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Abstract: Patients receiving orthopedic implants are at risk of implant-associated infections (IAI). A
growing number of antibiotic-resistant bacteria threaten to hamper the treatment of IAI. The focus
has, therefore, shifted towards the development of implants with intrinsic antibacterial activity to
prevent the occurrence of infection. The use of Ag, Cu, and Zn has gained momentum as these
elements display strong antibacterial behavior and target a wide spectrum of bacteria. In order to
incorporate these elements into the surface of titanium-based bone implants, plasma electrolytic
oxidation (PEO) has been widely investigated as a single-step process that can biofunctionalize these
(highly porous) implant surfaces. Here, we present a systematic review of the studies published
between 2009 until 2020 on the biomaterial properties, antibacterial behavior, and biocompatibility
of titanium implants biofunctionalized by PEO using Ag, Cu, and Zn. We observed that 100% of
surfaces bearing Ag (Ag-surfaces), 93% of surfaces bearing Cu (Cu-surfaces), 73% of surfaces bearing
Zn (Zn-surfaces), and 100% of surfaces combining Ag, Cu, and Zn resulted in a significant (i.e.,
>50%) reduction of bacterial load, while 13% of Ag-surfaces, 10% of Cu-surfaces, and none of Zn or
combined Ag, Cu, and Zn surfaces reported cytotoxicity against osteoblasts, stem cells, and immune
cells. A majority of the studies investigated the antibacterial activity against S. aureus. Important
areas for future research include the biofunctionalization of additively manufactured porous implants
and surfaces combining Ag, Cu, and Zn. Furthermore, the antibacterial activity of such implants
should be determined in assays focused on prevention, rather than the treatment of IAIs. These
implants should be tested using appropriate in vivo bone infection models capable of assessing
whether titanium implants biofunctionalized by PEO with Ag, Cu, and Zn can contribute to protect
patients against IAI.

Keywords: plasma electrolytic oxidation; additive manufacturing; titanium bone implants; antibacte-
rial biomaterials; surface biofunctionalization; implant-associated infection

1. Introduction

Implant-associated infections (IAI) are a devastating complication for patients receiv-
ing bone implants in total joint arthroplasty, trauma surgeries, and malignant bone tumor
resections [1–3]. These infections form a tremendous burden for both patients and society.
As the number of implantations continues to grow annually [4–6], the need for a cure
increases. Given that the treatment of such infections is highly costly from both financial
and societal points of view, the focus has shifted towards the prevention of IAI through the
development of implants with intrinsic antibacterial activity.

Antibiotics form the primary source of antibacterial agents used to treat bacterial
infections. However, a vast number of IAI is caused by Staphylococci and multiple strains
have developed high levels of antibiotic resistance [7,8], raising concerns for the future
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treatments of IAI. Infection by methicillin-resistant Staphylococcus aureus (MRSA) highly
complicates the treatment of IAI and adversely affects the treatment outcomes [9,10]. Other
antibacterial agents are, therefore, being investigated. Metallic elements, such as Ag, Cu,
and Zn have shown strong antibacterial behavior against a wide microbial spectrum,
including resistant bacterial strains [11–14].

Ag has excellent antibacterial properties, but may also induce cytotoxicity [15,16]. Cu
and Zn, on the other hand, exhibit lower levels of antibacterial behavior, but are essential
trace elements. Furthermore, they have been found to enhance the cytocompatibility of im-
plant surfaces [17,18]. Therefore, combining these elements may result in the right balance
between antibacterial behavior, chemical biocompatibility, and osteogenic response [19,20].

The local administration of antibacterial agents at the implant site was shown to
greatly complement the systemic administration of antibiotics [21,22]. The side effects of
such agents can also be prevented as the required antibacterial dose is generally lower [23].
To deliver antibacterial agents locally, the surface of the implants can be biofunctionalized
through surface treatment techniques. Antibacterial agents can be attached to implants
either as a coating layer, embedded directly onto the implant surface, or incorporated as
part of a converted surface layer [24].

Antibacterial agents can be deposited onto the implant surface by means of polymeric,
ceramic or metallic coatings. To produce these coatings, usually low temperatures are
used and therefore little interaction occurs with the implant substrate. Coatings have
a tendency to be thin and fragile, thereby limiting the availability of the antibacterial
agent and hampering their use during surgical implantation. To enhance the diffusion,
the antibacterial agent can be incorporated in a biodegradable polymer coating. In this
way implants were manufactured that contain Ag [25,26], Cu [27], and Zn [28]. Polymeric
coatings can be attached onto an implant by dipping and drying, sol-gel technology, spray
drying, layer-by-layer manufacturing, and self-assembly monolayers. Downsides are the
limited mechanical and chemical stability, local inflammatory response due to degradation
products, and uncontrolled release kinetics.

Another strategy is direct embedding of the antibacterial agent into the implant
surface. In this way, no new material is added on top of the substrate, but the composition
of the outermost layer of the implant substrate is altered. Examples of such methods
are ion implantation, plasma immersion ion implantation [29], and in situ reduction [30].
Advantages are that the implant surface morphology remains intact, and the corrosive
and biocompatible properties of the substrate material retained. However, this strategy
is difficult to perform on complex geometries and does not allow for optimization of the
surface morphology.

A third approach to incorporate Ag, Cu, and Zn in the implant surface is through
generation of a converted surface layer. One such technique is plasma electrolytic oxidation
(PEO), which was investigated to biofunctionalize the surface of highly porous implants
made of specific metallic biomaterials [31]. During PEO, the native titanium oxide layer is
transformed into a crystalline and microporous surface in a swift and single-step process.

Through the addition of antibacterial elements into the PEO electrolyte, these elements
become part of the converted surface layer and result in a surface exhibiting antibacterial
behavior [32,33]. Due to the tight embedding of the antibacterial agents into the surface,
the release of these ions can be controlled and the undesired circulation of agents can
be prevented, thereby avoiding nanotoxic effects [34]. PEO was applied to generate
titanium implants with antibacterial properties using Ag, Cu, and Zn [35–37]. In addition
to the antibacterial behavior, PEO biofunctionalized surfaces were shown to enhance
osseointegration and stimulate bony ingrowth in vivo [38,39].

Bone implants are increasingly produced through additive manufacturing (AM), as
this allows free-form fabrication and customized treatment for patients. AM allows for the
fabrication of highly porous implants with vast internal surface areas, which may make the
implants more prone to infection, while at the same time providing a challenging surface
to modify through surface biofunctionalization techniques. PEO is capable of biofunction-
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alizing the surface of complex geometries. In addition, the parameters of the PEO process
can be controlled, which allows to tailor the chemistry of the surface layer [40,41]. Further-
more, the synthesized surface layer adheres strongly to the implant substrate. Moreover,
the method is easily scalable towards clinically sized implants. Limitations of PEO are
that the surface morphology and chemistry of the surface are modified simultaneously
and this makes the individual tuning of these properties difficult. Furthermore, the exact
mechanism of plasma discharging is still unknown, and thereby the fine-tuning of the PEO
processing parameters difficult to predict [42].

In order to develop clinically relevant antibacterial implants, it is important to assess
the progress made in this area and compare the outcomes of different studies. As most
implants available for current clinical use are made of titanium, we performed a systematic
review on titanium implants biofunctionalized by PEO using Ag, Cu, and Zn. In order to
illustrate the progress made in this area, we screened the studies published between 2009
and December 2020. This area of research involved several scientific disciplines, including
engineering, material sciences, microbiology, and orthopedics. We, therefore, analyzed
a broad spectrum of aspects including the implant substrate, PEO parameters, surface
characteristics, antibacterial assays, and cytocompatibility testing.

2. Methods
2.1. Literature Search

A comprehensive electronic search was performed using Scopus and Google Scholar
search engines up until December 2020. In addition, a global screening was performed
using PubMed. The article search was conducted using different combinations of the fol-
lowing keywords: plasma electrolytic oxidation, micro-arc oxidation, antibacterial activity,
Ag, Cu, and Zn. To ensure that relevant publications were not excluded, combinations of
subject headings, text-word terms, and the Boolean operators AND and OR were used. The
searches were limited to those studies published in English between 2009 and 2020. The
reference lists of the included eligible studies were scanned to ensure no eligible studies
were omitted. The last search date was 24 December, 2020. This systematic review was
written according to the PRISMA (Preferred Reporting Items for Systematic Review and
Meta-Analyses) statement [43].

2.2. Inclusion and Exclusion Criteria

The inclusion criteria were—(1) the surface modification technique: plasma electrolytic
oxidation (PEO), micro-arc oxidation (MAO), or anodic spark deposition (ASD); (2) implant
substrate: titanium and its alloys; (3) antibacterial agents: Ag, Cu and Zn; (4) metallic-based
antibacterial agents should have been incorporated in PEO-modified Ti-based surfaces;
and (5) assessment of the antibacterial behavior should have been performed. A study
was excluded if it did not report any outcome variable. Furthermore, studies were not
eligible for inclusion when—(1) articles were not published in English; (2) no surface
modification technique was utilized; (3) PEO was performed in combination with other
surface modification techniques or treatments; (4) no antibacterial testing was performed;
and (5) study was of one of the following document types: reviews, patents, conference
abstracts/papers, and case reports.

2.3. Study Selection

The titles and abstracts were screened to assess the suitability of the search results.
Subsequently, the full-text of the studies selected in the first stage of screening were
analyzed to assess whether or not they satisfied the inclusion criteria.

2.4. Risk of Bias

The methodological details of the included studies were analyzed to minimize the
risks of biases in the individual studies. Furthermore, excluding grey literature in Google
Scholar decreased the risk of biases in the evaluation.
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2.5. Data Extraction

Extracted information included the type of the titanium substrate, electrolyte compo-
sition, PEO processing parameters, surface topography, XRD phase composition, surface
content of the incorporated elements, the release profile of the metallic (i.e., Ag, Cu, and
Zn) ions, antibacterial assays, tested pathogens, eukaryotic cell types, and the outcomes
(i.e., antibacterial behavior and cytocompatibility). The results were considered significant
when p < 0.05.

2.6. Search Results

A total of 1261 studies were identified in the two search engines: 1190 from Google
Scholar and 71 from Scopus. After screening the titles and abstracts, 1158 studies were
excluded. The primary reasons for exclusion were no antibacterial or biocompatibility
tests, PEO performed in combination with other surface modification techniques, and
document types: reviews, patents, conference abstracts/papers, citations and case reports.
As a result, 103 studies were selected for full-text analysis. The analysis led to the exclusion
of 59 studies, as they failed to meet the inclusion criteria. Finally, 49 studies were included
in this systematic review and were used for a qualitative analysis of their data and for
comparison with each other. A flow diagram was created to represent the entire systematic
search of the relevant studies (Supplementary Figure S1). The outline of the review is
presented in Figure 1.
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3. Summary of Study Characteristics

A summary of the study characteristics is presented in Figure 2. Of the analyzed
studies, 43% used Ag, 26% used Cu, and 21% worked with Zn, while 9% investigated a
combination of Ag, Cu, and Zn (i.e., using two or more metallic agents. Various types
of parameters were reported in the studies (Figure 2A), including the PEO processing
parameters (98%), phase composition (87%), surface content of the incorporated elements
(80%), and ion release kinetics (48%). Furthermore, 92% of the studies quantified the
antibacterial activity, which was reported to be >50% for 100% of the studies using Ag, 93%
of the studies using Cu, and 73% of those employing Zn, as well as 100% of the studies
combining multiple metallic agents (Figure 2B). Of those studies, 57% tested the efficacy of
the surfaces against S. aureus, 31% of the studies tested their specimens against E. coli, while
12% of the studies chose other bacterial species. Furthermore, the antibacterial activity
was determined against adherent bacteria in 42% of the studies, while 35% of the studies
assessed the antibacterial activity of their specimens against planktonic bacteria, and 23%
assessed both.
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included in this systematic review of the literature. Combi: combination of Ag, Cu, and/or Zn, HA: hydroxyapatite, NR:
not reported.

