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ABSTRACT

High-throughput methods such as co-immunoprecipitationmass spectrometry 
(coIP-MS) and yeast 2 hybridization (Y2H) have suggested a broad range of 
unannotated protein-protein interactions (PPIs), and interpretation of these PPIs 
remains a challenging task. The advancements in cancer genomic researches allow for 
the inference of “coactivation pairs” in cancer, which may facilitate the identification 
of PPIs involved in cancer. Here we present OncoBinder as a tool for the assessment 
of proteomic interaction data based on the functional synergy of oncoproteins in 
cancer. This decision tree-based method combines gene mutation, copy number and 
mRNA expression information to infer the functional status of protein-coding genes. 
We applied OncoBinder to evaluate the potential binders of EGFR and ERK2 proteins 
based on the gastric cancer dataset of The Cancer Genome Atlas (TCGA). As a result, 
OncoBinder identified high confidence interactions (annotated by Kyoto Encyclopedia 
of Genes and Genomes (KEGG) or validated by low-throughput assays) more efficiently 
than co-expression based method. Taken together, our results suggest that evaluation 
of gene functional synergy in cancer may facilitate the interpretation of proteomic 
interaction data. The OncoBinder toolbox for Matlab is freely accessible online.

INTRODUCTION

Proteins are the main actors in a cell, carrying out 
an enormous amount of diverse functions, but they rarely 
act alone. Typically, a protein interacts with different 
binding partners, often other proteins, to form a molecular 
complex which allows for various molecular processes 
to be activated. Because of the significance such protein-
protein interactions (PPIs) bring along in the survival 
and functioning of any living cell, aberrant PPIs are at 
the source of multiple diseases, including cancer [1, 2]. 
Therefore it is of great interest to obtain a profound insight 
in different PPIs and their corresponding function.

Co-immunoprecipitation mass spectrometry (co-IP 
MS) and yeast two hybrid (Y2H) are the two most widely 
used techniques in PPI proteomics. While the two-hybrid 
system mainly identifies direct binary interactions, mass 

spectrometry can identify the components of a complex, 
therefore they are considered complementary. Thus, 
combination of data coming from both approaches allows 
for a more complete and reliable map of interactions. 
Although they have definitely proven their worth, they 
also share similar limitations [3, 4]. Because every 
aspect of their procedures (reagents used, cell type, 
experimental conditions, etc.) has a big influence on the 
proteins detected, the outcomes of different studies are 
often very heterogeneous and false positives as well as 
false negatives are a common issues [4, 5]. To date, only 
a limited fraction of high-throughput PPI data has been 
functionally annotated in pathway databases such as the 
Kyoto Encyclopedia of Genes and Genomes (KEGG), or 
confirmed by low-throughput studies [6]. The high number 
of false positives makes the interpretation of proteomic 
interaction data highly challenging [3, 5, 7].
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To evaluate the confidence and functional relevance 
of proteomic interaction data, it is rational to consult 
other information such as structure-based prediction 
or co-expression modules [5]. Currently, structure-
based prediction (protein-protein docking) is relatively 
time-consuming and limited by the availability of 
experimentally determined protein structures [8–14]. Co-
expression modules (or gene sets, signatures) inferred from 
microarray or RNA-sequencing data [15, 16] are often 
used to infer functionally related genes [17–20]. However, 
it has been pointed out that co-expression modules don’t 
seem to be reproducible across experiments or capture the 
functional status in the corresponding studies [21]. Recent 
cancer genomic studies such as The Cancer Genome Atlas 
(TCGA) have incorporated other data types such as gene 
mutations and copy number alterations (CNAs), allowing 
for a more accurate estimation of gene function and 
pathway status. Therefore, we proposed that “coactivation 
pairs” may be inferred from these data and facilitate the 
functional interpretation of proteomic interactions that 
have been poorly annotated.

