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Nacl (nucleus accumbens 1) is a POZ (poxvirus and zinc finger)-domain transcriptional repressor that is expressed
at high levels in ovarian serous carcinoma. Here we identify Nacl as a novel interacting partner of the POZ-domain
transcriptional activator, Miz1 (Myc-interacting zinc-finger protein 1), and using chemical crosslinking we show that this
association is mediated by a heterodimeric interaction of the Nac1 and Miz1 POZ domains. Nac1l is found in discrete
bodies within the nucleus of mammalian cells, and we demonstrate the relocalization of Miz1 to these structures in
transfected Hela cells. We show that siRNA (small interfering RNA)-mediated knockdown of Nac1l in ovarian cancer
cells results in increased levels of the Miz1 target gene product, p21°P1, The interaction of Nac1 with Miz1 may thus
be relevant to its mechanism of tumourigenesis in ovarian cancer.
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INTRODUCTION

Nacl (nucleus accumbens 1) was originally identified as the pro-
tein product of a cocaine-inducible transcript in the nucleus ac-
cumbens of the rat brain [1], and more recently it has emerged as
a transcriptional repressor that functions as part of the network
involved in embryonic stem cell self-renewal [2]. Amplification
of the gene encoding Nac1, NACC1, has been implicated as one of
the top potential ‘drivers’ in human ovarian serous carcinoma [3],
and high levels of Nacl may also be relevant in ovarian clear cell
carcinoma [4] and in some cervical [5] and uterine [6] cancers.
Elevated Nac1 levels in ovarian serous carcinoma are particularly
common in drug-resistant disease that is associated with relapse
following initial treatment [7,8]. The artificial knockdown or in-
activation of Nac1 leads to the apoptosis of Nacl-overexpressing
ovarian cancer cells [7] and restores their sensitivity to chemo-
therapeutics [9], thereby validating this protein as a potential
therapeutic target.

A variety of mechanisms are involved in Nacl-mediated tu-
mourigenesis and drug-resistance. Nac1 induces cell proliferation
in part by repressing transcription of the Gadd45GIP1 (growth

arrest and DNA-damage-inducible 45-y interacting protein) gene
[10] and negative regulation of the Gadd45 pathway also contrib-
utes to paclitaxel-resistance [11]. Elevated Nacl also
contributes to tumour aggressiveness and drug-resistance by in-
creasing the levels of FASN (fatty acid synthase) and thereby
modulating fatty acid metabolism. Treatment failure in ovarian
cancer is associated with drug-induced activation of HMGB1-
mediated autophagy and with the inhibition of senescence, and
Nacl plays an essential role in both of these processes [12,13].
It has recently been shown that Nacl also has non-nuclear func-
tions, and interacts with monomeric actin to promote cytokinesis
in highly proliferating Nac1-overexpressing cancer cells [14].
Naclis aPOZ-TF [POZ (poxvirus and zinc finger); also known
as BTB (bric-a-brac, tramtrack and broad complex)-domain tran-
scription factor] that functions as a repressor in both neuronal and
non-neuronal cells [15,16]. Transcription factor POZ domains
serve to recruit co-repressors and also mediate dimerization and
heteromeric interactions between different POZ-TFs (reviewed
in [17]); the Nacl POZ domain is a classic POZ-domain di-
mer [18], and interacts with the corepressor COREST [19] and
with the histone deacetylases HDAC3 and HDAC4 [16]. POZ
domains are also found in adaptor proteins that recruit substrates