Cytocompatibility was tested in 71% of all studies, of which 10% tested against
multiple cell types (Figure 2C). Of the studies assessing the cytocompatibility of their
specimens, 78% used a cell line while 22% used cells obtained from a donor. The addition
of the metallic antibacterial agent resulted in cytotoxicity for 13% of the Ag studies, 10%
of the Cu studies, 0% of the Zn studies, and 0% of the studies combining two or more
metals. Meanwhile, improved cell response (i.e., enhanced cell viability and/or osteogenic
differentiation) was observed for 7% of the Ag surfaces, 50% of the Cu surfaces, and 33% of
the Zn surfaces, as well as for 50% of the surfaces combining Ag, Cu, and Zn.

4. Synthesis and Characterization of PEO Biofunctionalized Surfaces

PEO is an electrochemical process that converts the outer oxide layer of valve metals
into a ceramic surface layer and is applied to enhance corrosion resistance [44], dielectric
properties [45], and biocompatibility [46] of the substrates. A PEO setup has two electrodes:
the cathode and anode (Figure 3A). Usually, either a constant current or voltage is applied,
leading to the formation of an oxide layer on the anode (i.e., the specimen to be treated).
After dielectric breakdown, the oxide layer is thickened by spark discharges that lead to
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pore formation [47] (Figure 3B). As the process continues, the sparks become more intense,
resulting in the formation of larger pores.
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structure.

PEO biofunctionalization results in an altered surface morphology and chemical com-
position. In order to relate the antibacterial activity to certain surface characteristics, the
surface of the biofunctionalized specimens is usually characterized (Tables 1–4). The impor-
tant surface parameters in this regard are the surface topography, chemical composition,
phase composition, and ion release profile. In the following sections, we will discuss the
results regarding each of these parameters in more detail.
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Table 1. The methodological details of the included studies in which Ag was used as the antibacterial agent.

PEO Processing Parameters

Substrate
# of Exp

Groups with
Ag

Electrolyte Voltage (V)
Current
Density
(A/dm2)

Time (min) Surface
Topography

Phase
Composition

Surface
Content of Ag

Cumulative Ag
Ion Release

(ppb)
Ref.

Ti6Al7Nb 2
0.02 M CA, 0.15 M
Ca-GP, and (0.3 and
3.0) g/L Ag NPs

- 20 5 Porous structures
(<5 µm) - - 12—day 7

89—day 7 [15]

Ti6Al4V 2
0.15 M CA, 0.02 M
Ca-GP, and 3.0 g/L
Ag NPs

- 20 5

Micro- and
nano-porous
structures with Ag
NPs of 7–25 nm

Ti, anatase,
rutile, HA,
CaTiO3, and
Ca3(PO4)2

- 138—day 28
600—day 28 [31]

Ti6Al7Nb 1
0.15 M CA, 0.02 M
Ca-GP, and 3.0 g/L
Ag NPs

- 20 5
Porous structures
(<3 µm) with Ag
NPs of 37 nm

Ti, anatase, and
rutile 0.03 wt% - [32]

CP-Ti 3

0.4 M CA, 0.04 M
β-GP, and (0.00003,
0.00006 and 0.004 M)
AgNO3

380–420 - 180

Irregular and rough
morphology with
spherical particles
and flakes

Rutile, α-TCP,
β-Ca2P2O7, and
HA

<0.1 wt%
<0.1 wt%
0.21–0.45 wt%

- [35]

CP-Ti 1
0.15 M CA, 0.05 M
NaH2PO4, 0.25 mM
AgNO3

280–320 - 6
Porous surface with
1.5 µm pore size and
8.5% pore density

Anatase, rutile 0.13 at% 48—day 18 [48]

CP-Ti 3

0.4 g/L NaOH,
4.0 g/L NaH2PO4,
and 0.1–1.0 g/L Ag
NPs

400 - 5 Homogenous
porous surface layer

Ti, anatase,
rutile

1.5 at%
3.5 at%
5.8 at%

40—day 7
200—day 7
240—day 7

[49]

Ti6Al4V 2

0.15 M CA, 0.02 M
Ca-GP,
0.3 M SrA, and
3.0 g/L Ag NPs

- 20 5

Uniform coverage
with a
micro-/nanopores.
Addition of SrA
resulted in smaller
pore size.

Ti, anatase,
rutile, HA,
SrTiO3,
Sr2Ca(PO4)2

- 1500—day 28
1800—day 28 [50]

CP-Ti 3
100 mM Ca-GP,
150 mM CA, 0,5, and
10 mM AgNO3

- 2.51 10

Porous oxide layer
for 0 and 5 mM Ag,
non-porous surface
for 10 mM Ag

Anatase, α-Ti
0.5 at%
1.5 at%
3.0 at%

300—day 28
3000—day 28
104—day 28

[51]
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Table 1. Cont.

PEO Processing Parameters

Substrate
# of Exp

Groups with
Ag

Electrolyte Voltage (V)
Current
Density
(A/dm2)

Time (min) Surface
Topography

Phase
Composition

Surface
Content of Ag

Cumulative Ag
Ion Release

(ppb)
Ref.

CP-Ti, Ti-40Nb 2
Na2HPO4, NaOH,
β-Ca3(PO4)2, and
0.3—1 g/L AgNO3

200–450 - 5–10

Uniformly
distributed β-TCP
particles over a
porous surface with
0–8 µm pore sizes

Anatase, α-TCP,
β-TCP

0.2 at%
0.8 at% - [52]

CP-Ti 4
Na2HPO4, NaOH,
β-Ca3(PO4)2, and
1 g/L AgNO3

200–450 - 5–10

Uniformly
distributed β-TCP
particles over a
porous surface with
0–8 µm pore sizes

Anatase, α-TCP,
β-TCP

0.3 at%
0.5 at%
0.8 at%

- [53]

CP-Ti 3

0.1 M CA, 0.06 M
NaH2P, and
0.01—0.05 M Ag2O
NPs

- 10 10
Porous structure
with typical
micro-sized pores

Anatase, rutile
1.6 wt%
3.1 wt%
5.8 wt%

2000—day 28
4000—day 28
104—day 28

[54]

CP-Ti 1 CA, Na2HPO4, and
0.0025 M Ag-A 380 - 5

Flake-like
morphology with
regional Ag particles
of <200 nm

Ti, anatase,
rutile,
HA, and CaTiO3

4.6 wt% - [55]

CP-Ti 3

20.5 g/L CA, 7.2
G/L Na2HPO4, and
(0.0005, 0.001, and
0.002) M Ag-A

400 - 5

Micro-porous
structures with Ag
NPs surrounding
micro-pores

Ti, anatase,
rutile,
HA, and CaTiO3

1.14 wt% - [56]

Ti6Al4V 1
20.5 g/L CA, 7.2 g/L
Na2HPO4, and
0.001 M Ag-A

400 - 5

Micro-porous
structures with Ag
NPs of <100 nm
surrounding
micro-pores

Ti, anatase,
rutile, HA, and
CaTiO3

0.7 wt% 1500—day 14 [57]

Ti6Al4V 2 CA, β-GP and (0.1
and 0.4) g/L AgNO3

400 - 5

Granular and
needle-like
morphology with
Ag NPs of 20–30 nm

Ti, anatase,
rutile, HA, and
CaTiO3

0.6 wt%
2.1 wt%

2500—day 14
8000—day 14 [58]

Ti-29Nb-13Ta-
4.6Zr 2

0.15 M CA, 0.1 M
Ca-GP, and (0.0005
and 0.0025) M
AgNO3

- 2.51 10 Porous structures
(<10 µm) - 0.01 wt%

0.01 wt% - [59]
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Table 1. Cont.

PEO Processing Parameters

Substrate
# of Exp

Groups with
Ag

Electrolyte Voltage (V)
Current
Density
(A/dm2)

Time (min) Surface
Topography

Phase
Composition

Surface
Content of Ag

Cumulative Ag
Ion Release

(ppb)
Ref.

CP-Ti 3
0.1 M KOH, 0.015 M
K4P2O7, and (0.1, 0.3
and 0.5) g/L Ag NPs

- 10 5

Micro-porous
structures with Ag
NPs of <20 nm
(3–7.5 µm)

-
0.53 at%
0.69 at%
0.80 at%

12.2—day 1
22.7—day 1
28.8—day 1

[60]

CP-Ti 1
0.3 M CA, 0.02 M GP,
and 0.62 g/L Ag
NPs

290 - 10
Porous structures
with volcano
top-like micro-pores

Ti, anatase, and
rutile 1.07 at% - [61]

CP-Ti 1
0.3 M CA, 0.02 M GP,
and 0.62 g/L Ag
NPs

290 - 10
Porous structures
with Ag NPs of
<100 nm

Ti, anatase, and
rutile - - [62]

Ti6Al4V 1

Pure water and
AgPURETM W10
nanosilver
suspension

- 20 0.5

Flake-like
morphology with
Ag particles of
<200 nm

- 3.6 at% - [63]

Ti6Al4V 2
0.2 M CA, 0.02 M
β-GP, and (0.005 and
0.05) g/L Ag NPs

387 ± 3
385 ± 2 8 3

Porous structures
with volcano
top-like micro-pores
(<3 µm)

Ti, rutile, and
HA

<0.1 wt%
<0.1 wt% - [64]

CP-Ti 3

2.0 g/L
NaH2PO4·2H2O, 5.0
g/L CA, and 0.1, 0.5,
and 0.8 g/L Ag-A

500 - 5
Porous structures
uniformly covering
surface

Ti, anatase,
rutile, HA,
CaTiO3

0.8 at%
1.5 at%
2.2 at%

264—day 7
813—day 7
1110—day 7

[65]

CP-Ti 2 NTA, Ca(OH)2, and
180 mg/L Ag NPs 250–300 - 5

Rough, thick oxide
layer
with a highly porous
structure

- 0.3 wt%
0.7 wt% - [66]

Ag-A: silver acetate, CA: calcium acetate, Ca-GP: calcium glycerophosphate, GP: glycerophosphate, HA: hydroxyapatite, KOH: potassium hydroxide, NPs: nanoparticles, NTA: nitrilotriacetic acid, SrA: strontium
acetate, TCP: tricalcium phosphate.
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Table 2. The methodological details of the included studies in which Cu was used as the antibacterial agent.