Taking into account the notions above, the 
OncoBinder tool was developed based on a ranked 
“coactivation” metric to identify cancer-related PPIs. The 
functional status of protein-coding genes was estimated 
by a decision tree model containing three nodes (gene 
mutation, CNA and expression), and their correlation was 
used as a measure for identifying coactivation pairs in 
cancer. Since the EGFR and ERK2 proteins are potential 
therapeutic targets in gastric cancer, understanding their 

binding partners represents a highly interesting question. 
Both proteins have been suggested to associate with a 
large number of unannotated binders by high-throughput 
methods, as recorded by the BioGRID database. We 
applied OncoBinder to identify their “coactivated” binders 
in gastric cancer, based on the TCGA dataset. The co-
expression method was also used, to compare both the 
techniques accuracy. By these approaches, we aim to test 
if a “coactivation” metric based on cancer genomic data 
may be helpful for interpreting high-throughput PPI data.

RESULTS

Modeling coactivation of protein partners

We developed a decision tree model to assess the 
functional status of protein-coding genes, based on cancer 
genomic data including gene mutation, copy number 
alteration and mRNA expression (schematic representation 
in Figure 1A). Three classes of functional status (labels) 
were defined: activation, inactivation, and unchanged. The 
decision tree contains three nodes and 6 leaves, and its 
first node is the genetic status of the gene that encodes 
the corresponding protein. If the gene is mutated, an 
inactivation label is assigned. Otherwise, the gene copy 
number (second node) is evaluated to assign inactivation 
(gene copy number loss or deletion), activation (copy 
number gain or amplification), or proceed to the third 
node(mRNA expression). When the mRNA expression 
level is among the top 20% of all samples, it is considered 

Figure 1: Schematic representation of the OncoBinder model. A. The decision tree model for defining the functional status of 
protein-coding genes. The model includes 3 nodes (mutation, gene copy number, mRNA), 6 leaves (end points) and 3 labels (inactivation, 
activation and unchanged). “U/C” indicates unchanged. B. Representative conditions showing the principles of OncoBinder. The dark grey 
boxes indicates mutation of the gene. The red color represents increased gene copy number or mRNA expression level, or activation in its 
function. The blue color indicates the opposite conditions (decreased CNA or mRNA expression, or inactivation in function). The gene 
was labeled as “inactivation” in cases #2 (because of mutation), #4 (decreased CNA), #7 (mRNA donwregulation) and #10 (combination 
of mutation and increased CNA). The “activation” label was assigned to cases #5 and #8 for increased CNA and mRNA expression, 
respectively. C. A subset of interactions (green nodes) are selected by OncoBinder according to their coactivation patterns in cancer.
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activated. Likewise, mRNA expression in the bottom 
20% is assigned as inactivation and other conditions are 
recognized as no change in function. By this decision tree 
model, the functional status of a protein-coding gene is 
labeled in each tumor sample as activation (value +1), 
inactivation (-1) or unchanged (0) (Figure 1B). Then the 
correlation between each pair of protein-coding genes is 
calculated and used as a measure of “coactivation”. This 
evaluation method, named OncoBinder, is applied to 
analyze the proteomic interaction data generated by MS 
and Y2H obtained via BioGRID, in order to estimate the 
likelihood of these interactions in the specified cancer 
(Figure 1C).

Assessment of EGFR interactions in 
gastric cancer

The epithelial growth factor receptor (EGFR) is 
considered as a therapeutic target for many cancers, 
including gastric cancer [22–25]. Therefore, it is of 
importance to comprehensively understand the EGFR-
associated signaling pathways and identify EGFR-
interacting proteins in cancers. Multiple studies based on 
high-throughput methods have identified 573 potential 
binders of EGFR, as summarized in the BioGRID 
database (listed in Supplementary Table 1). Of note, most 
of these interactions have not been functionally validated 
or annotated by pathway databases [6]. Based on the 
notion that functional interactors may be co-activated in 
cancer, we evaluated these potential EGFR interactors 
by OncoBinder and analyzed whether the top hits were 
more likely to be functionally validated/annotated binders. 
A set of high confidence EGFR binders, either annotated 
by KEGG database or confirmed by low-throughput co-IP 
Western Blot or biological activity experiments, were used 
to validate the results of OncoBinder (Supplementary 
Table 1).