Abbreviations: BEN, B-cell translocation gene 3 associated nuclear protein, ES5R and Nacl; BMB, 1,4-bismaleimidobutane; BTB, bric-a-brac, tramtrack and broad complex; FASN, fatty
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full-length Miz1; HA, haemagglutinin; HA-Miz12 ~ 794 HAtagged Miz1; mCherry-Nac12 ~ 794 mCherry-tagged full-length Naci; Miz1, Myc-interacting zinc-finger protein 1; Nac1, nucleus
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for ubiquitination by the cullin-type E3 ligase complexes; these
adaptors interact with cullin3 via their POZ-domain, and they re-
cruit substrates via additional domains such as kelch, MATH or
zinc fingers. It has recently been recognized that some transcrip-
tion factor POZ domains can also interact with cullin3 [20,21]
and thereby play a role in regulating the ubiquitination of their
corepressors and other interacting partners [22,23]. Nacl inter-
acts with cullin3 in neuronal cells [24], although its role in ubi-
quitination has not been characterized. Target genes of Nac1 have
been identified in embryonic stem cells [25], but the mechanism
whereby Nacl interacts with DNA is not known. Nac1 does not
contain a zinc-finger DNA-binding domain as is found in most
POZ-TFs; however, it is assumed that its C-terminal BEN (B-cell
translocation gene 3 associated nuclear protein, ESR and Nacl)
domain interacts with the promoters of target genes as has been re-
cently reported for other BEN-domain transcriptional repressors
[26]. Many POZ-domain transcription factors and adaptors are
localized within discrete structures in the nucleus [27], and Nacl
is found in nuclear bodies, termed Nac1 bodies, at specific stages
of the cell cycle [28].

Mizl (Myc-interacting zinc-finger protein 1) is a POZ-TF
that was originally identified as a c-Myc interacting protein [29]
in yeast two-hybrid protein interaction screens. Mizl regulates
genes involved in growth arrest [30,31], differentiation [32-34],
apoptosis [35] cell adhesion [36] and autophagy [37], and plays a
central role in DNA-damage responses [38—41], lymphoid devel-
opment [42—45] and inflammation [46]. Miz1 acts as a transcrip-
tional activator via the recruitment of the cofactors p300 [31] and
nucleophosmin [47], and it binds to the initiator DNA element of
target gene promoters via its central zinc-finger DNA-binding do-
main. The transcriptional properties of Miz1 are altered by its in-
teraction with other transcription factors, and it acts as a repressor
when in complex with c-Myc [29], BCL6 [48] or Zbtb4 [49].
Mizl target genes include the cell cycle inhibitors CDKNIA [39]
and CDKN2B [30,31], the differentiation-associated Mad4 gene
[33], the anti-apoptotic Bcl2 gene [50], the autophagy gene Am-
bral [37], and the alpha6 and betal integrin genes involved in cell
adhesion [36]. The repression of Mizl target genes by Mizl/c-
Myc and by Miz1/BCL6 complexes is important in physiolo-
gical apoptotic responses [35] and in B-cell development [48]
respectively; however, the inappropriate repression of cell-cycle
inhibitors contributes to deregulated proliferation in tumours as-
sociated with the overexpression of c-Myc [51,52] or BCL6 [48].
Miz] interacts with c-Myc via residues adjacent to its DNA-
binding domain [29], and with Zbtb4 and BCL6 via its N-terminal
POZ domain [48,49]. Although most transcription factor POZ do-
mains are dimeric [17], the Miz1 POZ domain forms both dimers
[53] and tetramers in vitro [54]; importantly, the stoichiometry
of heteromeric Mizl POZ domain interactions has not been
elucidated.

In this report, we identify Nacl as a novel interacting partner
of Miz1, and show that this interaction is mediated by a heterodi-
meric association between the POZ domains of these proteins.
The interaction of Nacl with Mizl leads to the recruitment of
Mizl into Nacl nuclear bodies, and the artificial knock-down of
Nacl in an ovarian cancer cell line results in increased levels of

the Miz-1 target gene product, p21°P'. The interaction between
Nacl and Mizl may thus contribute to tumourigenesis in Nacl-
overexpressing ovarian cancer cells, analogous to the role of the
BCL6/Miz1 interaction in diffuse large cell B-cell lymphoma.

EXPERIMENTAL

Antibodies

Rabbit anti-FLAG polyclonal (Sigma F7425), rabbit anti-HA
(haemagglutinin) polyclonal (Santa Cruz Y-11 [sc-805]), rabbit
anti-p21 polyclonal (Abcam ab7960), mouse anti-Nacl mono-
clonal (Abcam ab81987) and mouse anti-GAPDH monoclonal
(Calbiochem CB1001) antibodies were used in western blots at
0.5,2,5,0.82 and 1 pg/ml, respectively. Horseradish peroxidase-
conjugated goat anti-rabbit IgG and goat anti-mouse IgG second-
ary antibodies (Pierce 31460 and 31430, respectively) were used
at 40 ng/ml.

