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HS3ST2 expression induces the cell 
autonomous aggregation of tau
M. B. Huynh1,4, N. Rebergue1,4, H. Merrick1, W. Gomez‑Henao1,2, E. Jospin1, 
D. S. F. Biard1,3,5 & D. Papy‑Garcia1,5*

Heparan sulfates have long been known to intracellularly accumulate in Alzheimer’s disease 
neurons, where they colocalize with neurofibrillary tangles made of abnormally phosphorylated 
and aggregated tau protein. However, the reasons and consequences of the heparan sulfates 
accumulation in the Alzheimer’s cells are not yet well understood. Previously, we showed that the 
neural heparan sulfate 3-O-sulfotransferase HS3ST2 is critical for the abnormal phosphorylation of tau 
in Alzheimer’s disease-related tauopathy. Using cell models of tauopathy we showed that intracellular 
3-O-sulfatated heparan sulfates interact with tau inducing its abnormal phosphorylation. However, it 
is unknown whether HS3ST2 expression induces the intracellular aggregation of tau in cells. Here, by 
using replicative pEBV plasmids, we engineered HEK293 cells to stably express HS3ST2 together with 
human tau carrying or not the P301S mutation. We show that HS3ST2 gain of function induces the 
cell autonomous aggregation of tau not only in cells expressing tauP301S, but also in cells expressing 
the wild type tau. Our engineered cells mimicked both the HS intracellular accumulation observed 
in neurons of Alzheimer’s disease and the tau aggregation characteristic of tauopathy development 
and evolution. These results give evidence that the neural HS3ST2 plays a critical role in the cell 
autonomous self-aggregation of tau.

Accumulation of the abnormally phosphorylated and aggregated microtubule associated protein tau (MAPT, or 
tau) is a main hallmark of Alzheimer’s disease (AD) and other tauopathies1–3, including frontotemporal demen-
tia with parkinsonism linked to chromosome 17 (FTDP17), progressive supranuclear palsy (PSP), corticobasal 
degeneration (CBD), Pick’s disease (PiD), and chronic traumatic encephalopathy. In the normal brain, the wild 
type tau promotes assembly and stability of microtubules4 and plays crucial roles in axoplasmic transport5,6, 
axonal outgrowth7, and synaptic plasticity8, centrally participating to the processes involved in learning and 
memory9. In the AD brain, the abnormally phosphorylated wild type tau (P-tau) becomes insoluble, aggregates, 
and accumulates to form neurofibrillary tangles (NFTs)10. A similar process occurs in tauopathies in which tau 
mutations induce the NFT formation10,11. Because NFTs accumulation correlates with neuronal degeneration11, 
haltering the aggregation of tau is currently considered among the main therapeutic strategies for AD and related 
tauopathies12. However, the endogenous players involved in the cell autonomous process leading to the primary 
self-aggregation of tau are not yet fully identified13. Interestingly, in vitro, tau aggregation can efficiently be pro-
moted by anionic micelles and polyanions, including heparin, suggesting that an anionic micro-environment 
might play crucial roles in the genesis and maturation of tau aggregates14–16. Heparin is a commercially available 
animal sourced prototype of highly sulfated heparan sulfates (HS)17. A structural characteristic of heparin is 
that it carries a high content of 3-O-sulfation in addition to the classic N-, 2-O-, and 6-O-sulfations carried by 
common HS18. In the brain, 3-O-sulfation is assured by different HS 3-O-sulfotransferases (HS3STs), including 
the predominantly neural 3-O-sulfotransferase-2 (HS3ST2)19–21. However, whether cellular HS, and particularly 
3-O-sulfated heparan sulfates (3S-HS), can participate to the processes leading to tau aggregation in cells remains 
elusive22. This is possibly because tau primarily aggregates inside cells whereas HS are generally considered to be 
located at the extracellular space23,24, restricting research commitment in this area. However, HS have been found 
to colocalize with tau helical filaments inside AD neurons, in where they accumulate before NFT formation25–27. 
By using cell models of tauopathy, we previously showed that 3S-HS accumulate at the intracellular level, interact 
with tau, and induce the tau abnormal phosphorylation28. However, it is unknown whether 3S-HS can promote 
the spontaneous self-aggregation of tau in cells.
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Here, by simultaneously expressing HS3ST2 with human full length wild type tau (tau) or tau carrying the 
P301S mutation (tauP301S) responsible of FTDP1711, we demonstrate that 3S-HS produced by HS3ST2 induce the 
cell autonomous oligomerisation of tau and increase that of tauP301S. Immunocytochemistry (ICC) and immu-
noblotting of tau and P-tau after high salt sarkosyl extraction showed that, in the presence of HS3ST2, the wild 
type tau self-aggregates at extents near to those observed in the tauP301S, indicating that 3S-HS made by HS3ST2 
can efficiently promote the aggregation of human tau in the absence of tau mutations. Finally, we confirmed that 
3S-HS intracellularly accumulate and colocalize with tau and showed that the 3S-HS co-stain with tau oligom-
ers in cells expressing HS3ST2 and tau, as in cells expressing tauP301S. The simultaneous and stable expression 
of HS3ST2 and tau proteins in cultured HEK293 cells allowed the demonstration that 3S-HS participate to the 
mechanisms triggering the spontaneous cell autonomous aggregation of tau.