The OncoBinder algorithm identified 11 binding 
partners of EGFR that co-activated in gastric cancer 
(Figure 2A), of which 8were present in the high 
confidence set (Figure 2B, Supplementary Table 1). 
This rate of high confidence binders in the OncoBinder-
selected set was significantly higher than expected by 
random selection (P=0.0002, two-sided Chi-square 
test). Meanwhile, the co-expression method based on 
mRNA expression suggested 25 binders that significantly 
associated with EGFR (Figure 2C). However, only 6 of 
these interactors were supported by KEGG annotation 
or low-throughput experiments (Figure 2D). Of note, 
the genes that ranked on top (AK4, CTTN, PPP2R5E, 
PHGDH, ARHGAP1, EREG, and NLRP10) were not 
included in the high confidence binder set (Figure 2D), 
and the accuracy of co-expression displayed no significant 
difference with random selection (P=0.4806, two-sided 
Chi-square test). Thus, OncoBinder-based assessment of 
high-throughput protein interactions seemed to identify 

high confidence interactions of EGFR more efficiently 
than co-expression based method (P=0.0057, Figure 2E).

Evaluation of ERK2 interactions in 
gastric cancer

The Ras/Raf/Mek/ERK signaling is a significant 
driver factor in gastric cancer, with a high rate of 
ERK2 activation/phosphorylation in cancer tissues 
and cell strains. Therefore, it has been proposed that 
ERK signaling would be a promising therapeutic target 
against gastric cancer. Previous studies have suggested 
that ERK2 phosphorylation is under sophisticated 
regulation in different cellular compartments, and thus 
understanding the spatial regulation of ERK2 by different 
protein interactors would be of interest to the field. We 
focused on the 52 potential binders of ERK2 suggested by 
BioGRID database, and applied OncoBinder to evaluate 
the functional interactions in gastric cancer. Again, the 
co-expression method was also used as a control (results 
listed in Supplementary Table 2). Interestingly, all the 4 
interactors identified by OncoBinder (MAP2K1, SMAD3, 
MAP2K2 and MKNK2) were supported by KEGG or 
low-throughput experiments (Figure 3A&3B), and the 
rate of high confidence binders was significantly higher 
than by random selection (P=0.0452, two-sided Chi-
square test). Moreover, the co-expression based method 
suggested 12 binders (Figure 3C), with only 4 in the high 
confidence binder set (Figure 3D). In fact, the accuracy 
of co-expression based prediction showed no significant 
difference than random selection (P=0,3551, two-sided 
Chi-square test). The OncoBinder algorithm displayed 
significantly higher accuracy than co-expression based 
prediction (P=0.0209, Figure 3E).

DISCUSSIONS

The interpretation of proteomic interaction data 
is crucial for identifying functional interplay between 
proteins and signaling pathways. Our work suggests that 
a coactivation metric derived from cancer omics data 
may facilitate the identification of functional interactions 
in cancer, and it was demonstrated that this OncoBinder 
algorithm displays higher accuracy than co-expression 
based inference of gene sets or modules.