Cloning

Mouse Miz1 and Nacl cDNAs were amplified from an embryonic
stem cell cDNA library using Phusion high-fidelity DNA poly-
merase (Thermo Fisher) and inserted into a vector that expresses
fusion proteins containing an N-terminal 3 x FLAG or 3x HA tag
under control of the CMV (cytomegalovirus) promoter. cDNAs
encoding POZ domains were also expressed as fusion proteins
that additionally contain a C-terminal nuclear localization sig-
nal (mouse c-Myc residues 353-361). Mizl and Nacl cDNAs
were cloned into pEGFP-C1 or pmCherry-C1 (Clontech Labor-
atories Inc.) for the expression of fluorescently tagged proteins.
Site-directed mutagenesis was carried out by PCR using Phusion
high-fidelity DNA polymerase.

Yeast two-hybrid assays

Yeast two-hybrid assays were performed using Saccharomyces
cerevisiae AH109 transformed with 200 ng of each plasmid DNA
as described in [55]. The mouse Miz1 POZ domain (residues 1—
115) was expressed as a GAL4 activation domain fusion using
the vector pGADT7 (Clontech Laboratories Inc.), and the POZ
domains of 32 mouse transcription factors were expressed as
GAL4 DNA-binding domain fusions using pGBKT?7 (Clontech
Laboratories Inc.).

Transfection of mammalian cell lines

HeLa and COS-7 cells were cultured in Eagle’s minimal essen-
tial medium (alpha modification) supplemented with 10 % (v/v)
FBS, 50 units/ml penicillin and 50 pg/ml streptomycin at 37°C
and 5 % (v/v) CO,. COS-7 cells for co-immunoprecipitation ex-
periments were seeded into 90-mm-diameter dishes and trans-
fected with a total of 40 g DNA using the calcium phosphate
method [56]; cells were harvested 36 h post-transfection. HeLa
cells for fluorescence microscopy experiments were seeded onto
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glass slides in 35-mm-diameter dishes and transfected with a total
of 1 ;g DNA using GenelJuice® Transfection Reagent (Novagen).

Co-immunoprecipitation using anti-FLAG resin
Approximately 107 cells were rinsed with PBS, pelleted at
1500 g, and resuspended in 200 1 lysis buffer [SO mM Tris—HCI
(pH 7.4), 150 mM NaCl, 1 mM EDTA, 1% (v/v) Triton X-100].
Samples were incubated on ice for 30 min and the lysate clarified
by centrifugation at 12000 g for 10 min at 4 °C. Clarified lysate
was added to 20 pl1 TBS-equilibrated [S0 mM Tris—HCI (pH 7.4),
150 mM NaCl] anti-FLAG M2 affinity gel (Sigma) and incub-
ated for 5 h at 4°C. The resin was pelleted by centrifugation at
7000 g for 1 min at 4°C, and washed three times with 1 ml TBS.
The samples were boiled with SDS-sample buffer [125 mM Tris—
HCI (pH 6.8), 4% (w/v) SDS, 20% (v/v) glycerol, 0.1 % (w/v)
bromophenol blue] and analysed by western blotting.

Thiol crosslinking in vivo

48 h post-transfection, HeLa cells were rinsed twice in PBS and
incubated for 5 min at 37°C in Kreb’s-Ringer phosphate buffer
[118 mM NaCl, 4.7 mM KCl, 2.5 mM CaCl,, 1.2 mM KH,POy,
1.2 mM MgSOy, 16.2 mM Na,HPO, (pH 7.4)]. Cells were in-
cubated at 4°C for 5 min and BMB (1,4-bismaleimidobutane)
was added to a final concentration of 100 M. Crosslinking was
performed at 4°C for 10 min and the reaction was quenched by
the addition of L-cysteine to 4 mM [57]. Cells were rinsed with
PBS, pelleted at 1500 g, resuspended in SDS-sample buffer con-
taining 10 % (v/v) 2-mercaptoethanol, and analysed by western
blotting.