PEO Processing Parameters

Substrate
# of Exp

Groups with
Cu

Electrolyte Voltage (V)
Current
Density
(A/dm2)

Time
(min) Surface Topography Phase

Composition
Surface

Content of Cu

Cumulative Cu
Ion

Release (ppb)
Ref.

CP-Ti 1 0.1 M CA, 0.05 M GP,
and 0.05 M Cu(OAc)2

- 16.5 4

Micro-porous or crater
structures (3–5 µm)
with nano-grains of
30–50 nm

Ti and anatase 1.4 ± 0.08 wt% - [36]

CP-Ti, Ti-40Nb 2
H3PO4, 50–75 g/L
CaCO3, 40–60 g/L
Cu-substituted HA

200–450 - 5–10

Uniformly distributed
β-TCP particles over a
porous
coating surface with
0–8 µm pore sizes.

Anatase, β-TCP,
α-TCP, Ca2P2O7

0.1 at%
0.2 at% - [52]

CP-Ti 1
0.02 M C12H22CaO14,
0.01 M (NaPO3)6,
0.02 M C12H22CuO14

NR NR 6
Porous surface with
irregularly shaped and
sized pores

- - - [67]

CP-Ti 2
0.1 M CA, 0.06 M
NaH2P, 5–10 g/L
Na2Cu-EDTA

- 10 10

Highly porous area
with micro-sized pores
and a rough less
porous area

- 2.3 wt%
4.2 wt%

3.3/cm2—day 8
8.1/cm2—
day 8

[68]

CP-Ti 3 H3PO4, 300–600 g/L
Cu(NO3)2·H2O 450 - 5

With increasing
Cu-salt levels
sharpening of pores

Ti, anatase
0.54 at%
0.55 at%
0.72 at%

- [69]

Ti6Al4V 2
11 g/L KOH, 10 g/L
EDTA-CuNa2, 5 or
15 g/L phytic acid

- 10 3
Uniformly distributed
three-dimensional
porous structure

Anatase, rutile,
and TiP2O7

1.01 wt%
1.92 wt%

192—day 8
197—day 8 [70]

CP-Ti 1

0.2 M CA
monohydrate, 0.02 M
NaH2PO4, 0.01 M CuA
monohydrate

- 3.25 5
Volcanic uniform
porous morphology
with 1–5 µm pores

Ti, rutile,
anatase,
Ca3(PO4)2

5.05 at% 32.8—day 14 [71]

CP-Ti 4

0.2 M CA, 0.02 M
β-GP, and (0.00125,
0.0025, 0.00375, and
0.005) M Cu(OAc)2

450 - 1.5
Micro-porous
structures
(1–4 µm)

Ti, anatase, and
rutile

0.67 wt%
1.17 wt%
1.51 wt%
1.93 wt%

6.75—day 21
-
-
60.2—day 21

[72]

CP-Ti 2

0.1 M Na2, 0.25 M
NaOH, 0.1 M CA,
0.02 M Na2SiO3, and
(0.0002 and 0.002) M
CuSO4

250 - 5
Macro-pores or crater
structures (>100 µm)
with nano-grains

- - 411.3—day 2
27.0—day 2 [73]
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Table 2. Cont.

PEO Processing Parameters

Substrate
# of Exp

Groups with
Cu

Electrolyte Voltage (V)
Current
Density
(A/dm2)

Time
(min) Surface Topography Phase

Composition
Surface

Content of Cu

Cumulative Cu
Ion

Release (ppb)
Ref.

CP-Ti 1
15 g/L NaH2PO4,
2 g/L NaOH, and 3.0
g/L Cu NPs

- 20 5
Porous structures
(<5 µm) with Cu NPs
of <60 nm

Ti, anatase, and
rutile - - [74]

CP-Ti 2
15 g·L-1 NaH2PO4,
2 g/L NaOH, and (0.3
and 3.0) g/L Cu NPs

470 ± 3
465 ± 3 20 5

Micro-porous
structures
(1–5 µm)

Ti, anatase 1.30 at%
2.76 at%

0.117—day 1
0.135—day 1 [75]

Ti6Al4V 3
Phosphate electrolyte
with (2,6 and 10) g/L
Cu2O NPs

450 - 15

Micro-porous
structures (<30 µm)
with Cu2O NPs of
20–30 nm

Ti, anatase,
rutile, Cu, Cu2O,
and CuO

16.0 wt%
23.2 wt%
24.5 wt%

- [76]

CP-Ti 1
0.002 M CA, 0.02 M
β-GP, and 0.0013 M
Cu(OAc)2

480 - 2
Micro-porous
structures
(1–4 µm)

Ti, anatase, and
rutile 0.77 wt% 4.5—day 7 [77]

Ti6Al4V 1 50 g/L Na2SiO3 and
4 g/L Cu2O NPs 350 - 15

Porous structures
(<3 µm) with Cu2O
NPs of 20–50 nm

Ti, anatase,
rutile, Cu, Cu2O,
and CuO

27.27 wt% - [78]

CA: calcium acetate, Ca-GP: calcium glycerophosphate, CuA: copper acetate, GP: glycerophosphate, HA: hydroxyapatite, KOH: potassium hydroxide, NPs: nanoparticles, NR: not reported, TCP: tricalcium
phosphate.
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Table 3. The methodological details of the included studies in which Zn was used as the antibacterial agent.

PEO Processing Parameters

Substrate
# of Exp

Groups with
Zn

Electrolyte Voltage (V)
Current
Density
(A/dm2)

Time
(min)

Surface
Topography

Phase
Composition

Surface
Content of Zn

Cumulative Zn
Ion

Release (ppb)
Ref.

CP-Ti 3
20 g/L Na3PO4, 4 g/L
NaOH, and (5, 10, and
15) g/L NPs

301
304
310

1000 7
Porous structures with
ZnO NPs of 25 nm
(<1.51–0.98 µm)

Ti, anatase, and
rutile

20 wt%
25 wt%
35 wt%

- [37]

CP-Ti, Ti-40Nb 2
H3PO4, 50–75 g/L
CaCO3, 40–60 g/L
Zn-substituted HA

200–450 - 5–10

Uniformly distributed
β-TCP particles over a
porous
coating surface with
0–8 µm pore sizes

Anatase, β-TCP,
α-TCP, Ca2P2O7

0.28 at%
0.4 at% - [52]

Ti6Al4V 1 50 g/L Na2SiO3 and
4 g/L ZnO NPs 350 - 15

Porous structures
(<3 µm) with ZnO NPs
of 20–50 nm

Ti, anatase,
rutile, and ZnO 35.54 wt% - [78]

CP-Ti 2

0.1 M CA, 0.06 M
NaH2P, 0.02 M
Na2Zn-EDTA, or
0.02 M ZnO NPs

- 10 10 Porous surface at
micrometer scale

Anatase, rutile,
ZnO - - [79]

CP-Ti 3
0.15 M CA, 0.1 M
Ca-GP,
0.5–2.5 mM ZnCl2

- 2.51 10
Continuous porous
surface with circular
pores of 5.3 µm in size

α-Ti, anatase 3.3 at% 250—day 7 [80]

CP-Ti 1

15 g EDTA-2Na,
8.8 g
Ca(CH3COO)2·H2O,
6.3 g Ca(H2PO4)·H2O,
7.1 g Na2SiO3·9H2O,
5 g NaOH, 6 mL H2O2,
8.5 g Zn(CH3COO)2 in
1 L

350–500 - 7

Porous and rough
surface with 1–3 µm
pore sizes increasing
voltages resulting in
decreasing pore
density and increased
pore sizes

Ti, anatase,
rutile 2 at% 250—day 15 [81]

CP-Ti 1
0.15 M CA, 0.15 M
Ca-GP, and 0.02 M
ZnA

350 - 1
Porous structures with
volcano-shaped
structures

Ti, anatase, and
rutile 9.7 at% 300—day 1

<1000—day 28 [82]

CP-Ti 3
0.1 M CA, 0.05 GP, and
(0.02, 0.04, and 0.06) M
ZnA

- 16.5 4
Porous (<5 µm) with
nano-grains of
20–100 nm

Ti, anatase, and
rutile

4.6 ± 0.7 wt%
7.1 ± 0.6 wt%
9.3 ± 0.8 wt%

1180—day 14
2235—day 14
3620—day 14

[83]
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Table 3. Cont.

PEO Processing Parameters

Substrate
# of Exp

Groups with
Zn

Electrolyte Voltage (V)
Current
Density
(A/dm2)

Time
(min)

Surface
Topography

Phase
Composition

Surface
Content of Zn

Cumulative Zn
Ion

Release (ppb)
Ref.

CP-Ti 1
0.02 M CA, 0.15 M
Ca-GP, and 0.06 M
ZnA

- 30 5 Porous structures
(<5 µm)

Ti, anatase, and
rutile 8.7 at% - [84]

CP-Ti 3
0.1 M CA, 0.025 M
Na5P3O10, and (0.01,
0.03, and 0.05) M ZnA

380 - 20 Micro-porous
structures -

0.199 at%
0.574 at%
1.995 at%

- [85]

Ti-15Mo 3

0.1 M Ca(H2PO2)2,
10 g/L ZnO, or 25 g/L
Zn3(PO4)2 or 10 g/L
Ca3(PO4)2 and 10 g/L
Zn3(PO4)2 particles

300 15 5 Porous oxide layer
with micropores -

1.5 at%
1.1 at%
0.2 at%

115—week 16
64—week 16
60—week 16

[86]

CA: calcium acetate, Ca-GP: calcium glycerophosphate, GP: glycerophosphate, HA: hydroxyapatite, KOH: potassium hydroxide, NPs: nanoparticles, NR: not reported, TCP: tricalcium phosphate, ZnA: zinc
acetate.



Int. J. Mol. Sci. 2021, 22, 3800 14 of 39

Table 4. The methodological details of the included studies in which multiple antibacterial agents were used.

PEO Processing Parameters

Substrate # of Exp groups Electrolyte Voltage (V) Current Density
(A/dm2) Time (min) Surface

Topography
Phase

Composition
Surface

Content of Zn
Cumulative Ion
Release (ppb) Ref.

Ag and Cu

Ti6Al4V 6

0.15 M CA, 0.02 M
Ca-GP,
0.75–3.0 g/L Ag,
and/or Cu NPs in
ratios 0–100%

- 20 5

Homogeneous
porous surface
with circular pores.
Ag and/or Cu
NPs scattered on
surface.

- -

Day 28:
1491 (Ag)/-
1906 (Ag)/-
1573 (Ag)/1527 (Cu)
1425 (Ag)/1392 (Cu)
1291 (Ag)/1225 (Cu)
-/1981 (Cu)

[19]

Ag and Zn

Ti6Al4V 6

0.15 M CA, 0.02 M
Ca-GP,
0.75–3.0 g/L Ag,
and/or Zn NPs in
ratios 0–100%

- 20 5

Homogeneous
porous surface
with circular pores.
Ag and/or Zn
NPs scattered on
surface.