The improved accuracy may be explained by three 
features of the OncoBinder method: 1) It recognizes 
mutations that cause inactivation of the encoded protein, 
although its expression level may be unaltered; 2) The 
coactivation metric combines gene CNA information, 
based on the fact that DNA copy number is a strong 
influential factor of gene expression and function [26]; 3) A 
more stringent criterium for defining mRNA upregulation/
downregulation may improve the specificity of recognized 
gene co-expression. These factors, encompassing both the 
integrality of information and the specificity of analysis, 
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Figure 2: Assessment of EGFR interactions by OncoBinder. A. Heat map showing the functional status of EGFR binders ranked 
by their coactivation patterns with EGFR in gastric cancer. Each column represents a cancer case, with colors in dark blue (inactivation) or 
red (activation) indicating its functional status. B. The interactions predicted by OncoBinder, with high-confident interactions highlighted 
in red (types of evidence in links with different colors). C. The genes that are significantly co-expressed with EGFR are ranked according to 
the significance of correlation. D. Binders of EGFR as predicted by co-expression method, with high-confidence interactions shown in red 
boxes. The colors of linkers indicate the types of evidence supporting the interaction. E. Statistical analysis (Chi-square) showing higher 
accuracy of OncoBinder than co-expression based model.
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may collectively affect the accuracy of identifying protein 
interactions in cancer.

To our attention, the top hits provided by OncoBinder 
were crucial regulators of the EGFR and ERK signaling 
pathways. The PRKCE (Protein Kinase C, Epsilon) is a key 
element in EGFR signaling pathway (annotation by KEGG), 
which promotes the proliferation of gastric cancer cells in 
response to hypoxia [27]. Its “coactivation” relationship 
with EGFR as revealed by OncoBinder, is consistent with 
its crucial roles in EGFR signaling. Moreover, OncoBinder 

identified MAP2K1 (MEK1) as the top binder of ERK2, 
and this result fully reflects the central role of MEK1 
in phosphorylating and activating ERK2. In contrast, 
the top hits by co-expression analysis (AK4 for EGFR, 
and TP53BP1 for ERK2) were not supported by KEGG 
annotation or low-throughput experiments. These findings, 
together with the higher rate of high confidence binders 
in OncoBinder-based analysis, suggest that a coactivation 
metric is more accurate than co-expression while inferring 
protein interactions in cancer.

Figure 3: Evaluation of ERK2 interactions by OncoBinder. A. Heat map showing the functional status of ERK2 interactors in 
different gastric cancer cases. B. The interactions predicted by OncoBinder, with high-confident interactions highlighted in red. The colors 
of linkers indicate the types of evidence supporting the interaction. C. The genes that are significantly co-expressed with ERK2 are ranked 
according to the significance of correlation. D. The binders of ERK2 as predicted by co-expression method, with high-confident binders 
marked in red. The colors of linkers indicate the types of evidence supporting the interaction. E. Statistical analysis (Chi-square) test 
showing higher accuracy of OncoBinder algorithm than co-expression based model.
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Although the present work demonstrated the 
assessment of EGFR and ERK2 interactions, the 
OncoBinder method may be applied to other proteins 
and their potential binders, found by high-throughput 
experiments. Although our work may be useful for the 
interpretation of proteomic interaction data, it may be 
further improved in the following aspects: Firstly, the 
estimation of functional status of genes can be combined 
with other omics information such as DNA methylome 
(data available in some cancer types), protein expression 
and phosphorylation. Although currently the protein-level 
data are still limited to <200 well-studied proteins, future 
advances in cancer proteomic research may facilitate the 
simultaneous detection of all proteins in cancer tissues. 
Such information would be an ideal replacement of mRNA 
expression data, due to the considerable inconsistence 
between mRNA and protein expression levels. Secondly, 
it may be useful to combine Gene Ontology (GO) terms, 
such as the cellular compartment and recently introduced 
“biological phase” (denoting a period or stage in cell 
cycle), since protein interaction is more likely to occur 
when the partner proteins are localized in the same cellular 
compartment, or are activated in the same biological 
phase. While the above-mentioned factors should in 
theory improve the interpretation of proteomic interaction 
data, the detailed procedures for their integration to the 
existing coactivation model certainly require substantial 
investigation.

