before and after template sharpening. It can be

seen that the blue points “�” are close to the median values of the

boxplots, reflecting the longitudinal volumes better reflect the popula-

tion than the red points “x.” This could be due to discrepancies caused

by segmenting blurry templates. Thus, image sharpening could poten-

tially yield better tissue contrast and provide better volumetric

measures.

Similarly, Figure 10 shows the boxplots of volumes of hippocam-

pus, parahippocampal gyrus, amygdala, caudate, thalamus, putamen,

and pallidum in both hemispheres of the brains. The overall trends of

volumes of these structures are downward. These trends are similar

with the results in Dima et al. (2022), Hedman et al. (2012), and Scahill

et al. (2003). The blue points inside the boxes are the mean values of

each brain tissue or structural volume in the age-group templates. We

normalized the volumes to the subject images space according to the

affine matrixes to eliminate the individual differences. It can be seen

that the blue points are almost in the middle of each box, which

means that our constructed templates can reflect the longitudinal vol-

ume distribution of the human brain.

The brain templates are freely available (https://github.com/

Duoduo-Qian/longitudinal_brain_atlas).

4 | DISCUSSION

It is worth noting that other algorithms such as variational autoenco-

der (VAE) (Kingma & Welling, 2019) and generative adversarial net-

work (GAN) (Antipov et al., 2017) can be used to generate more

images and brain structures based on available samples. However,

given relatively small number of samples in each age group, learning

F IGURE 9 Boxplots of volumes of gray matter (GM)/white matter (WM)/ventricle across all age groups
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and analyzing the age-specific shape variability could be challenging

and could lead to the loss of subtle information. Therefore, we chose

to directly register the images and compute the template using itera-

tive DL warping. With the superior performance of VAE and GAN for

large number of samples, we believe that they could be used for esti-

mating the variability of age-related brain images in future work with

more samples be collected.

For the image enhancement, we used ResBlock modules to learn

the residuals between different layers. In the loss function, the struc-

tural similarity measure between the output and the target images is

designed in addition to the mean squared error, which can capture

detailed information about the complex brain structures (Z. Cao

et al., 2021). In this case, although we tried GAN, its training was

unstable in our experiments, and structural shapes seem not very sta-

ble for us (comparing the input and output images).

5 | CONCLUSION

This article presented an ASTC framework for brain structural analysis

using MRIs. In ASTC, DL-based iterative group-wise consistent regis-

tration network and image sharpening network were used to generate

morphological plausible longitudinal templates. Segmentation and par-

cellation, and tissue probability maps were also generated together

with volumes of anatomical structures for auxiliary quantitative analy-

sis. Altogether, 13 sets of multimodality template images were

F IGURE 10 Boxplots of volumes of brain structures across all age groups
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computed from 20 to 82 years old at a 5-year interval. The results

showed that the volumes of anatomical structures obtained from the

templates were consistent with those measured from the original

images, indicating that they can capture major structural characteris-

tics of different age groups. The trend of volumetric changes was also

consistent with the aging studies of normal brains. In future studies,

we plan to incorporate longitudinal constraints for template construc-

tion instead of individual age groups and explore other age-related

templates (e.g., DTI and functional MRI) and take the disease condi-

tions into account for longitudinal analysis.
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