Transfection of A2780 cells with siRNA (small
interfering RNA)

A2780 ovarian cancer cells were cultured in RPMI 1640
medium supplemented with 10% FBS at 37°C and 5%
(v/lv) CO, and seeded into 6-well plates at a density
of 1x10° cells per well. Cells were incubated for 24 h
and the medium replaced with OPTI-MEM-reduced serum
medium (Invitrogen). 175 pmol ON-TARGETplus SMART-
pool siRNA (Dharmacon; target sequences: CGGCUGAA-
CUUAUCAACCA, GGGCGCAGCUGAUGAACUG, GGG-
CAUGGAUGAGCAGUAC, CGAAAUCGCAUCCGGGUUC)
was delivered into the cells using 35 ul Oligofectamine (In-
vitrogen) as described in the manufacturers protocol. Control
cells were treated with 175 pmol non-targeting ON-TARGETplus
siRNA (Dharmacon). Cells were incubated for 4 h at 37°C/5 %
CO, before being supplemented with FBS to a final concentra-
tion of 10 %. Cells were harvested 48 h post-transfection, boiled
in SDS-sample buffer containing 10 % (v/v) 2-mercaptoethanol
and analysed by western blotting.

Fluorescence microscopy

Fluorescence microscopy was carried out using the DeltaVision
Optical Restoration Microscopy System (Applied Precision Inc.).
Images were collected from 50 x 0.2 um thick optical sections,
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Figure 1 Interaction of the Nacl and Mizl POZ domains in yeast
two-hybrid assays

AH109 yeast cells were transformed with constructs expressing GAL4
activation domain fusion proteins (pGADT7) together with GAL4 DNA-
binding domain fusion proteins (pGBKT7) and plated onto media lacking
leucine and tryptophan [-LT], lacking leucine, tryptophan and histidine
[-HLT], and lacking leucine, tryptophan, histidine and adenine [-LTHA].
Transformation with Miz1POZ-pGADT7 together with: (1) pGBKT7, (2)
Zbth8 POZ-pGBKT7, (3) Zbth6 POZ-pGBKT7, (6) Nac1l POZ-pGBKT7, and
(7) BCL6 POZ-pGBKT7 (7). Transformation with Nacl POZ-pGBKT7 to-
gether with: (4) Zbtb8 POZ-pGADT7, (5) Zbtb6-pGADT7 and (8) pGADT7.

and 3D datasets were deconvoluted using the default settings on
the softWoRx deconvolution algorithm (Applied Precision Inc.).

RESULTS AND DISCUSSION

Mizl interacts with Nacl in yeast two-hybrid
assays and in mammalian cells
The transcriptional properties of Mizl may be modulated by
the interaction of its N-terminal POZ domain with other POZ
domain transcription factors [48]. To identify novel interacting
partners of Miz1, we used yeast two-hybrid assays to analyse the
interaction of its POZ domain (Mizl residues 1-115) with the
POZ domains isolated from 32 POZ-TFs; the well-characterized
interaction between the Miz1- and BCL6 POZ domains served
as a positive control. The Mizl POZ domain interacted strongly
with the POZ domain of the transcriptional repressor, Nacl, in
these assays (Figure 1, panel 6).

To determine whether Nacl interacts with Mizlin
mammalian cells, we expressed the full-length proteins,
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Co-immunoprecipitation of Nacl and Miz1 in transfected Hela cells

(a) Hela cells were transfected with FLAG-tagged Nacl and HA-tagged Miz1 constructs. Lysates were immunoprecipitated
using anti-FLAG resin, and samples analysed by western blotting using anti-HA antibody. (b) HelLa cells were transfected
with FLAG-tagged Nacl POZ domain constructs together with constructs that expressed the Miz1, Zbtb8 and Zbtb6 POZ

domains.

FLAG-Nacl?>~>'% (FLAG-tagged Nacl) and HA-Miz1?>~ 7
(HA-tagged Mizl), in COS-7 cells and analysed their inter-
action by co-immunoprecipitation using anti-FLAG resin; we
also analysed the interaction between FLAG-Nac125!* and a
truncated protein comprising the Mizl POZ domain only (HA-
Mizl POZ?~'55). FLAG-Nac1?>~>'“ interacted both with HA-
Miz12-7* and with HA-Mizl POZ?>~'" in these assays (Fig-
ure 2a, lanes 1 and 2), and deletion of the Nacl POZ domain
(FLAG-Nac1'?’~5'%) abolished these associations (Figure 2a,
lanes 3 and 4). We also expressed the N-terminal POZ do-
main of Nacl as a FLAG-tagged protein (FLAG-Nac1?>~17),

and demonstrated its interaction both with HA-Miz12~7%* and
with HA-Miz1 POZ?~ !5 (Figure 2a, lanes 7 and 8).