MATERIALS AND METHODS

Scoring metric for coactivation of 
protein binders

The functional statuses of genes encoding the 
protein interactors were estimated according to the 
mutation, copy number alteration (CNA) and mRNA 
expression from cancer genomic data. The workflow 
of OncoBinder is shown in Figure 1. A decision tree 
containing 3 nodes (mutation, CNA, mRNA), 6 leaves 
and 3 labels (activation, inactivation, or unchanged) was 
used to determine the functional status of the protein-
coding gene. The types of mutations included missense, 
nonsense, frameshift, split, insertion and deletion that 
caused alterations in the amino acid sequence of the 
coded proteins. When a gene is mutated, it is considered 
inactivated. With CNA of +1 or +2 a gene is considered 
as activated, while -1 and -2 in CNA were considered 
inactivated. When no copy number change is found, the 
status of the gene is stipulated by its mRNA expression 
as activated (in top 20%), inactivated (bottom 20%) or 
unchanged (other). The functional statuses of the genes 
were represented by numerical values as 1 (activation), 
0 (unchanged), or -1 (inactivation). For estimating the 
coactivation of a pair of proteins, the respective coding 
genes were analysed by Pearson correlation of their 

functional status in all cancer samples. The criteria for 
considering significant correlation was set as P<0.001, 
and can be adjusted according to the degree of stringency. 
Only protein-coding genes on different chromosomes were 
subjected for correlation analysis, because genes located 
on the same chromosome are prone to be amplified or 
deleted together without biological significance.

Pre-processing the input data

The different types of cancer omics data, 
encompassing mutations, CNAs and mRNA expression, 
were processed to have the same numbers of genes (rows) 
and samples (columns). In the present study, the TCGA 
gastric cancer dataset was downloaded and processed in the 
following file formats: CNAs (-2, -1 0, +1, or +2) saved as 
“cnv.xlsx”; mutations (1 for mutation and 0 for wild type) in 
“mutation.xlsx”; and mRNA expression levels (normalized 
expression values) in “expression.xlsx”. Note that these 
different files were also processed to have the same order of 
genes and samples. The high-throughput protein interaction 
information was saved in “PPI_high_throughput.xlsx”, 
with each row denoting one pair of binding partners 
(official gene symbols). In this study, the protein interaction 
data were obtained through the BioGRID database, with a 
filter for selecting only co-IP MS or Y2H results. The data 
file describing the genomic locations of all investigated 
genes is saved as “gene_location.xlsx”.

Setup and execution of the OncoBinder 
algorithm

The OncoBinder program can be executed in the 
Matlab computing environment (versions above 2012, The 
Mathworks, Inc), and different parameters can be adjusted 
for customizing the study. The target oncoprotein can be 
edited in the variable input area of the “OncoBinder.m” 
file, and the default gene name is MAPK1. Note that 
only official gene symbols can be recognized by the 
program. Furthermore, the algorithm allows defining of 
the criteria to outline upregulation (top 20% in default) 
or downregulation (bottom 20% in default) of mRNA 
expression. Also, the threshold for statistical significance 
can be edited if different stringency is applied (default 
as P<0.001). After the input parameters are defined, the 
program file should be saved in the working directory 
of Matlab, together with the input data files: “cnv.xlsx”, 
“mutation.xlsx”, “expression.xlsx”, and “PPI_high_
throughput.xlsx”. The analysis can be started by typing 
“oncobinder” in the command line of Matlab.

Acquisition and interpretation of output data

An overview graph is generated to show the 
correlation between the functional status of the target 
protein (first row) and its putative binders (ranked by 
significance of association). The output of EGFR analysis 
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is presented in Figure 2A, with activation marked in dark 
red and inactivation in blue. The relationship between 
different protein-coding genes can be directly observed 
in this plot. Moreover, the names of ranked binders can 
be found in the “order_names” variable in the Matlab 
workspace and exported to EXCEL program. Likewise, 
the functional status and the significance (P-values of 
Pearson correlation) of the ranked binders are stored in the 
“order_status” and “order_corr” variables in the Matlab 
workspace.
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