- -

Day 28:
1491 (Ag)/-
1906 (Ag)/-
1573 (Ag)/1467 (Zn)
1682 (Ag)/1697 (Zn)
1749 (Ag)/1678 (Zn)
-/2281 (Zn)

[20]

CP-Ti 3

0.1 M CA, 0.02 M
β-GP, 0.25 g·L-1
SDBS, 0.1 M ZnA,
and 6 g/L Ag NPs

390 -
0.5
1.5
2

Micro-porous
structures with
nano-grains of
5–40 nm and Ag
NPs of <20 nm
(1–4 µm)

Ti, anatase, rutile,
and ZnO

1.06 (Ag)/22.19 (Zn)
1.42 (Ag)/26.93 (Zn)
1.56 (Ag)/29.38 (Zn)

Week 36
-
-
684 (Ag)/6880 (Zn)

[87]

Cu and Zn

CP-Ti 5

0.002 M CA, 0.02
M β-GP, (0, 0.005,
0.01, 0.02, and
0.04) M ZnA and
0.0013 M
Cu(OAc)2

480 - 2
Micro-porous
structures
(1–4 µm)

Ti, anatase, and
rutile

0.77 (Cu)
0.62 (Cu)/1.79 (Zn)
0.55 (Cu)/2.53 (Zn)
0.39 (Cu)/6.47 (Zn)
0.33 (Cu)/8.92 (Zn)

Day 20:
4.5 (Cu)
3.2 (Cu)/7.8 (Zn)
2.7 (Cu)/23.2 (Zn)
2.3 (Cu)/64.5 (Zn)
1.9 (Cu)/94.9 (Zn)

[77]

Ti6Al4V 9

3–9 g/L KOH,
5–11 g/L phytic
acid, 2–10 g/L
EDTA-CuNa2,
2–10 g/L
EDTA-ZnNa2

- 11 3

Porous surface
with increasing
pore sizes for
increased levels of
Cu and/or Zn in
surface

Ti, anatase

-/3.47 (Zn)
-/9.84 (Zn)
-/7.90 (Zn)
0.61 (Cu)/11.41 (Zn)
0.98 (Cu)/4.42 (Zn)
2.15 (Cu)/5.42 (Zn)
-/5.64 (Zn)
1.25 (Cu)/6.71 (Zn)
4.18 (Cu)/2.89 (Zn)

- [88]

CA: calcium acetate, Ca-GP: calcium glycerophosphate, GP: glycerophosphate, HA: hydroxyapatite, KOH: potassium hydroxide, NPs: nanoparticles, NR: not reported, SDBS: sodium dodecyl benzene sulfonate,
TCP: tricalcium phosphate, ZnA: zinc acetate.
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4.1. Titanium Substrate

Of the reviewed studies, most used commercially pure (CP) titanium (62%), fol-
lowed by Ti6Al4V (23%), Ti6Al7Nb (4%) [15,32], Ti40Nb [52], Ti29Nb13Ta4.6Zr [59], and
Ti15Mo [86]. Titanium is used for bone implants because of its mechanical properties,
corrosion resistance and chemical biocompatibility [46,89]. Ti6Al4V has a higher strength
to weight ratio than CP titanium and is, therefore, the natural choice for load-bearing
applications, such as joint replacing implants, while CP titanium is more frequently applied
for non-load bearing applications, such as maxillofacial implants [90]. Clinical studies
comparing the long-term outcomes of patients treated with either CP-Ti or Ti-alloys are
lacking [91,92].

Ti6Al4V implants may release vanadium and aluminum ions that can induce cyto-
toxicity [93]. Other alloys employing niobium have, therefore, been developed, including
Ti6Al7Nb and Ti40Nb, which have similar mechanical properties, but do not induce cy-
totoxicity [94]. In addition, the cytotoxic effects of Al and/or V can be mitigated by PEO,
since it reduces the ion release of those species [89]. PEO is easily scalable and can be
applied to human-sized implants [95]. In order to translate the results from in vitro studies,
it is, therefore, interesting to investigate the antibacterial behavior of substrates that are
designed and produced like an implant, for instance, through additive manufacturing.
This also highlights one of the advantages of PEO, namely that it can be applied on highly
porous surfaces [31].

4.2. PEO Electrolyte

The bioactivity of PEO-biofunctionalized implant surfaces is determined for a large
part by the composition of the PEO electrolyte, as the elements in the electrolyte eventually
make up the chemical composition of the implant surface. More than 50% of the studies
included in this systematic review used electrolytes with Ca and P elements. The pres-
ence of Ca and P in the electrolyte can result in the formation of hydroxyapatite, which
forms more than 60% of bone tissue and is associated with a Ca/P ratio of 1.67 [96,97].
Calcium acetate and calcium glycerophosphate were the primary source of Ca, while
CaCO3 [52] and C12H22CaO14 [67] were also used in some studies. P is usually added in
the form of calcium glycerophosphate, β-glycerophosphate, H3PO4 [52,69], K4P2O7 [60],
NaH2PO4 [48,49,65,71,74,75], NaPO3 [67], or Na5P3O10 [85]. Another element used in
about 30% of the included studies is Na in the form of NaOH, NaH2PO4 [48,49,65,71,74,75],
NaPO3 [67], Na5P3O10 [85], or Na2SiO3 [73,76,78,98]. The addition of Na roughens the sur-
face and enhances the Ca/P ratio [99], which has been shown to enhance the osteogenic cell
response [100,101]. In addition, the implantation of Na through plasma immersion has been
found to stimulate the osteogenic differentiation of cells [102]. Moreover, KOH [60,70,88]
is used as an alternative base for NaOH given its similar effects on osteogenic differentia-
tion [103].

4.3. PEO Processing Parameters

The electrical parameters of the PEO process affect the surface morphology [42],
including the porosity [104], pore size [105], pore shape [106], and pore density [107], as
well as the surface chemistry [83,84]. Of the included studies, 54% controlled the voltage,
31% controlled the current density, and 13% controlled both, while 1 study did not report the
PEO processing parameters. The oxidation times ranged between 0 and 180 min, with 21%
between 0–4 min, 50% between 5–9 min, 19% between 10–14 min, 6% between 15–19 min,
and 4% ≥ 20 min. As the current density, voltage, or oxidation time increases, the spark
discharge energy amplifies, affecting the mass of the oxide layer formed by a single pulse
and resulting in enhanced growth of the oxide layer [40,108]. Furthermore, as temperature
of the local discharge area increases, the plasma effect is enhanced, resulting in larger pore
sizes and the transformation of amorphous TiO2 to anatase and rutile phases. Meanwhile,
the intensity of the spark discharge enhances with time, meaning that prolonged oxidation
times result in the formation of hydroxyapatite on the implant surface [109,110]. As such,
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PEO processing parameters largely affect the chemical and phase composition as well as
the surface topography of the implant surface.

4.4. Surface Morphology

As PEO greatly affects the surface topography of titanium surfaces, all studies investi-
gated the surface topography by scanning electron microscopy (SEM) and most studies
reported a porous surface topography with rounded pores (Figure 4A). PEO transforms
the native titanium oxide layer into a highly porous surface with interconnected porous
networks, which is frequently described as a volcanic landscape with micropores that
are <10 µm in diameter. In addition, flake-like morphologies [35,55,63] and needle-like
structures [58] are often observed. Furthermore, the thickness and porosity of the oxide
layer were shown to depend on the composition of the PEO electrolyte and PEO processing
parameters [54,111]. The specifications of the surface morphology in turn were shown to
greatly influence the antibacterial behavior [112] and osteogenic properties [113,114] of the
implant surfaces.
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4.5. Phase Composition by XRD

One component of the surface that plays a major role in the biological behavior is the
phase composition of the implants [115]. These phases can be analyzed with X-ray diffraction
(XRD). Among the included studies, 87% analyzed the phase composition. Of those, all studies
analyzed Ti phases and observed bare Ti (66%), anatase (81%), and/or rutile (66%). Some
studies observed both Ti and anatase, but no studies reported solely Ti and rutile. This is in
line with the observation that during PEO processing, first the metastable anatase is formed,
which then turns into the stable rutile [116]. While all studies that performed XRD analysis
identified the TiO2 phases, not all studies analyzed the other phases formed by the elements
incorporated from the electrolyte. Since many PEO electrolytes contain both Ca and P, 19% of
the studies observed hydroxyapatite [31,35,50,55–58,64,65] and 28% contain other Ca/P phases
including α-TCP [35,52,53], β-TCP [52,53], TiP2O7 [70], CaTiO3 [31,55–58,65], Ca2P2O7 [35,52],
and Ca3(PO4)2 [31,71]. In addition, phases with Cu, Cu2O, and CuO [76,78], as well as
ZnO [78,79,87] were observed.

These phases were shown to affect the biological response. For instance, TiO2 is
transformed from an amorphous phase into crystalline anatase and rutile phases that were
shown to produce reactive oxygen species (ROS) [117], which in turn contribute to the
desired antibacterial behavior [118].
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4.6. Content of the Antibacterial Elements Incorporated in the PEO Layers

The antibacterial activity of Ag, Cu, and Zn may be present on the implant surface
depending on the dose [119–121]. Therefore, it is important to quantify the content of
these elements on the implant surface after PEO biofunctionalization. This analysis is
usually done either by energy-dispersive X-ray spectroscopy (EDS; Figure 4B) or X-ray
photoelectron spectroscopy (XPS). Among the included studies, 80% reported the elemental
composition of the surface, while 20% did not. The studies generally reported the elemental
composition either in terms of atomic% or weight% and found them to correlate with the
amount of Ag, Cu, and Zn dispersed in the PEO electrolyte. The amount of Ag incorporated
in the implant surfaces tended to be lower (1.35 ± 1.82 wt%) than Cu (7.70 ± 10.17 wt%)
and Zn (18.79 ± 12.06 wt%), reflecting the lower minimal inhibitory concentration (MIC)
of Ag (0.03–8 µg/mL) as compared to Cu (256–448 µg/mL) and Zn (765 µg/mL) [122].
However, EDS does not exclusively measure the elemental composition of the surface but
may penetrate deeper into the oxide layer. This is an important point, because it is not
clear to what extent the species present deeper inside the oxide layer, which can be up
to 10 µm in thickness, and contribute to the antibacterial properties of biofunctionalized
implants [15]. The amount of active agents present on the implant surface may not be
directly related to the antibacterial activity, since the form in which the element is present
on the surface (i.e., ionic species, nanocrystals, or nanoparticles) affects the antibacterial
properties as well [123,124].

4.7. Ion Release

An important antibacterial mechanism is through the release of metallic ions from
the implant surface. These released ions do not only play a role in contact-killing, but also
target planktonic bacteria in the implant surrounding, as this area could form a niche for
bacteria [125]. Ion release was studied in 48% of the included studies and was measured
from 12 h up to 56 days. Overall, the release of Ag, Cu, and Zn ions was found to be higher
for the implant surfaces with a higher elemental content and a higher concentration of the
active agents in the PEO electrolyte. The combination of Ag with Cu or Zn NPs on the
implant surface resulted in enhanced Cu or Zn release while the Ag release was reduced
in the first 24 h [19,20]. Similarly, higher concentrations of zinc acetate added to copper
acetate resulted in enhanced Zn ion release while Cu ion release was reduced with higher
concentrations of zinc acetate [77]. This may stem from galvanic coupling favoring the
oxidation and release of one element over the other [126,127]. When studied in detail, this
may allow for controlled release profiles and accompanying antibacterial effects.