To confirm the specificity of the interaction between the Nacl
and Mizl POZ domains in mammalian cells, we analysed the
interaction of the Nacl POZ domain with the POZ domains of
the zinc-finger proteins Zbtb6 and Zbtb8; these POZ domains did
not interact with Nacl in yeast two-hybrid assays (Figure 1). The
Nacl POZ domain was expressed as two FLAG-tagged proteins,
FLAG-Nac1?~'%5 and FLAG-Nac12~'7%, both of which interac-
ted with the Mizl POZ domain, but not with Zbtb6 or Zbtb8
(Figure 2b).
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Figure 3

The interaction between Nacl and Mizl leads to the relocalization of Mizl into Nacl nuclear bodies

Hela cells were transfected with constructs that expressed EGFP (enhanced GFP)-tagged and pmCherry-tagged proteins

as indicated.

The interaction between Nacl and Miz1 leads to
the relocalization of Mizl into Nacl nuclear bodies

The nucleus contains distinct nuclear bodies that compartment-
alize the organelle to facilitate efficient biological processes (re-
viewed in [58]). Several POZ-domain transcription factors and
Cul3 adaptors are found in discrete nuclear structures that have
variously been termed bodies or speckles [27], and the local-
ization of these POZ proteins in nuclear bodies directs the co-
localization of their interacting partners [23,59]. Nacl is found
in discrete bodies within the nucleus of normal and cancer cells
[7]; although it has not been determined whether these structures
play arole in transcriptional regulation or protein ubiquitination,
it is conceivable that they could represent hubs that recruit and
silence multiple specific gene loci in a manner similar to the
repressive function of polycomb bodies (reviewed in [58]). In
order to determine whether the subcellular localization of Miz1
is modulated by its interaction with Nacl, we expressed fluor-
escently tagged Mizl and Nacl proteins in HeLa cells. When
expressed individually, mCherry-Nac1?>~7%* (mCherry-tagged
full-length Nacl) was found in nuclear bodies, consistent with
previous reports, whereas GFP-Miz1?>~7* (green fluorescent
protein-tagged full-length Miz1) showed diffuse nuclear floures-
cence (Figure 3a). The co-expression of GFP-Miz12~7* with
mCherry-Nac12~7%* led to its relocalization into Nacl nuclear
bodies (Figure 3b).

siRNA-mediated knock-down of Nac1 leads to the
induction of the Miz1 target gene product, p21°1,
in ovarian cancer cells

The interaction of Miz1 with the transcription factors c-Myc or
BCL6 leads to the suppression of Mizl target genes associated
with growth arrest and differentiation [30,31,39,48], and this may
contribute to aberrant growth control in malignancies associated
with the overexpression of these oncoproteins. Naclis overex-
pressed in advanced ovarian serous carcinoma and is found at high
levels in the human ovarian cancer cell line, A2780. We therefore
determined the effect of siRNA-mediated knock-down of Nacl
on levels of the p21©P! protein product of the Mizl target gene,
CDKNIA, in A2780 cells. Treatment of A2780 ovarian cancer
cells with an siRNA that targets Nacl led to a 2.6-fold reduction
in Nacl levels, and a concomitant 7.7-fold increase in levels of
p21€P! (Figure 4), consistent with repression of CDKNIA gene
by the Nac1/Mizl complex in these cells.

The Nacl and Miz1l POZ domains form a
heterodimeric complex

Transcription factor POZ domains are obligate domain-swapped
dimers that have an extensive hydrophobic interface that mainly
comprises residues from the N-terminal « helices of each chain
[60,61] (reviewed in [17]); a tetrameric association of the Miz1
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Figure 4 siRNA-mediated knockdown of Nacl leads to the induc-
tion of p21°*! jn A2780 ovarian carcinoma cells

A2780 cells were treated with siRNA that targets Nacl1 or with control
siRNA, and levels of Nacl, p21Cipl and GAPDH were measured by
western blotting.

POZ domain has also been observed [54]. Crucially, the stoi-
chiometry of heteromeric POZ domain interactions has not been
experimentally determined, and we therefore attempted to de-
termine whether the Miz1- and Nacl POZ domains are capable
of forming a heterodimeric species.