Materials and methods
Plasmids.  Plasmids carrying cDNA sequences allowing expression of the full length human tau and tau 
carrying the mutation P301S (tauP301S) in bacteria were kindly provided by Professor M. Goedert (University 
of Cambridge)29. Human full length HS3ST2 (NM_006043) was synthetized (Eurofins, France) and cloned in 
pcDNATM3.1 vectors (Invitrogen) for protein expression in bacteria. For simultaneous expressions of HS3ST2 
and tau, or tauP301S, the corresponding cDNA sequences were included in replicative pEBV plasmids contain-
ing single transcription cartridges for expression under hygromycin (HS3ST2) and puromycin (MAPT or 
MAPTP301S) selection30,31. Alternatively, a bicistronic vector carrying both the HS3ST2 and MAPT or MAPTP301S 
sequences were constructed (Supplementary Method 1)32, but its use was restricted to few confirmatory studies 
because of risk of HS3ST2-tau fusion protein expression. Human cytomegalovirus (CMV) promoter sequence 
was included to drive transcription30,31. Construct sequences were confirmed by DNA sequencing (Eurofins 
Genomics, data not shown).

Stable expression in HEK293 cells.  Human embryonic kidney (HEK293) cells (provided by Dr. A. 
Delaunay, CEA Saclay, France) were cultured in Dulbecco’s Modified Eagle Medium (DMEM, Sigma) supple-
mented with 10% foetal calf serum (FCS), 100 U/mL penicillin, 100 µg/mL streptomycin, 2 mM glutamine, 
10 mM HEPES (Sigma products), under 5% CO2. Approximately 100,000 cells were transfected with the agent 
JetPrime (Ozyme, following manufacturer’s instructions) to express HS3ST2 under hygromycin (100 µg/mL) 
selection. After HS3ST2 expression was confirmed, cells were additionally transfected with tau or tauP301S and 
maintained under both hygromycin and puromycin selection (100  µg/mL and 0.4  µg/mL respectively). The 
empty pEBV vectors were used to follow effects of transfection and selection on cells. For Sarkosyl experiments, 
106 cells were transfected. From 24 h after second transfection, cells were permanently maintained under hygro-
mycin/puromycin selection until stabilisation (40 days in culture).

RNA extraction and RTqPCR.  RNA extraction was performed with RNA-Bee (Bioconnect) following 
manufacturer’s recommendations. RNA concentration was measured with a Nanodrop 2000 (Thermoscientific). 
After a DNAse treatment (Ambion), according to manufacturer’s procedures, 1 µg RNA was used to synthesize 
complementary DNA (cDNA) with the Affinity Script Multiple Temperature cDNA kit (Agilent). Samples were 
incubated at 25 °C for 10 min, at 50 °C for 60 min, and at 70 °C for 15 min. Gene expression was analysed in tem-
plate cDNA by quantitative real time polymerase chain reaction (qPCR) using the Brilliant III Ultra-fast SYBR* 
kit (Agilent Technologies) in an Agilent AriaMx thermocycler. Analysis was performed with the Agilent AriaMx 
1.0 software. Primer sequences for HS3ST2 were “GGA ACC CCA CTT CTT TGA CA” and “GTC GAG GAG 
CCT CTT GAG TG”33. Primer sequences for MAPT were “AAG GTC AGC TTG TGG GTT TC” and “TGG 
CTC ATT AGG CAA CAT CC” (Eurofins). Primer sequences for B2M were “GCT CCG TGG CCT TAG CTG 
T” and “ACG TGA GTA AAC CTG AAT CTT TGG A”. Primer sequences for RPL37A were “ATT GAA ATC 
AGC CAG CAC GC” and “AGG AAC CAC AGT GCC AGA TCC”. Other primers sequences used in this study 
(other HS3STs) are detailed in Supplementary Table S1. Standard curves were used for calculation of relative 
RNA quantity B2M and/or RPL37A were was used as housekeeping genes for normalization34.

Immunoblotting of RIPA‑extracted proteins.  Cells were harvested in 1 mL of RIPA buffer (50 mM 
tris, pH 8.0, 150 mM NaCl, 0.1% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS; Thermo Fisher Scientific) 
supplemented with 1% protease inhibitor mixture (Sigma) and 1% phosphatase inhibitor cocktail I & II (Sigma). 
Cell lysates were centrifugated at 13,000 rpm for 10 min and protein contents in supernatants were determined 
using BCA Protein Assay kit (Thermo Fisher Scientific). Supernatants containing 1–10 µg of protein (as indi-
cated) were suspended in Laemmli buffer (0.125 M Tris HCl, pH 6.8, 4% SDS, 20% glycerol, 0.004% bromo-
phenol blue; Biorad) supplemented with 10% β-mercaptoethanol and heated for 5 min at 90 °C. Proteins were 
separated in 8% acrylamide gel and transferred to a PVDF membrane with a Transblot Turbo device (BioRad). 
Immunoblotting was performed with anti-HS3ST2 (Thermo Fischer Scientific, 1:500), and anti-total tau K9JA 
(Dako, 1:10,000). Anti-GAPDH (Thermo Fisher Scientific, 1:10,000) or anti-α-tubulin (α-tub, Sigma, 1:10,000) 
were used as loading control. Blots were incubated for 1 h at room temperature (rt) with the corresponding sec-
ondary antibodies diluted in PBS containing 5% milk. Revelation was performed with the Immobilon Western 
Chemiluminescent HRP Substrate Luminata Forte (Millipore) following manufacturer’s instructions.