Ion release results depend on the liquid in which these measurements are performed.
Frequently used liquids are phosphate-buffered saline (PBS) and simulated body fluid
(SBF) [128]. Ion release does not only depend on the surface content, but also on the form in
which the antibacterial agent is present on the surface (i.e., as ionic species, nanoparticles,
or other forms) [124]. Ideally, one could control the release of ions to not only prevent in-
fection immediately after surgery, but also ward off late implant-associated infections [129].
However, comparing the reported ions release kinetics is difficult due to the different units,
specimen designs, and measurement setups being used. In addition to the previously
mentioned parameters, the surface area plays an important role in determining the concen-
tration of the released ions, as a larger area allows for more agents to be incorporated on the
surface, in turn leading to a higher release rate [31]. The reported concentrations of release
ions should, therefore, be normalized with respect to the surface area of the specimens to
enable direct comparison between different studies. The information regarding the surface
area is generally not reported in the studies, rendering a direct comparison impossible.

5. Antibacterial Properties

Surface biofunctionalization by PEO with Ag, Cu, and Zn results in antibacterial
surfaces. In the following section, we will first compare the antibacterial activity of PEO
biofunctionalized titanium implants bearing Ag, Cu, and Zn found by in vitro and ex
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vivo studies (Table 5). Then, we will discuss the factors that determine the antibacterial
activity. First of all, the types of the bacterial species and strains were shown to affect the
susceptibility and resistance of bacteria to antibacterial agents [130], their ability to infect
host cells [131], and their pathogenicity [132]. Moreover, the type of assay, the inoculation
dose, and the culture time used in the studies may affect the observed antibacterial activity.
Finally, the activity against adherent and/or planktonic bacteria is discussed, as the adher-
ence of bacteria may initiate biofilm formation, while planktonic bacteria form a source for
reinfection and host cell invasion [133].
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Table 5. Antibacterial tests and results on PEO-modified Ti-surfaces bearing single or multiple elements.

Bacterial Species Bacterial Strain Source Analysis Method Duration (h) Test
Inoculum

Planktonic/
Adherent Main Outcomes Ref.

Ag

MRSA AMC201 Ag NPs Modified version of
JIS Z 2801:2000 24 107 CFU/mL Adherent After 24 h: 98 and 99.75% reduction by

incorporation of 0.3 and 3 g/L Ag NPs [15]

MRSA AMC201 Ag NPs

PetrifilmTM assay
Zone of inhibition
CFU count
SEM
Ex vivo

48 103–108 CFU/mL Adherent

Significantly reduced numbers of viable
bacterial colonies by incorporation of
Ag NPs in the surface after 15 min.
Four-logs reduction in the numbers of
viable bacterial colonies in the ex vivo
infection model by incorporation of Ag,
compared with a 2-logs reduction in
absence of Ag after 24 h.
Prevention biofilm formation for at
least 48 h

[31]

MRSA AMC201 Ag NPs Modified version of
JIS Z 2801:2000 24 107 CFU/mL Adherent 100% killed by incorporation of

0.03wt% Ag at 24 h [32]

S. aureus
E. coli

ATCC6538
ATCC25922 AgNO3 Spread plate analysis 24 1.6·105 CFU/mL Planktonic

After 24 h: >99.8 reduction by
incorporation of >0.1 wt% Ag,
compared with a reduction of 20% in
absence of Ag

[35]

E. coli ATCC25933 AgNO3 Spread plate analysis 12 106 CFU/mL Adherent After 12 h: >99.9% eradication of E. coli [48]

S. aureus
E. coli

ATCC6538
ATCC25922 Ag NPs

CFU count
Fluorescence
measurement

24 0.0001 OD590 Adherent

After 24 h: complete eradication for E.
coli and 6-log reduction for S.aureus
with 5.8 at% Ag
Stronger antibacterial effect on E. coli
compared to S. aureus

[49]

MRSA USA300 Ag NPs

Zone of inhibition
CFU count
SEM
Ex vivo

48 104–107 CFU/mL
Adherent
Planktonic

After 24 h: enhanced zone of inhibition
for PT-AgSr samples compared to
PT-Ag samples.
Complete eradiation of adherent and
planktonic bacteria in vitro and ex vivo.
After 48 h: prevention of biofilm
formation in Ag-containing surfaces.

[50]

S.aureus
E.coli

NBRC122135
NBRC3972 AgNO3 ISO 22196:2007 24 0.4–3.0·106 CFU/mL Adherent

After 24 h: >0.05 mM Ag in PEO
electrolyte reduced bacteria >90%.
Inhibitory effect was stronger for E. coli
compared to S. aureus

[51]
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Table 5. Cont.

Bacterial Species Bacterial Strain Source Analysis Method Duration (h) Test
Inoculum

Planktonic/
Adherent Main Outcomes Ref.

S. aureus 209P AgNO3 Spread plate analysis 2 500 CFU/mL Planktonic After 2 h: 53% reduction in CFU after
incubation in supernatant [52]

S. aureus ATCC6538-P AgNO3 Spread plate analysis 2 250 CFU/mL Planktonic After 2 h: 70% reduction in CFU and
45% antibacterial rate for >0.3%at Ag [53]

S. aureus NR Ag2O Spread plate analysis 24 105 CFU/mL Adherent After 24 h: antibacterial rate >1 with
5.8wt% Ag [54]

S. aureus
E. coli

ATCC6538
ATCC25822 Ag-A Spread plate analysis 24 2.5·105 CFU/mL Planktonic

At 24 h: 99.9 and 58.3% reduction of E.
coli for 4.6 wt% Ag and Ag-free.
At 24 h: 99.8 and 47.8% reduction of S.
aureus for 4.6 wt% Ag and Ag-free

[55]

S. aureus ATCC6538 Ag-A Modified version of
JIS Z 2801:2000 24 2.5·105 CFU/mL Planktonic After 24 h: 99.98% reduction by

incorporation of 1.14 wt% Ag [56]

S. mutans ATCC25175 Ag-A Spread plate analysis
SEM 16.5 1.5·108 CFU/mL Adherent After 16.5 h: 67% reduction by

incorporation of 0.7 wt% Ag [57]

E. coli ATCC25822 AgNO3 Spread plate analysis 24 109 CFU/mL Planktonic

After 24 h: 97.4 and 99.2% reduction by
incorporation of 0.6 and 2.1 wt% Ag,
compared with a reduction of 22.7% in
absence of Ag: Ag-free PEO-modified
surface

[58]

E. coli NBRC3972 AgNO3 ISO 22196:2011 24 5·106 CFU/mL Planktonic 100% killed in presence of 0.01 wt% Ag
at 24 h [59]

E. coli ATCC25922 Ag NPs Spread plate analysis 24 106 CFU/mL Planktonic 100% killed by incorporation of 0.53
wt% Ag within 12 h [60]

S. sanguinis IAL1832 Ag NPs Spread plate analysis 24 107 CFU/mL Planktonic

At 24 h: 62 and 53% reduction by
incorporation of 1.9wt% Ag, compared
to pure Ti and the Ag-free
PEO-modified surface, respectively

[61]

S. epidermidis ATCC35984 Ag NPs Spread plate analysis
SEM 18 106 CFU/mL

Adherent
Planktonic

100% killed by incorporation of 3.6at%
Ag within 12 h [63]

P. gingivalis NR Ag NPs
Microbial Viability
Assay
SEM

24 107 CFU/mL Adherent

Reduction of the bacterial viability to
21–31% by incorporation of <0.1wt%
Ag at 8 h, compared with a mean
viability of 96.6% in absence of Ag in
the PEO-modified surface

[64]



Int. J. Mol. Sci. 2021, 22, 3800 21 of 39

Table 5. Cont.

Bacterial Species Bacterial Strain Source Analysis Method Duration (h) Test
Inoculum

Planktonic/
Adherent Main Outcomes Ref.

E. coli
S. aureus
MRSA

ATCC25922
ATCC6538
Mu50

Ag-A CFU count
SEM 24 0.0005 OD590 Adherent

4–6 log inhibition of E. coli, 3–5 log
inhibition of S. aureus, and 2–5 log
inhibition of MRSA after 24 h for 0.1
and 0.5 and 0.8 g/L Ag respectively

[65]

S. aureus B 918 Ag NPs Spread plate analysis 24 106 CFU/mL Adherent
Lower amounts of adherent bacteria
after 2 h.
No inhibition at later time points

[66]

Cu

S. aureus NR Cu(OAc)2 Spread plate analysis 4 106 CFU/mL Planktonic
Significantly reduced numbers of
bacterial colonies by incorporation of
1.4 wt% Cu in the surface after 4 h

[36]

S. aureus 209P Cu-substituted
HA Spread plate analysis 2 500 CFU/mL Planktonic After 2 h: 27% reduction in optical

density after incubation in supernatant [52]

S. aureus NR C12H22-CuO14
Spread plate analysis
SEM 24 104 CFU/mL Adherent

After 24 h: 100% antibacterial rate on
Cu surfaces
Morphological changes and disrupted
membrane of bacterial cells.

[67]

S. aureus ATCC6538 EDTA-CuNa2
Live/dead staining
SEM 24 105 CFU/mL Adherent

After 24 h: more dead bacteria on Cu
surface compared to Ti control.
Shape changes and membrane
disruption of bacteria under SEM

[68]

E. coli ATCC25922 Cu(NO3)2·H2O Zone of inhibition
Adhesion test 24 108 CFU/mL

Adherent
Planktonic

After 24 h: zone of inhibition around
0.54–0.72 wt% Cu.
No bacterial cells adhering after 24 h

[69]

S. aureus
E. Coli

ATCC43300
ATCC25922 EDTA-CuNA2 Spread plate analysis 24 5·105 CFU/mL Adherent

After 24 h: complete eradication of S.
aureus and E. coli for 1.92 wt% Cu.
After 14 days no antibacterial activity.

[70]

S. aureus ATCC6538 CuA
monohydrate Spread plate analysis 24 105 CFU/mL Adherent After 24 h: >99% growth reduction with

5.05 at% Cu in the surface. [71]
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Table 5. Cont.

Bacterial Species Bacterial Strain Source Analysis Method Duration (h) Test
Inoculum

Planktonic/
Adherent Main Outcomes Ref.

S. aureus ATCC25923 Cu(OAc)2

Spread plate analysis
Live/dead staining
SEM

96 105 CFU/mL
Adherent
Planktonic

At 6 h: 0.6 × 105 CFU/cm2 on 1.93 wt%
Cu-PEO and 1.5 × 105 CFU/cm2 on
Cu-free.
At 24 h: 0.6 × 105 CFU/cm2 on 1.93
wt% Cu-PEO and 9.7 × 105 CFU/cm2

on Cu-free.
At 6 h: 1.0 × 105 CFU/mL for 1.93 wt%
Cu- PEO and 3.8 × 105 CFU/mL on
Cu-free.
At 24 h: 5.2 × 105 CFU/mL for 1.93
wt% Cu-PEO and 200 × 105 CFU/mL
on Cu-free.