The POZ domain transcription factor, Bach2, contains a
cysteine residue (Cys?) located in the N-terminal alpha helix
(a1) of the POZ domain, and crystal structures of the Bach2
POZ domain dimer revealed an inter-subunit disulphide bond
between the Cys? residues of the two chains (PDB entries 3ohu
and 3ohv [62]). We used crystal structures of the Nacl and
Mizl POZ domains (PDB entries 3gal and 2q81) to model
a cysteine residue in place of the residue (Nacl Gly'* and
Mizl Ser’) corresponding to Bach2 Cys®; the proximity of

the cysteine residues in the mutant POZ domain models sug-
gested that Nac1/¢13¢ and Miz157! would each be capable of
forming disulphide-bonded homodimers. We also mutated the
Cys'® residue of the Nacl POZ domain «1 helix in order to
prevent potential spurious disulphide bond formation between
nearby cysteine residues; this cysteine residue is not conserved
among the POZ domains of other proteins. Mutant Nacl and
Mizl POZ domains, Nacl[G13€C198] and Miz157¢), were ex-
pressed as FLAG-tagged proteins in COS-7 cells; the Miz1 POZ
domain was expressed as two forms of FLAG-tagged protein
(FLAG-Mizl POZ?>~ 5 and FLAG-Miz1 POZ?~ %) that were
readily distinguishable in size, and the Nacl POZ domain was
expressed as FLAG-Nacl POZ?~ %5, As expected, neither of the
wild-type Miz1 POZ domains, FLAG-Miz1 POZ?~ !5 or FLAG-
Mizl POZ?~ ', formed disulphide-bonded species when ex-
pressed in COS-7 cells and treated with the thiol crosslinking
reagent BMB (Figure Sa, lanes 1-3). In contrast, the BMB-
treated mutant Mizl POZ domains, FLAG-Miz1 POZ?~ 115 87C
and FLAG-Miz1 POZ?~ 9 87C1 each formed disulphide-bonded
dimers when expressed individually (Figure Sa, lanes 4 and
5), and when expressed together produced an additional spe-
cies consistent with heterodimerization between the two proteins
(Figure 5a, lane 6). Similarly, the wild-type Nacl POZ domain,
FLAG-Nacl POZ2~ 25, was unable to form a disulphide-bonded
dimer when expressed in COS-7 cells either alone or with the
wild-type FLAG-Miz1 POZ2~ ' (Figure 5b, lanes 1 and 3). The
mutant FLAG-Nacl POZ?~ 23 IGI3CCISI formed a disulphide-
bonded dimer (Figure 5b, lane 4) when expressed alone in COS-
7 cells, and when FLAG-Nacl PQZ?~ 12 [GI3CCI9S] and FLAG-
Mizl POZ?~165IS7C1 were expressed together and treated with
BMB, an additional species was produced that was consistent
with heterodimerization between the Nacl and Mizl POZ do-
mains (Figure 5b, lane 6).

a b
= |5 FLAG-Miz1 POZ 2115 + | -]+ FLAG-Nac1 POZ 2125 [C195]
+ |+ |- |-]| - | FLAG-Miz1 POz 21 NEE FLAG-Miz1 POZ 165
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The Nacl and Miz1 POZ domains form a heterodimeric species when expressed in COS-7 cells

(a) COS-7 cells were transfected with FLAG-tagged wild-type and mutant Miz1 POZ domains and treated with BMB. Lysates
were analysed by western blotting using anti-FLAG antibody. (b) COS-7 cells were transfected with FLAG-tagged Nac1 and

Miz1 POZ domains and treated as in (a).
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CONCLUSION

Identification of the Miz1/Nacl interaction expands the reper-
toire of interactions involving the Mizl POZ domain and may
have relevance to the mechanism of tumourigenesis by Nacl in
ovarian cancer. The recent identification of Nac1 as a direct tar-
get gene that is activated by Miz1 [37] may also suggest that the
Miz1/Nacl interaction could contribute to the autoregulation of
Nacl expression and of autophagy. The interaction between the
Nacl and Miz1 POZ domains represents a heterodimeric associ-
ation and it will be relevant to determine both the stoichiometry
of other heteromeric POZ domain interactions and the features
that determine their specificity.
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