High salt Sarkosyl tau oligomers extraction and immunoblotting.  To extract tau oligomers35,36, 
cells were harvested in 1 mL of salt rich Sarkosyl buffer (50 mM HEPES pH 7.0, 250 mM sucrose, 1 mM EDTA, 
0.5  M NaCl, 1% sarkosyl) supplemented with 1% protease inhibitor mixture (Sigma) and 1% phosphatase 
inhibitor cocktail I & II (Sigma). Cell lysates were centrifugated at 180,000 g for 30 min and protein content in 
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supernatants were determined using BCA Protein Assay kit (Thermo Fisher Scientific). Cell lysate supernatant 
containing 1–10 µg of proteins (as indicated) were treated or not (as indicated) in Laemmli buffer (Biorad) sup-
plemented with β-mercaptoethanol. Samples treated with Laemmli buffer were heated for 2–5 min at 90 °C to 
denature tau oligomers. Proteins were separated by electrophoresis as above. Antibodies used for immunostain-
ing were anti-total tau K9JA (Dako, 1:10,000), T22 (Millipore, 1:500), and PHF1 (from Peter Davis, 1:500), as 
indicated. Anti-GAPDH (Thermo Fisher Scientific, 1:10,000) or anti-α-tub (α-tub, Sigma, 1:10,000) were used as 
loading controls, as indicated. Blots were incubated with secondary antibodies and revealed as described above.

Immunocytochemistry.  For immunocytochemistry (ICC) experiments, approximately 50,000 cells were 
cultured on glass cover slips. After transfection and culture as indicated, cells were fixed in 100% methanol 
at −20 °C for 3 min and incubated for 1 h with the corresponding primary antibody at rt, washed, and then 
incubated with the appropriate secondary antibody for 1 h at rt. Immunostaining was performed with anti-
HS3ST2 (Thermo-Fischer Scientific, 1:500), anti-total tau (K9JA Dako, 1:500), or anti-oligomeric tau (T22 Mil-
lipore; 1:700). Fluo488 donkey anti-rabbit (Invitrogen; 1:200) and Fluo488 donkey anti-goat (Invitrogen; 1:200) 
were used as secondary antibodies. The phage display HS4C3 antibody (1:250; 4 µg/mL), kindly provided by 
ArrestAD partner Pr. Toin H. van Kuppevelt (Radboud University Medical Center, the Netherlands) was used 
to detect 3S-HS37. To reveal HS4C3 staining, an anti-VSV antibody made in mouse (Sigma; 1:200) was used, fol-
lowed by a Cy3 anti-mouse made in sheep (Sigma; 1:200). HS identity was confirmed by treating cells with a mix 
of heparinase I, II and III (Iduron) respectively used at 2, 0.2, and 0.2 U/mL. Stack images were obtained with 
the software CellSens from a spinning disk inverted confocal microscope (IX81 DSU Olympus, 60 × N.A.1.35) 
coupled to an Orca Hamamatsu RCCD camera. 20 × images were obtained with the same microscope in non-
confocal configuration. Nuclei was labelled with 1 µg/mL DAPI (Sigma). Images were processed with the ImageJ 
software (W. Rasband, National Institute of Health).

Statistical analysis.  Statistical analyses were performed using GraphPad Prism software version 5.01. Bars 
represent standard error (SD) or standard error of the mean (SEM) for two or three different experiments each 
performed in duplicate or triplicate, as indicated. Significance was analysed either by t-test, or one-way ANOVA 
followed by Tukey’s test, as indicated (***P < 0.001; **P < 0.01; *P < 0.05; ns = not significant).

Results
HS3ST2 expressing cells produce 3S‑HS.  Previously, we showed in cell models of tauopathy that 
HS3ST2 critically participates to the abnormal phosphorylation of tau28. However, it is unknown whether 
HS3ST2 expression can lead to the formation of tau aggregation in cells. To target this question, we chose to 
simultaneously express HS3ST2 and tau or tauP301S in cells lacking these proteins or expressing them in very low 
extent. We chose to work with HEK293 cells (further referred as HEK Ctr cells) as the two proteins were reported 
to be absent, or lowly expressed in these cells (http://​www.​prote​inatl​as.​org)38. By using RT-qPCR, we first con-
firmed low HS3ST2 and tau expressions levels in the HEK Ctr cells (Fig. 1a). HS3ST2 transcripts were the low-
est compared to other HS3STs expressed in the HEK Ctr cells, suggesting that 3S-HS can be produced at some 
extent by other HS3STs in these cells. Accordingly, ICC and immunoblotting showed no detectable HS3ST2 pro-
tein in the HEK Ctr cells (Fig. 1b, c; full blots in Supplementary Fig. S1) whereas ICC with the anti 3S-HS anti-
body (HS4C3)37 showed some 3S-HS staining. As expected, confocal microscopy images confirmed that 3S-HS 
in the HEK Ctr cells are located at the cell membrane (Fig. 1d). This is in agreement with the well-established 
membrane location of HS under physiological conditions23,24. To validate that HS4C3 can stain 3S-HS produced 
by HS3ST2, we transfected HEK293 cells with the replicative pEBV plasmid carrying the sequence coding for 
the full length human HS3ST2 (cells are further referred as HEK+HS3ST2 cells). As expected, HS3ST2 immu-
nostaining and immunoblotting, as well as 3S-HS staining, were stronger in the HEK+HS3ST2 cells compared 
to the HEK Ctr cells (Fig. 1b, upper and middle panels and Fig. 1c). Again, 3S-HS were observed in the cell 
membrane of HEK+HS3ST2 cells, although some signal was detected in the intracellular compartment (Fig. 1d). 
The strong 3S-HS staining in the HEK+HS3ST2 cells indicated that the newly expressed enzyme was active, as 
confirmed by loss of the HS signal after heparinase treatment of both Ctr and transfected cells (Fig. 1b, lower 
panel). Together, these results show that enzymatically active HS3ST2 can efficiently be expressed in HEK293 
cells and that the produced 3S-HS are predominantly located on the cell membrane.