[72]

S. aureus NR CuSO4

Macrophage
bactericidal assay
SEM

2 107 CFU/mL Planktonic

Significantly enhanced
macrophage-bactericidal capacity on 2
mM Cu-incorporated PEO-modified
surface

[73]

S. aureus
E. coli NR Cu NPs Live/dead staining 24 105 CFU/mL Adherent Majority of bacteria killed after 24 h [74]

S. aureus NR Cu NPs
Spread plate analysis
Live/dead staining
SEM

24 107 CFU/mL
Adherent
Planktonic

100% killed by incorporation of 2.76 at%
Cu at 24 h [75]

E. coli CMCC44102 Cu2O NPs ASTM G21-13 24 NR Adherent

At 24 h: 99.74% killed by incorporation
of 10 g·L-1 Cu2O NPs, compared to
95.25% killed in absence of Cu in the
PEO-modified surface

[76]

Zn

S. aureus
E. coli

ATCC25923
ATCC25922 ZnO NPs ASTM G21-1996 24 106 CFU/mL Planktonic

After 24 h: reduced numbers of viable
colonies by incorporation of Zn
compared with Zn-free surfaces

[37]

S. aureus 209P Zn-substituted
HA Spread plate analysis 2 500 CFU/mL Planktonic After 2 h: 40% reduction in optical

density after incubation in supernatant [52]

E. coli NR ZnO NPs
Zn-EDTA

Measurement of
OD600

24 NR Planktonic After 24 h: 50% reduction in OD600
values of culture medium [79]

E. coli NBRC3972 ZnCl2 Spread plate analysis 24 4.9·106 CFU/mL Adherent After 24 h: less than 1 log reduction [80]
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Table 5. Cont.

Bacterial Species Bacterial Strain Source Analysis Method Duration (h) Test
Inoculum

Planktonic/
Adherent Main Outcomes Ref.

S. aureus
E. coli

ATCC25923
ATCC25922 ZnA Spread plate analysis

SEM 24 107 CFU/mL Planktonic
After 24 h: 40% enhanced antibacterial
rate on E.coli.
No effect on S. aureus

[81]

S. aureus
P. aeruginosa NR ZnA Live/dead staining

SEM 24 OD600~0.35 Adherent
Significantly reduced numbers of viable
colonies by incorporation of 9.7at% Zn
at 6 and 24 h

[82]

S. aureus
E. coli

ATCC25923
ATCC25922 ZnA Spread plate analysis

SEM 24 107 CFU/mL Adherent

At 24 h: 40.2, 99.2 and 100% reduction
of E. coli for 4.6, 7.1, and 9.3 wt% Zn.
At 24 h: 96.3, 99.5, and 99.8% reduction
of S. aureus for 4.6, 7.1, and 9.3 wt% Zn

[83]

S. aureus
E. coli NR ZnA

Spread plate analysis
Live/dead staining
SEM

24 105 CFU/mL
Adherent
Planktonic >90% killed at 24 h [84]

S. mutans ATCC 25175 ZnA Spread plate analysis
SEM 48 109 CFU/mL Adherent

At 24 h: 62.54, 69.84 and 79.19%
reduction for 0.199, 0.574 and 1.995at%
Zn

[85]

S. aureus
MRSA
S. epidermidis

ATCC25923
MRSA1030
ATCC700296
S. epidermidis 15560

ZnO and
Zn3(PO4)2
particles

Spread plate analysis 4 106 CFU/mL Adherent

After 4 h: no growth inhibition for S.
aureus and MRSA, and 90% eradication
of S. epidermidis on Zn-bearing surfaces. [86]

Ag and Cu

MRSA USA300 Ag and Cu NPs

Zone of inhibition
CFU count
SEM
Ex vivo

24 104–107 CFU/mL
Adherent
Planktonic

After 24 h: zone of inhibition and
eradication of adhering and planktonic
bacteria in vitro and ex vivo for surface
containing >50% Ag and Cu NPs.
No antibacterial properties for solely
Cu NP-bearing surfaces and controls.

[19]

Ag and Zn

MRSA USA300 Ag and Zn NPs

Zone of inhibition
CFU count
SEM
Ex vivo

24 104–107 CFU/mL
Adherent
Planktonic

After 24 h: zone of inhibition and
eradication of adhering and planktonic
bacteria in vitro and ex vivo for surface
containing >50% Ag and Zn NPs.
No antibacterial properties for solely Zn
NP bearing surfaces and controls.

[20]
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Table 5. Cont.

Bacterial Species Bacterial Strain Source Analysis Method Duration (h) Test
Inoculum

Planktonic/
Adherent Main Outcomes Ref.

S. aureus ATCC25923 Ag NPs and
ZnA

Spread plate analysis
SEM 24 105 CFU/mL

Adherent
Planktonic

At 24 h: 4.1, 2.5, and 2.4·103 CFU/cm2

on Ag and Zn co-doped surfaces
compared with 2.3·106 CFU/cm2 on
polished Ti, respectively.
Significantly reduced numbers of viable
colonies by incorporation of Ag NPs
and Zn compared to polished Ti.

[87]

Cu and Zn

S. aureus ATCC25923 Cu(OAc)2
ZnA

Spread plate analysis
Live/dead staining
SEM

24 105 CFU/mL
Adherent
Planktonic

At 6 h: 2.63, 1.47, and 0.84·105

CFU/cm2 on Cu and Zn co-doped
surfaces compared with 1.8, and 8.5·105

CFU/cm−2 on Cu-single doped and
Cu-free surfaces, respectively.
At 24 h: 3.72, 2.89, and 1.32·105

CFU/cm2 on Cu and Zn co-doped
surfaces compared to 2.89 and 16·105

CFU/cm2 on Cu-single doped and
Cu-free surfaces, respectively.
Significantly reduced number of viable
colonies by incorporation of >2.53 wt%
Zn and <0.55 wt% Cu, compared to 0.77
wt% Cu

[77]

E. coli CMCC44102 Cu2O and ZnO
NPs ASTM G21-13 24 106 CFU/mL Planktonic

PEO-modified surfaces bearing Cu2O
NPs demonstrated a superior
antibacterial activity~100% killed,
compared with PEO-modified surfaces
bearing ZnO NPs

[78]

MRSA
S. aureus
E. coli

ATCC43300
CGMCC12465
CGMCC13373

EDTA-CuNa2
EDTA-ZnNa2

Spread plate analysis 24 106 CFU/mL Adherent

After 24 h: complete prevention of
growth with >6 g/L Cu or Zn in PEO
electrolyte against MRSA, S. aureus and
E. coli.

[88]

Ag-A: silver acetate, ASTM: American Society for Testing and Materials, CFU: colony forming unit, CuA: copper acetate HA; hydroxyapatite, JIS: Japanese Industrial Standards, NPs: nanoparticles, NR: not
reported, SEM: scanning electron microscopy, ZnA: zinc acetate.
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5.1. Comparing Antibacterial Activities of Ag, Cu, and Zn

All the included studies reported antibacterial activity. Guidelines designate a material
as antibacterial when it induces a >99.9% (i.e., 3-log) reduction in the number of viable
bacteria [134]. However, this is a guideline for treatment, while the required reduction in
the bacterial load for the prevention of IAI is not known. In fact, 48% of the studies using
Ag, 14% of the studies with Cu, 10% of the studies with Zn, and 80% of the studies that
combined these metallic agents reduced the bacterial load by >99.9%. This indicates that
surfaces biofunctionalized with Ag demonstrate the highest degree of antibacterial activity,
while Cu and Zn were less effective, which is not surprising given the much lower MIC
for Ag as compared to Cu and Zn [122]. Interestingly, combining Ag, Cu, and Zn resulted
in much higher levels of antibacterial activity, while the doses of single elements can be
reduced [19,20,87,88].

Studies that focused on the antibacterial mechanisms of Ag, Cu, and Zn NPs suggest
that two antibacterial mechanisms play a role: ion release killing [135] and the generation
of reactive oxygen species (ROS) [136]. Ions released from the implant diffuse across the
bacterial cell wall and penetrate into bacteria where vital bacterial structures are targeted.
Meanwhile, ROS are highly reactive and cause lysis of the bacterial cell wall. It was
found that Cu showed the best antibacterial activity as a result of contact killing [137],
while Ag exhibited most of its antibacterial activity through both ion release and contact
killing [138]. Furthermore, the synergistic antibacterial properties of AgNPs and Zn ions
were observed to stem from long-range Zn ion release and contact-killing effects from Ag
through microgalvanic coupling [29,139].

We plotted a 3D graph showing the correlation between antibacterial activity, cyto-
compatibility, and surface content of the antibacterial agent for the titanium substrates
biofunctionalized by PEO with Ag, Cu, or Zn (Figure 5). Very few studies reported all of
these 3 parameters. This analysis shows that Ag indeed resulted in the highest levels of
antibacterial activity at lower doses compared to Cu and Zn, yet also induced cytotoxicity
more frequently. However, a direct comparison between the included studies, and thereby
of Ag, Cu, and Zn bearing surfaces, was hampered by a large number of variables that
differ in the various studies and are addressed in the next paragraphs of this section.
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Figure 5. The relation between the antibacterial activity, cytocompatibility, and surface content for titanium surfaces
biofunctionalized by PEO with Ag, Cu, or Zn. The reported antibacterial activity as a function of surface content and
cytocompatibility is depicted by the blue dots. The green, red, and yellow projections enable a comparison between the
parameters. Cytocompatibility is depicted as cytotoxicity (−), no effect (0), or enhanced cytocompatibility (+).

5.2. Bacterial Species and Strains

Antibacterial results are affected by the tested bacterial species. Of the reviewed
studies, 57% used S. aureus, 31% E. coli, and 12% other bacterial species, including S.
epidermidis [63,86], S. sanguinis [61], S. mutans [57,85], P. aeruginosa [82], and P. gingivalis [64].
Given that Ag, Cu, and Zn form an alternative to antibiotics, it is important to analyze
the results on antibiotic resistant bacteria, such as MRSA, which are involved in up to
32% of fracture-related infections [140,141]. MRSA was investigated in 9 studies and
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found to be strongly inhibited by Ag [15,31,32,50,65], Ag and Cu [19], Ag and Zn [20],
Cu and Zn [88] bearing surfaces, while one study that included Zn surfaces did not
observe any inhibition [86]. Thukkaram et al. observed that the antibacterial effect of Ag
containing surfaces against MRSA was lower compared to S. aureus and E. coli, although
with increasing doses of Ag, all bacterial species were targeted equally [65]. Furthermore,
testing on multiple species was performed in 19% of the included studies. No studies tested
multiple species in a single experiment (i.e., co-culture of multiple species), which would
be of interest given that 10–20% of IAI are induced by polymicrobial infections [142,143].