HS3ST2 and tau do not induce their reciprocal expression.  To investigate whether HS3ST2 expres-
sion induces tau and tauP301S expressions, and if tau or tauP301S expression induces HS3ST2 expression, cells 
expressing the full-length human tau carrying or not the P301S mutation (further referred as HEK+tau or 
HEK+tauP301S cells) and cells simultaneously expressing both HS3ST2 and tau carrying or not the tau mutation 
(further referred as HEK+tau+HS3ST2 or HEK+tauP301S+HS3ST2) were generated. RT-qPCR analysis showed 
that HS3ST2 and tau transcripts were only increased in cells transfected with the corresponding plasmids (Fig. 2a, 
b). HS3ST2 expression was only increased in the HS3ST2 transfected cells (HEK+HS3ST2, HEK+tau+HS3ST2, 
and HEK+tauP301S+HS3ST2), but not in the tau only expressing cells (HEK+tau or HEK+tauP301S). Similarly, 
tau expression was increased only in the tau transfected cells (HEK+tau, HEK+tauP301S, HEK+tau+HS3ST2, 
and HEK+tauP301S+HS3ST2), but not in the HS3ST2 only transfected cells (HEK+HS3ST2) (Fig. 2a, b). After 
assessing transcript levels, proteins were analysed by ICC and immunoblotting (WB) using anti-HS3ST2 and 
anti-total tau (K9JA) antibodies. As expected, both proteins were only detected in the corresponding transfected 
cells (Fig. 2c–e; complete blots are shown in Supplementary Fig. S2), indicating successful protein expression. 
Together, these results show that, by using pEBV plasmids, cells independently or simultaneously expressing 
HS3ST2 and/or tau can be generated without inducing their reciprocal expressions.

http://www.proteinatlas.org
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HS3ST2 promotes tau and tauP301S oligomerisation.  After production of cells independently or 
simultaneously expressing HS3ST2 and/or tau or tauP301S, we investigated whether HS3ST2 expression can 
lead to the formation of oligomeric tau in these cells. With this aim, we used the T22 antibody, which spe-
cifically stains the oligomeric tau (oligo-tau) characteristic of early stages of tau aggregation, although staining 
decreases when the oligomeric tau reaches higher aggregation stages39. In our system, the HS3ST2 capacity to 
trigger the cell autonomous oligomerisation of non-mutated tau was suggested by T22 staining of tau oligom-
ers, which were only detected when HS3ST2 was expressed with tau (Fig. 3a–d). The HS3ST2 capacity to trigger 
tau oligomerisation was confirmed with the mutated tauP301S expressing cells, as an increased T22 staining was 
observed in HEK+tauP301S+HS3ST2 cells compared to the HEK+tauP301S cells (Fig. 3a, b). As expected, HEK Ctr 
cells and HEK+HS3ST2 showed non-significant T22 staining compared to HEK Ctr cells. However, a decreased 
T22 signal level was observed in HEK+tauP301S+HS3ST2 cells compared to HEK+tau+HS3ST2 cells (Fig. 3b). 
This is possibly due to a decreased T22 immunoreactivity characteristic of advanced aggregation stages39. 
Accordingly, an increased propensity of HEK+tauP301S+HS3ST2 cells to trigger tau oligomerisation compared 
to HEK+tau+HS3ST2 cells was confirmed in bicistronic vectors transfected cells (Supplementary Method 1), 
which can be analysed at earlier times after transfection (Supplementary Fig. S3). However, the bicistronic vec-
tors were not used in the continuation of the study because of the detection of fused HS3ST2-tau proteins 
(results not shown). These results suggest that HS3ST2 triggers the formation of oligomeric tau and boosts the 
oligomerisation of tauP301S in cells.