We can, thus, conclude that most studies investigated antibacterial behavior against S.
aureus. This bacterial species causes 20–46% of IAI [144–146]. Other gram-positive species,
such as Streptococci caused up to 10% and Enterococci 3–7% of cases [147]. Enterococci
have not been tested in studies with PEO-treated surfaces bearing Ag, Cu, or Zn. Gram-
negative bacteria, such as Pseudomonas aeruginosa and Enterobacteriaceae induce 6–17%
of IAI [143,148]. Given the relatively low rate of IAI induced by Enterobacteriaceae, it is
surprising that 31% of the studies investigated the effects of the implant surfaces on E. coli.
While some studies that analyzed both S. aureus and E. coli reported a stronger antibacterial
effect against E. coli as compared to S. aureus [49,51,55,65,83,98], others reported a similar
antibacterial effect for both species [35,37,70,74,84,88]. Interestingly, up to 42% of IAI in
patients were caused by culture-negative (i.e., undefined) bacteria [149,150] and therefore
warrant an antibacterial agent effective against a wide antimicrobial spectrum.

Among bacterial species, different levels of sensitivity to antibacterial agents have
been reported [151], including against Ag and Cu [152]. To what extent the differences
between strains plays a role depends on the bacterial species. The differences between
strains in terms of their MIC/MBC values was found to be negligible for S. aureus, but were
quite large in the case of E. coli strains [153]. It is, therefore, important that the bacterial
strain is properly reported, which was done only in 79% of the included studies. Only
one study, conducted by Leśniak-Ziółkowska et al., compared different strains within a
bacterial species, namely S. aureus (ATCC 25,923 and clinical MRSA 1030) and S. epidermidis
(ATCC 700,296 and clinical 15560) [86]. No strain-dependent differences were observed
after 4 h using a bacterial adhesion test.

5.3. Source of Antibacterial Agent

Antibacterial behavior depends not exclusively on the antibacterial agent, but also on
the form in which Ag, Cu, and Zn are added to the PEO electrolyte and are subsequently
incorporated onto the titanium implant surface [124]. Ag, Cu, and Zn elements are either
completely dissolved in the electrolyte or are added in the form of NPs that form a sus-
pension. The former will end-up in the form of chemical compounds present all over the
surface, while the latter (NPs) are spread over the surface. NPs may form a reservoir from
which ions are released, thereby ensuring prolonged antibacterial activity [154]. In addition,
the shape of the NPs determines the antibacterial activity as the surface-to-volume ratio af-
fects the ion release and, thus, the efficacy of the surface biofunctionalization process [155].
Ionic forms only induce antibacterial activity through the action of ions, while NPs also
produce reactive oxygen species and induce contact-killing [156]. Among the included
studies, 33% used NPs, 64% employed ionic species, and only a study by Zhang et al., com-
bined ions and NPs [87]. This study combined Ag NPs with Zn acetate, which resulted in
much higher release of Zn ions compared to Ag ions. Furthermore, the antibacterial activity
was assessed against both adherent and planktonic S. aureus after 24 h. The developed
surface demonstrated significant antibacterial behavior with increasing concentrations of
Ag and Zn leading to further reduction of viable bacteria. The authors reasoned that the
antibacterial activity stems from ROS generation by both Ag and Zn as well as Ag+ release.
Moreover, both Ag and Zn ion concentrations remained below cytotoxicity levels and thus
stressed the utility of combining these elements. Studies that investigate the differences in
the antibacterial properties induced by NP and ionic forms are lacking.
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5.4. Analysis Method

Antibacterial properties can be investigated by different assays. Properties often
investigated are the antibacterial leaching activity, the killing of adherent bacteria, and the
prevention of biofilm formation. Although most of the included studies used only one
antibacterial assay (53%), the use of several assays is required for the assessment of the
various types of antibacterial properties [157]. Therefore, 32, 8, and 8% of the included
studies used 2, 3, and 4 assays, respectively. To determine the leaching effects of the
antibacterial ions released from the PEO surfaces, a zone of inhibition assay or a Kirby-
Bauer assay is often used. The number of bacteria can be quantified either through a direct
CFU count, by spread plate analysis, or by staining the live cells using a fluorescent dye. A
few studies referred to ISO [51,59] and ASTM [37,76,78] standards. With SEM, adherent
bacteria and/or biofilm formation can be visualized in a non-quantitative manner. A wide
variety in the type of assays used in the studies was found, with spread plate analysis
(33%), SEM (24%), and viability fluorescence imaging (12%) being the most frequently
applied assays.

In addition to in vitro assays, ex vivo models were explored, in which infected
implants biofunctionalized with Ag and Cu, Zn, or Sr are inserted into a murine fe-
mur [19,20,31,50]. Subsequently, the number of CFU present are quantified (e.g., after 24 h).
Although this ex vivo model does not allow to assess the effects of the implants on the
immune system or bony ingrowth, some of the other in vivo effects such as those of the
extracellular matrix and bone tissue [158] can be captured to some extent. Indeed, the
gene expression profile of osteocytes was found to be similar between an ex vivo bone
infection model and tissue samples from IAI patients [159]. Thus far, no study has tested
the antibacterial activity of titanium implants biofunctionalized by PEO with Ag, Cu, and
Zn in vivo.

5.5. Duration and Inoculum of Antibacterial Assay

Over two thirds of IAIs are initiated during surgery [160]. A rapid antibacterial re-
sponse to prevent the adherence of the bacteria that enter the human body peri-operatively
is, therefore, desired. Almost all of the included studies (94%) tested the antibacterial
properties within 24 h and 10% even within 2 h. However, IAI can also be initiated long
after surgery, stemming from hematogenous origins. Prolonged antibacterial activity is,
thus, desirable too [72,85,161]. Zhang et al., reported on the antibacterial activity of Cu-
containing surfaces for longer periods of time [72]. It was observed that the number of
viable adherent bacteria was significantly reduced on surfaces containing 0.67–1.98 wt%
Cu up to 96 h. However, this was one of the few studies aiming to assess long-term
antibacterial behavior, since prolonged in vitro culture of bacteria is challenging. Research
into late IAI is, therefore, primarily performed in vivo [162,163].

The inoculum used in the antibacterial assays is another factor determining the an-
tibacterial behavior of PEO-biofunctionalized implants. The exact number of bacteria
required for IAI is unknown, but it was shown that the presence of a foreign body can
reduce the infection dose by 6 orders of magnitude [164] due to a hampered immune
response [165]. The inoculum used in the included studies varied widely between 250 [53]
and 109 CFU/mL [58,85], and was not reported in two studies. Currently, most inocula are
presented per volume or as a measure of optical density. However, the surface area of the
implant is also of importance, as more area with more incorporated antibacterial agent is
likely to have a greater antibacterial effect. Therefore, presenting the inoculum per volume
per surface area would support comparative analyses of different studies.

5.6. Planktonic vs. Adherent Bacteria

As both planktonic and adherent bacteria play an important role in IAIs, antibacterial
implants should target both types of bacteria. Planktonic bacteria are present in the
fluid and tissue surrounding the implant and have shown to be a reservoir for late-stage
reinfections [125]. Once the bacteria adhere to the implant, bacteria should be targeted in
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order to prevent biofilm formation as this would induce bacterial resistance to antibiotic
treatment [166]. In this respect, 42% of the included studies investigated antibacterial
activity against adherent, 35% against planktonic, and 23% against both planktonic and
adherent bacteria. Targeting both planktonic and adherent bacteria should, therefore, be
emphasized more in future studies.

6. Biocompatibility

In addition to antibacterial properties, PEO-biofunctionalized implant surfaces should
not induce cytotoxicity, and ideally even enhance cell response and bony ingrowth. The
compatibility of the implants with mammalian cells is, therefore, an important topic that
needs to be thoroughly investigated for any such implant. Several of the included studies
report the results of such in vitro cytocompatibility experiments, which are affected by the
type of the assay, cell type, and cell source (Supplementary Table S1).

6.1. Cytocompatibility of Ag, Cu, and Zn Surfaces

Cytocompatibility was investigated in 71% of studies. In those studies, Ag induced
cytotoxicity in 13% of the studies, while 10% of the studies investigating Cu and 0% of
those employing Zn reported cytotoxic effects. None of the studies combining Ag, Cu,
and Zn reported cytotoxicity. Cell response of the implants was improved in 7% of the
studies using Ag, 50% of the studies focused on Cu, and 33% of the studies with Zn, as
well as for 50% of the studies in which two or more antibacterial agents were combined.
The control group often consists of PEO biofunctionalized surfaces without antibacterial
elements. Cytotoxicity is, therefore, not considered a major concern by the vast majority of
the included studies. Indeed, Cu and to somewhat lesser extent Zn were shown to improve
the cytocompatibility of PEO-treated implants.

6.2. Type of Assay

Several processes that occur in bone regeneration were investigated in vitro. Cells
need to attach to the implant surface [167], spread [168], stay viable [169], proliferate,
differentiate towards the osteogenic lineage [170], and eventually form an extracellular
matrix [171]. Indicators for the bone regeneration process include cell morphology [172],
expression of osteogenic markers [173], metabolic activity [174], and the production of
specific proteins [175]. The parameters studied the most in the included studies were
viability and proliferation (analyzed in 56% of the included studies), followed by adhesion
and attachment (36%), differentiation (25%), cell spreading (22%), matrix calcification and
mineralization (11%), metabolic activity (8%), gene expression (8%), morphology (3%),
cell seeding (3%), and other assays (6%) including protein production, mitochondrial
functioning, and cytokine production.

6.3. Cell Type

The cellular response was shown to differ in in vitro experiments between different
cell types [176,177]. In the reviewed studies, pre-osteoblasts (32%), osteosarcoma cells
(22%), fibroblasts (20%), MSCs (17%) and SV-HFO, macrophages, adipose stem cells, and
endothelial cells (each in 1 study) were used. Pre-osteoblasts and MSCs are the main
cells responsible for bone formation [178,179]. Osteosarcoma and SV-HFO cells [180] are
immortalized cells stemming from the osteogenic lineage. However, osteosarcoma was
shown to stem from defective differentiation [181]. Since these titanium implants will be
used in bone tissue, it was surprising that 29% of the studies did not analyze the effects of
the implants on bone-forming cells. Other cell types may support bone formation through
indirect pathways. Endothelial cells play a role in angiogenesis, which plays a major
role in bone regeneration as blood vessels carry nutrients and oxygen and facilitate the
transport of immune cells to the regenerating bone tissue [182]. Meanwhile, macrophages
form an important part of the immune response against IAI. Any potential toxicity of the
synthesized implants against this cell type is of concern, as it may hamper the clearance of
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infections [16,183]. Finally, fibroblasts were shown to regulate osteoblast activity through
tight junction interactions [184].

6.4. Cell Source

About 22% of the included studies used primary cells, whereas 78% utilized cell lines.
Primary cells are more representative of the clinical situation, as they have been isolated
from donors. However, their variability is high. Cells from multiple donors, therefore,
need to be tested [185]. Cell lines, on the other hand, are homogenous and stable, while
exhibiting little variability. However, their immortalized nature makes them differ from
the clinical situation [186]. Furthermore, the source of animal species from which the cells
were derived differed greatly between the included studies, with 56% using murine cells,
34% human cells, and 10% rat cells. The osteogenic differentiation capacity of stem cells is
known to differ between human, mice, and rat MSCs [187,188]. These differences in animal
species make it difficult (if not impossible) to directly compare the cytocompatibility results
reported in the different studies.