Figure 1.   HEK293 expressing HS3ST2 cells produce 3S-HS. (a) Expression of different HS3STs in wild type 
(WT) HEK293 cells (HEK Ctr cells). Relative gene expression was normalized with B2M and RPL37A. Mean 
values ± SD (n = 3) are represented. (b) HS3ST2 and 3-O-sulfated HS (3S-HS) immunostaing in HEK Ctr cells 
and in HS3ST2 expressing cells (HEK+HS3ST2). The newly expressed HS3ST2 was enzymatically active, as 
shown by 3S-HS immunolabelling with the HS4C3 antibody loss of signal after heparitinase treatment (lower 
panel) in (b). Cells were counterstained with DAPI to visualize nuclei (blue). Images were acquired by a IX81 
Olympus microscope (magnification 20x), scale bar is 100 µm. (c) HS3ST2 protein immunoblotting using 
GAPDH as loading control (RIPA cell lysates). (d) 3S-HS immunocytochemistry using the HS4C3 antibody 
shows staining predominantly at the cell membrane. Confocal slice images were acquired by a confocal 
microscope IX81 Olympus (magnification 60×, immersion oil).
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Figure 2.   HS3ST2 and tau do not induce their reciprocal expression. HEK293 cells were transfected to independently or 
simultaneously express HS3ST2, tau, and/or tauP301S. (a) RTqPCR quantification of HS3ST2 and MAPT (tau) transcripts in the 
transfected HEK293 cells (Ctr). Relative gene expression was normalized with B2M. Mean values ± SD (n = 3) are represented. 
(b) Final point PCR quantification of HS3ST2 and MAPT (tau) transcripts in the transfected HEK293 cells (Ctr). B2M was 
used as loading control. (c) Immunostaining of HS3ST2 (anti-HS3ST2) and total tau (t-tau) (K9JA antibody) in HEK293 
cells (Ctr) and transfected cells. Cells were counterstained with DAPI to visualize nuclei (blue). Images were acquired by a 
microscope IX81 Olympus, magnification 20 ×, scale bar 100 µm. (d) Relative fluorescence intensity of HS3ST2 and t-tau 
in engineered cells. (e) Immunoblotting of RIPA cell lysates with anti-HS3ST2 and K9JA (anti-t-tau) antibodies. Anti-α-
tubulin (α-tub) antibody was used as loading control. Mean values ± SD (n = 3) are represented. One-way analysis of variance 
(ANOVA) was performed, followed by Tukey’s test, as indicated (***P < 0.001; **P < 0.01; ns = not significant).
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Thus, tau oligomers were isolated using Sarkosyl salt-rich buffer extraction and analysed by 
immunoblotting35,36. The total tau signal detected by the K9JA antibody in RIPA protein extracts (Fig. 3c 
upper blot; full blots in Supplementary Fig. S4), was compared to oligo-tau signal detected by the T22 anti-
body in hight salt Sarkosyl extracts (Fig. 3c; middle blot, full blots in Supplementary Fig. S4). Oligo-tau levels 
were significantly higher in cells expressing tau and HS3ST2, compared to cells expressing tau but not the 
enzyme (Fig. 3d), regardless of similar expression of total tau (Fig. 3c, d). Similarly, higher oligo-tau levels were 
observed in cells expressing tauP301S and HS3ST2 comparing to tauP301S only expressing cells (Fig. 3c, d). As in 
ICC observations, a decreased T22 staining was observed when HEK+tauP301S+HS3ST2 cells were compared 
to HEK+tau+HS3ST2 cells (Fig. 3b–d), suggesting no immunoreactivity of T22 at advanced oligomerisation. 

Figure 3.   HS3ST2 promotes tau oligomerisation in cells expressing tau and tauP301S. (a) Total tau (t-tau) 
and oligomeric tau (oligo-tau) were respectively stained with the K9JA and T22 antibodies. Cells were 
counterstained with DAPI to visualize nuclei (blue). Images were acquired with microscope IX81 Olympus, 
magnification 20x, scale bar 100 µm. (b) Fluorescence intensity was quantified in cells by using ImageJ (2 
fields, or 3 when cell density was low), t-tau signal (K9JA, green histograms) and oligo-tau signal (T22, black 
histograms) were compared between cells expressing or not HS3ST2. Mean values ± SD (n = 3) are represented. 
(c) T-tau (K9JA) immunoblotting (upper blot) was performed in RIPA cell lysates and proteins were detected in 
all the MAPT transfected cells. Oligo-tau (T22) immunoblotting (medium blot) was performed on cell lysates 
extracted with high salt (500 mM) Sarkosyl buffer. Stable tau aggregates are highlighted in the upper part of the 
blot (green dotted line). An anti-α-tubulin (α-tub) antibody was used as loading control (RIPA). (d) Oligo-tau 
and t-tau signals quantification were performed with ImageJ in the different cells (black histograms: oligo-tau/t-
tau/GAPDH, grey histograms: upper oligo-tau/t-tau/GAPDH) and the average signal from two experiments 
was compared. Mean values ± SD (n = 3) are represented. Image or immunoblot analyses were calculated by 
one-way ANOVA with Tukey’s test, as indicated (***P < 0.001; **P < 0.01; ns = not significant). Experiments were 
reproduced twice with similar results.
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These results opened to the question whether the observed decrease of tau oligomers was accompanied by an 
increase of tau hyperphosphorylation.

HS3ST2 promotes tau and tauP301S oligomerisation and hyperphosphorylation in cells.  To 
investigate if in our transfected cells total tau and oligomeric tau and tauP301S were hyperphosphorylated, we 
focused our attention in the immunoblot bands showing increased molecular weight before or after complete 
denaturation of Sarkosyl or RIPA extracted proteins40 (Fig. 4a). Sarkosyl is an ionic detergent which under high 
salt concentration (NaCl 500 mM) allows recovery of tau oligomers that can be separated from soluble tau and 
tau fibers, if present35,36. These tau oligomers can be detectable by the T22 antibody39. On the other side, extrac-
tion with RIPA allows soluble protein recovery, including soluble tau (but not fibrous tau aggregates)40,41, which 
together represent the total tau detectable with K9JA antibody. Accordingly, K9JA immunoblotting of RIPA cell 
lysates allowed clear detection of soluble t-tau in both tau and tauP301S expressing cells (Fig. 4a, blot A; full blots 
in Supplementary Fig. S5) whereas in the high salt Sarkosyl extracted proteins, the K9JA tau signal intensity was 
dramatically reduced only in the HEK+tau cells (Fig. 4a, blots B-C and B’-C’; full blots in Supplementary Figs. S5 
and S6). This confirms observation on Fig. 3a–c showing that the non-mutated tau can efficiently form oligomers 