7. Discussion

In order to prevent IAI, the biofunctionalization of titanium implants by PEO using
Ag, Cu, and Zn as the active agents has gained significant momentum in the last decade.
Therefore, we systematically reviewed the progress made on those implants and summa-
rized the various types of properties measured for such types of PEO-biofunctionalized
implants.

7.1. Antibacterial Results

From the results of this study, it can be concluded that Ag is the most potent an-
tibacterial agent followed by Cu and Zn. It is important to stress that different studies
utilized different experimental protocols to determine the antibacterial properties of PEO-
biofunctionalized implants. It was shown that titanium surfaces bearing Ag, Cu, and Zn
can kill bacteria through antibacterial leaching activity, contact killing, and the formation
of ROS [156,189]. These properties cannot be assessed in a single assay. The use of multiple
assays is, therefore, warranted to support the claim of antibacterial activity [157]. Finally, it
is important to make sure that the assays assess infection prevention rather than infection
treatment.

Furthermore, the bacterial species and strains used were found to affect the level of
antibacterial activity. For instance, surfaces demonstrating antibacterial activity against
E. coli may not do the same against S. aureus [51,55,98]. Most studies investigated the
antibacterial activity of the implants against S. aureus or E. coli. While a large proportion
of IAI was induced by S. aureus, only a small proportion of infections were caused by E.
coli [144,147]. The rationale for choosing E. coli was, thus, primarily methodological conve-
nience rather than clinical prevalence. Meanwhile, S. epidermidis or polymicrobial infections
were rarely studied, even though they cause a significant proportion of IAI [142–144]. More-
over, the antibacterial behavior of PEO-biofunctionalized implants should be assessed in
environments co-habited by multiple bacterial species, as this was shown to influence the
resistance profiles of bacteria [130].

The antibacterial experiments aimed to mimic the clinical situation as closely as possi-
ble. In this respect, both adherent and planktonic bacteria should be warded off, as adherent
bacteria can form biofilms [133], while planktonic bacteria may infect the peri-implant
tissue and form a reservoir for late-stage reinfection [125]. Furthermore, an antibacterial
implant should prevent infections that occur immediately after surgery, as that is the point
where most IAI occur [160], as well as late-stage infections from hematogenous origins [161].
At the moment, the focus primarily lies on preventing early-stage infections. Ultimately, Ag,
Cu, and Zn may form an alternative to antibiotics, as bacteria are developing ever-growing
degrees of antibiotics resistance [144,190]. As such, the development of resistance against
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Ag, Cu, and Zn and combination thereof is worthwhile to investigate given that resistance
against Ag, Cu, and Zn was reported in vitro [191–193] and in patients [194].

The observed antibacterial activity depends on a wide variety of factors described
in this review, including the titanium substrate, composition of the PEO electrolyte, and
PEO processing parameters that in turn affect the surface morphology, phase composition,
surface content of the incorporated antibacterial agent, and ion release profile. These
parameters determine the antibacterial properties and biocompatibility of the implants.
The measured antibacterial properties are highly dependent on the bacterial species and
strains used, experimental techniques, the duration of the assays, bacterial inoculum, and
the type of bacteria against which the implant performance is measured (i.e., planktonic
and/or adherent). As for biocompatibility, the type of the assays, cell type, and cell source
could all influence the final read-outs. These factors varied between the studies included in
this review and make a one-to-one comparison between the different studies challenging.

The antibacterial activity is dependent on the dose of Ag, Cu, and Zn present on
the surface of the titanium implants [119–121]. It is, therefore, essential to determine the
amount of these elements present on the surface. In addition, the Ag, Cu, and Zn ions
released from the implant surface are responsible for a significant part of the antibacterial
activity, which is why it is important to measure the concentration of the ions released
from the implant surface. From the results, it is clear that the surfaces bearing Ag had
much lower elemental content and ion release as compared to those bearing Cu and Zn,
which was expected due to the lower MIC of Ag as compared to Cu and Zn [122]. Both the
surface content and ion release were also dependent on the surface area, as a larger surface
area allows for the incorporation of a greater amount of elements and, thus, increased ion
release [31]. Therefore, describing these properties relative to the surface area may aid in a
comparison between the results of different studies.

7.2. Biocompatibility

Most of the included studied found cytotoxicity to be a minor concern, with Ag
inducing cytotoxicity in 13% of the studies. It was striking that 29% of the included studies
did not investigate the effects of the implants on bone-forming cells, even though the
implants are intended for bone tissue. In addition, cytotoxicity against other cell types,
such as endothelial cells and immune cells is of interest, as these cells contribute to bone
regeneration as well [195,196]. Furthermore, the use of cell lines vs. donor cells and
different mammalian species complicates the comparisons between different studies [197].
Moreover, biocompatibility needs to be investigated both in vitro and in vivo, as the results
of in vitro and in vivo experiments are known to differ, for instance, in the case of Ag-
bearing surfaces [16].

Another way to enhance the cytocompatibility of PEO-biofunctionalized implants is
by combining two or more antibacterial metals (i.e., Ag, Cu, and Zn), as synergic effects
between various such agents are reported to exist [19,20] and could be used to reduce the
concentration of Ag [126,198]. In addition, combining these elements with other osteogenic
elements, such as Sr [50] may enhance their antibacterial and biocompatible properties.
Finally, the combination of multiple antibacterial elements significantly reduces the risk of
the development of bacterial resistance, thereby ensuring that the prolonged use of these
elements will remain possible [199].

PEO is frequently applied in combination with other surface treatments, such as hy-
drothermal treatment [200] and physical vapor deposition [201] to alter the chemical and
phase composition of the surface. This may result in improved antibacterial behavior [98].
Furthermore, hydrothermal treatment has resulted in the enhanced formation of hydrox-
yapatite crystals, yet may reduce corrosion resistance too [202]. A major disadvantage
of these additional surface treatments is that they make the entire process lengthier and
more complex, thus making it more difficult to upscale the production of clinically sized
implants.
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7.3. Towards Clinically Relevant Implants

A decade of PEO biofunctionalization of titanium implants with Ag, Cu, and Zn
confirmed the great potential of this method as an effective, fast, and scalable process. At the
moment, however, the research on antibacterial PEO-biofunctionalized titanium implants
is still far away from clinical application, as the research was primarily conducted in vitro
with few studies also exploring ex vivo models [20,50]. Furthermore, PEO was shown to
enhance the osteogenic capacity of titanium implants in vivo [38,39,203], including surfaces
bearing Zn [204]. However, these studies did not analyze the antibacterial properties of
such implants, which should be evaluated using bone infection models [205]. In this
respect, a major limitation of the state-of-the-art techniques is their limited relevance for
the assessment of the preventive potential of antibacterial implants (as opposed to their
treatment potential). However, studying prevention requires a much larger sample size,
as it is associated with lower bacterial loads, meaning that infections are less likely to
occur. This lower risk of infection has major ethical and financial implications. In addition,
future implants will most likely be fabricated by AM and as such be highly porous. Not
only is the risk of infection of such volume-porous implants higher, their IAI treatment
is also highly challenging due to their usually high degree of bony ingrowth that may
cause significant bone loss during their removal. The development of antibacterial surface
treatments for such types of implants is, thus, highly relevant. In fact, the additional surface
area of such implants may be exploited to enhance the bioactivity of PEO biofunctionalized
implants [31].

8. Conclusions

In order to combat IAI, the biofunctionalization of titanium implants by Ag, Cu, and
Zn has gained significant momentum in recent years and resulted in the synthesis of
potent antibacterial and biocompatible surfaces. Implant biofunctionalized with Ag, Cu,
and Zn demonstrated significant antibacterial behavior against a wide bacterial spectrum,
including antibiotic-resistant bacterial strains. However, the antibacterial properties of
these implants were primarily investigated in vitro and occasionally ex vivo. Furthermore,
many studies do not reach sufficiently high antibacterial levels, as indicated by international
guidelines. Moreover, the biofunctionalization of volume-porous AM implants has not
been investigated extensively. Finally, combining Ag, Cu, and Zn on the surface of titanium
implants was shown to result in potent antibacterial surfaces with reduced cytotoxicity.
In order to take the PEO biofunctionalization of titanium implants by Ag, Cu, and Zn to
clinical settings, in vivo studies should be conducted using relevant infection models for
both solid and volume-porous bone implants.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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biocompatibility of PEO-modified Ti-based surfaces bearing single or multiple elements.
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Brzychczy-Włoch, M.; Simka, W. Electrochemical modification of the Ti-15Mo alloy surface in solutions containing ZnO and
Zn3(PO4)2 particles. Mater. Sci. Eng. C 2020, 115. [CrossRef] [PubMed]

87. Zhang, L.; Gao, Q.; Han, Y. Zn and Ag Co-doped anti-microbial TiO2 coatings on Ti by micro-arc oxidation. J. Mater. Sci. Technol.
2016, 32, 919–924. [CrossRef]

88. Wang, Y.; Zhao, S.; Li, G.; Zhang, S.; Zhao, R.; Dong, A.; Zhang, R. Preparation and in vitro antibacterial properties of anodic
coatings co-doped with Cu, Zn, and P on a Ti–6Al–4V alloy. Mater. Chem. Phys. 2020, 241. [CrossRef]

89. Matykina, E.; Arrabal, R.; Mingo, B.; Mohedano, M.; Pardo, A.; Merino, M.C. In vitro corrosion performance of PEO coated Ti
and Ti6Al4V used for dental and orthopaedic implants. Surf. Coat. Technol. 2016, 307, 1255–1264. [CrossRef]

90. Wauthle, R.; Ahmadi, S.M.; Amin Yavari, S.; Mulier, M.; Zadpoor, A.A.; Weinans, H.; Van Humbeeck, J.; Kruth, J.P.; Schrooten, J.
Revival of pure titanium for dynamically loaded porous implants using additive manufacturing. Mater. Sci. Eng. C Mater. Biol.
Appl. 2015, 54, 94–100. [CrossRef]

91. Shah, F.A.; Thomsen, P.; Palmquist, A. Osseointegration and current interpretations of the bone-implant interface. Acta Biomater.
2019, 84, 1–15. [CrossRef]

92. Shah, F.A.; Trobos, M.; Thomsen, P.; Palmquist, A. Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials
as bone anchored implants–Is one truly better than the other? Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 62, 960–966. [CrossRef]
[PubMed]

93. Elias, C.N.; Fernandes, D.J.; Souza, F.M.D.; Monteiro, E.d.S.; Biasi, R.S.D. Mechanical and clinical properties of titanium and
titanium-based alloys (Ti G2, Ti G4 cold worked nanostructured and Ti G5) for biomedical applications. J. Mater. Res. Technol.
2019, 8, 1060–1069. [CrossRef]

94. Challa, V.S.; Mali, S.; Misra, R.D. Reduced toxicity and superior cellular response of preosteoblasts to Ti-6Al-7Nb alloy and
comparison with Ti-6Al-4V. J. Biomed. Mater. Res. A 2013, 101, 2083–2089. [CrossRef]
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