Figure 4.   HS3ST2 promotes tau aggregation in tau expressing cells. (a) High-salt Sarkosyl and RIPA buffer 
protein extracts were analysed in cell lysates from control and transfected cells. Immunoblotting of RIPA 
(blot A) and high salt Sarkosyl buffer (blots B-D and B’-D’) extracted proteins were performed before and 
after protein denaturation by heating in Laemmli buffer (B-D and B’-D’, respectively). Total tau (K9JA, blot A), 
oligomeric total tau (blots B-C and B’-C’), and oligomeric tau hyperphosphorylated at serine 396/404 (PHF1 
antibody, blots D and D’) were analysed before and after denaturation. (b) Total tau, oligomeric-tau (oligo-tau), 
and P-tau signal intensities were quantified by ImageJ. Mean values ± SD are represented. Immunoblot analyses 
were calculated by one-way ANOVA with Tukey’s test, as indicated (***P < 0.001; **P < 0.01; *P < 0.05; ns = not 
significant). Experiments were reproduced twice with similar results.
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in cells expressing tau and HS3ST2 but not in cells expressing the non-mutated tau only. Interestingly, tau was 
detected predominantly as two main bands, one around 60 kDa and a second at 64–68 kDa. Indeed, tau puri-
fied from the human brain migrates as ~ 50–60 kDa bands on SDS-gel due to the presence of six isoforms40,42–45. 
Here, only full-length tau (60 kDa) is expressed by the transfected cells. On the other side, PHF-tau isolated from 
AD brain displays characteristic 60–64 and 68 kDa bands on SDS gels. The 64–68 kDa bands have been shown to 
be hyperphosphorylated and are considered as a pathological marker of AD40,42–45. Here, the 64–68 kDa (P-tau) 
band was the only band detected in RIPA extracts from cells expressing tau or tauP301S together with HS3ST2, 
whereas the 60 kDa band was also present in cells not expressing HS3ST2 (Fig. 4a, blot A). This suggests that 
HS3ST2 expression enhances the hyperphosphorylation of both tau and tauP301S (Fig. 4a, blot A; full blots are 
shown in Supplementary Fig.  S5). Accordingly, quantification of the hyperphosphorylated tau 64–68 band 
(Fig. 4b, graph A: P-tau/t-tau/GAPDH) confirms higher P-tau levels in the HS3ST2 expressing cells. Immunob-
lotting of oligomeric tau extracted by high salt Sarkosyl buffer showed that the 64–68 kDa P-tau is oligomerized 
in HEK+tau+HS3ST2, HEK+tauP301S and HEK+tauP301S+HS3ST2 cells, but not, or less, in the tau only express-
ing HEK+tau cells (Fig. 4a, blot A vs blots B-D and B’-D’; full blots in Supplementary Figs. S5–S6), Again, this 
suggests that P-tau was oligomerized in HEK+tau+HS3ST2, HEK+tauP301S, and HEK+tauP301S+HS3ST2 express-
ing cells, but not in tau only expressing cells, in agreement with the strong T22 signal observed in Sarkosyl 
extracts from these cells (Fig. 4a, blots C and C’) and with T22 staining in Fig. 3. On the other side, the 60 kDa 
tau band was not extracted by high salt Sarkosyl either from HEK+tau+HS3ST2 cells nor from HEK+tauP301S 
cells (Fig. 4a, blot A vs blots B-C and B’-C’), suggesting that tau was not oligomerized in these cells. However, 
the 60 kDa tau band appeared in tau-HS3ST2 expressing cells after Sarkosyl extraction, possibly because the 
protein was aggregated in the HS3ST2 expressing cells and thus not recovered in the RIPA buffer (Fig. 4a, blot 
A vs blots C and -C’). This is also suggested by the 60 kDa increased band density after oligomers denaturation 
by heating in Laemmli (Fig. 4a, blot A vs blots B-C and B’-C’). In line with these observations, tau (K9JA) band 
quantification shows increased P-tau oligomers in the two HS3ST2 expressing cells before and after cell lysate 
denaturation by Laemmli (Fig. 4b, graph B). Immunoblotting with the more specific anti-oligomeric tau T22 
antibody showed similar oligomeric tau extent in the two cell lines expressing HS3ST2 (both before and after 
Laemmli denaturation; Fig. 4b, graph C). Thus, HS3ST2 can similarly induce tau oligomerisation of tau and 
tauP301S, although the tau oligomers are less hyperphosphorylated in the HEK+tau+HS3ST2 cells compared to 
the HEK+tauP301S+HS3ST2 ones. Accordingly, analysis of the extracted oligomers with the anti-P-tau PHF1 
antibody46, showed a less intense PHF1 signal at 64–68 kDa in tau only expressing cells compared to tauP301S 
expressing cells. In both cases the PHF1 signal increased when HS3ST2 was expressed (Fig. 4a, blot D-D’ and 
Fig. 4b PHF1), confirming that HS3ST2 promoted tau hyperphosphorylation. Together, these results show that 
HS3ST2 expression triggers a cell autonomous hyperphosphorylation and oligomerisation of both non-mutated 
tau and tau carrying the pathogenic mutation P301S.

3S‑HS intracellularly accumulate in cells producing tau and tauP301S oligomers.  Here, we 
showed that the cell autonomous hyperphosphorylation and oligomerisation of tau and of tauP301S is induced 
in cells expressing HS3ST2. Previously, we showed in SH-SY5Y cell models of tauopathy that 3S-HS accumu-
late and colocalize with tau at the intracellular level28. To investigate whether 3S-HS intracellularly accumulate 
and colocalize with tau in our engineered cells producing hyperphosphorylated tau oligomers, we stained cells 
with total-tau (K9JA), oligo-tau (T22), and 3S-HS (HS4C3) antibodies and analysed cells by ICC with confocal 
microscopy. As expected, tau was intracellularly located in all tau expressing cells, whereas 3S-HS were intracel-
lularly detected only in cells expressing either HS3ST2 or the tau mutation, or both, regardless of total tau levels 
(Fig. 5). Similarly, tau oligomers were only detected in cells accumulating intracellular 3S-HS. Interestingly, t-tau 
(K9JA) and tau oligomers (T22) signals colocalized with intracellular 3S-HS only in cells expressing HS3ST2, but 
not in cells expressing tau only (Fig. 5a–b), regardless of similar tau protein levels (Fig. 5c). Although the cells 
that accumulate the higher 3S-HS levels are those accumulating higher levels of tau oligomers, the effect in tau 
oligomerisation is likely more related to the extent of intracellular 3S-HS rather than the level of the sugar itself, 
as suggested by the absence of tau oligomers in HEK+tau cells, which accumulate 3S-HS at the cell membrane.

In cells expressing tauP301S, 3S-HS were systematically increased and intracellularly detected regardless of 
HS3ST2 expression although HS3ST2 expression increased tau oligomers levels compared to tauP301S only 
expressing cells (Fig. 5b–h). The intracellular accumulation of 3S-HS in the HEK+tauP301S cells supports that 
tauP301S expression triggers the endogenous accumulation of these sugars without requirement of HS3ST2 over-
expression (Fig. 5f–e). Together, these results indicate that 3S-HS intracellular location can be induced by simul-
taneous expression of both HS3ST2 and tau, by tauP301S expression in cells (which endogenously produce some 
3S-HS), or by over production of 3S-HS.

Discussion
In a previous report we showed that HS3ST2 is critical for the abnormal phosphorylation of tau in AD-related 
tauopathy28. Here, we show for the first time that HS3ST2 expression promotes tau oligomerisation in cells 
expressing wild type tau or tau carrying the P301S mutation (tauP301S). Tau oligomers detection was assessed 
in the cultured cells and cell lysates by staining with the T22 antibody, which recognises oligomeric but not 
monomeric tau nor tau in advanced aggregational stages39. This agrees a role of intracellular 3S-HS in tau oli-
gomerisation, T22 positive signal was only detected in cells expressing both HS3ST2 and tau (HEK+tau+HS3ST2 
and HEK+tauP301S+HS3ST2), or in cells carrying tauP301S only (HEK+tauP301S). In agreement with the presence 
of tau oligomers reported to be extractable in high salt (500 mM) Sarkosyl35,36, we observed tau multimers 
in stabilized conformations resistant to SDS36,47. However, as previously reported, it cannot be excluded that 
these multimers may be composed of tau in complex with other protein(s)47,48. Interestingly, P-tau oligomers 
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Figure 5.   Intracellular 3S-HS and tau oligomers in cells expressing HS3ST2 and tau or tauP301S. Cells were immunoassayed 
with antibodies against 3S-HS (HS4C3, red), total tau (t-tau; K9JA antibody; green), and oligo-tau (T22 antibody; green). 
Images were recorded with a microscope IX81 Olympus with confocal option. Magnification was 20× or 60× for confocal 
slices (immersion oil). (a,b) Representative image of 3S-HS, tau, and oligo-tau staining in HEK cells expressing tau 
together or not with HS3ST2. (c) Fluorescence intensity quantification of 3S-HS, t-tau, and oligo tau signals in HEK+tau 
vs HEK+tau+HS3ST2 cells. Mean values ± SD (n = 3) are represented. (d) Confocal slices showing non-intracellular 3S-HS 
and no tau oligomers in HEK+tau cells. (e) Confocal slices showing intracellular 3S-HS and tau oligomers accumulation in 
HEK+tau cells. (f,g) Representative images of 3S-HS, tau, and oligo-tau staining in HEK cells expressing tauP301S together 
or not with HS3ST2. (h) Fluorescence intensity quantification of 3S-HS, t-tau, and oligo tauP301S signals in HEK+tauP301S vs 
HEK+tauP301S+HS3ST2 cells. Mean values ± SD (n = 3) are represented. (i) Confocal slices showing intracellular 3S-HS and 
tau oligomers in HEK+tauP301S cells. (j) Confocal slices showing intracellular 3S-HS and tau oligomers in HEK+tauP301S and 
HEK+tauP301S+HS3ST2 cells. Image analyses were calculated by the unpaired and two-tailed Student’s t test, as indicated 
(***P < 0.001; **P < 0.01; *P < 0.05; ns = not significant).
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were not only detected in the tauP301S expressing cells (HEK+tauP301S+HS3ST2) but also in cells expressing 
the non-mutated tau and HS3ST2 (HEK+tau+HS3ST2), thus mimicking the tau aggregation process in both 
mutational11,49 and non-mutational tauopathies, which include AD50. P-tau signals levels were stronger when 
HS3ST2 was expressed together with tau and when 3S-HS accumulated inside cells. However, the signal decreased 
in HEK+tauP301S+HS3ST2 compared to HEK+tau+HS3ST2, suggesting lower T22 immunoreactivity in the last 
due to higher tau aggregation stages11,51, as confirmed by analysis of T22 in cells that could be analysed at earlier 
times of culture (made possible only by using bicistronic vectors). This agrees with a tauP301S increased propen-
sity to aggregate compared to native tau51. These results agree previous observations showing that suppression 
of HS3ST2 in a zebrafish model of tauopathy expressing human tauP301L leads to tauopathy arrest and animal 
functional recovery28 and comfort the hypothesis that HS3ST2 participates to the cell autonomous P-tau oligom-
erisation and aggregation process in which intracellular 3S-HS might play a central role22.

The implication of 3S-HS in tau oligomerisation and aggregation is supported by the extensive use of heparin 
in the in vitro induction of native tau fibrils14,16. As heparin is a commercially available prototype of the endog-
enous 3S-HS19, it is not surprising that cells expressing both 3S-HS and tau are able to produce high levels of 
aggregated tau. Indeed, although heparin is produced predominantly in mast cells by HS3ST152, other 3S-HS 
can also be produced by other HS3STs expressed in different tissues19, as HS3ST2 in brain21,53,54. Interestingly, 
regardless of the reported colocalization of HS with tau in the brain of AD in the 90’s25–27, the involvement of 
neural HS sulfotransferases in the development of tauopathy was until recently disregarded. This is possibly 
because HS are typically described to be located at the cell surface under physiological conditions23,24, and thus 
their intracellular accumulation in AD25–27,55 breaks the dogma of their extracellular location. Nevertheless, by 
using cell models of tauopathy, we previously showed that 3S-HS were first located at the cell membrane before 
internalization, delineating a link with the biology at the cell membrane28. Here, we show in the engineered 
HEK293 cells expressing HS3ST2 and tau, that 3S-HS intracellularly accumulate in cells that produce tau oli-
gomers, whereas 3S-HS are predominantly located at the cell membrane in control wild type cells, in which tau 
oligomers were not detected (HEK Ctr cells). Indeed, by using FRET experiments, we previously showed that 
3S-HS can physically interact with tau in cell models of tauopathy28, although aggregation was not assessed in that 
study. Moreover, the hypothesis of an intracellular 3S-HS induction of aggregation in a cell autonomous manner 
(without supplementing on tau seeds) is supported by previous proton nuclear magnetic resonance (1H NMR) 
studies showing that heparin can induce tau β-sheet conformations, characteristic of fibrillar protein aggregates16.

Accumulation of tau aggregates in neurons is an important pathological signature in multiple neurodegen-
erative disorders including AD, FTDP17, and other tauopathies1,9. Although great efforts have been made to 
understand the tau aggregation processes, there is still an imperative need to identify new key molecular players 
involved in this process, as well as to develop robust cellular systems to test the pertinence of these players in 
the research of new therapeutic candidates. Here, we show that tau aggregation can occur in a cell autonomous 
manner, as it happened without addition of exogenous inducers of aggregation in our engineered cells, which 
represent a new cell model of tauopathy. Indeed, in most cell models of tauopathy tau aggregation is induced 
by addition of exogenous tau seeds or tau seeds from reborning cells56,57, by addition of exogenous aggregation 
inducing molecules58,59, or by expression of tau carrying pathogenic mutations28,60,61. We used HEK293 cells since 
they are easily transfected and because they exhibit some characteristics of neuronal lineage cells62, including 
expression of more than 60 neuron-specific genes63. Moreover, these cells give opportunity to investigate the 
reciprocal effect of HS3ST2 and tau expression, independently of each other, given that they lack or show very 
low expression levels of HS3ST2 and tau. Thus, HEK293 cells were permanently transfected to express HS3ST2 
alone or in association with tau or tauP301S. Interestingly, HS3ST2 protein levels remained undetectable in cells 
transfected with tau only (tau or tauP301S), indicating that tau has no effect in HS3ST2 expression, at least in the 
HEK293 cells. Accordingly, HS-related genes have not been reported in the panel of genes which expression 
increases after increasing tau expression64. As HS3ST2 and tau could be stably and robustly expressed in the 
HEK293 cell line, we additionally propose this model, or cells transfected with other HS3STs, as a convenient tool 
to investigate the involvement of 3S-HS in tau protein abnormal phosphorylation and pathologic oligomerisation. 
Taken together, our results show that 3S-HS produced by HS3ST2 can generate cell autonomous tau aggregation 
by starting from tau oligomerisation and evolving through tau aggregation in a time dependent manner. However, 
the mechanism driving the 3S-HS intracellular accumulation remains to be clarified.

Conclusion
Cell autonomous hyperphosphorylation and oligomerisation of tau were induced through simultaneous expres-
sion of the neural HS3ST2 and tau in cultured cells, in which 3S-HS colocalized with tau at the intracellular 
level. This mimics the intracellular accumulation of HS observed in neurons of the AD25–27,55. As HS3ST2 is an 
enzyme predominantly expressed in brain regions vulnerable to AD, as cortex and hippocampus33, our results 
suggest the involvement of 3S-HS in the mechanisms leading to tau hyperphosphorylation, oligomerisation, 
and aggregation in the AD brain. Moreover, the cell autonomous production of tau aggregates in the absence of 
any tau mutation supports that 3S-HS can drive tau aggregation in cells that express tau and in which HS3ST2 is 
predominantly expressed, as in neural cells. Indeed, these cells are here mimicked by inducing the expression of 
tau and HS3ST2 in HEK cells, resulting in an original glycan-derived model of cell autonomous tauopathy. This 
new cell model offers the possibility to bypass tau aggregation inducers used to promote fibrillization of full-
length wild-type tau65. Moreover, as HS accumulate in brain of AD at early stages of the disease, we propose that 
inhibiting the interaction of HS with tau will represent a breakthrough for developing new efficient therapeutic 
drugs for AD and related tauopathies. We are currently working in this area.
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